starpu.texi 155 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. These steps require to run autoconf and automake to generate the
  195. @code{./configure} script. This can be done by calling
  196. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  197. higher. You will also need makeinfo.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  633. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. @i{ cl_event event;}
  664. /* length of the vector */
  665. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  666. /* local copy of the vector pointer */
  667. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  668. @i{ id = starpu_worker_get_id();}
  669. @i{ devid = starpu_worker_get_devid(id);}
  670. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  671. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  672. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  673. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  674. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  675. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  676. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  677. @i{ @{}
  678. @i{ size_t global=1;}
  679. @i{ size_t local=1;}
  680. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  681. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @}}
  683. @i{ clFinish(queue);}
  684. @i{ starpu_opencl_collect_stats(event);}
  685. @i{ clReleaseEvent(event);}
  686. @i{ starpu_opencl_release_kernel(kernel);}
  687. @}
  688. @end smallexample
  689. @end cartouche
  690. @node Definition of the Main Code
  691. @subsection Definition of the Main Code
  692. The CPU implementation is the same as in the previous section.
  693. Here is the source of the main application. You can notice the value of the
  694. field @code{where} for the codelet. We specify
  695. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  696. can be executed either on a CPU or on a CUDA or an OpenCL device.
  697. @cartouche
  698. @smallexample
  699. #include <starpu.h>
  700. #define NX 2048
  701. extern void scal_cuda_func(void *buffers[], void *_args);
  702. extern void scal_cpu_func(void *buffers[], void *_args);
  703. extern void scal_opencl_func(void *buffers[], void *_args);
  704. /* @b{Definition of the codelet} */
  705. static starpu_codelet cl = @{
  706. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  707. /* @b{on a CUDA device, or on an OpenCL device} */
  708. .cuda_func = scal_cuda_func;
  709. .cpu_func = scal_cpu_func;
  710. .opencl_func = scal_opencl_func;
  711. .nbuffers = 1;
  712. @}
  713. #ifdef STARPU_USE_OPENCL
  714. /* @b{The compiled version of the OpenCL program} */
  715. struct starpu_opencl_program programs;
  716. #endif
  717. int main(int argc, char **argv)
  718. @{
  719. float *vector;
  720. int i, ret;
  721. float factor=3.0;
  722. struct starpu_task *task;
  723. starpu_data_handle vector_handle;
  724. starpu_init(NULL); /* @b{Initialising StarPU} */
  725. #ifdef STARPU_USE_OPENCL
  726. starpu_opencl_load_opencl_from_file(
  727. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  728. #endif
  729. vector = malloc(NX*sizeof(vector[0]));
  730. assert(vector);
  731. for(i=0 ; i<NX ; i++) vector[i] = i;
  732. @end smallexample
  733. @end cartouche
  734. @cartouche
  735. @smallexample
  736. /* @b{Registering data within StarPU} */
  737. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  738. NX, sizeof(vector[0]));
  739. /* @b{Definition of the task} */
  740. task = starpu_task_create();
  741. task->cl = &cl;
  742. task->buffers[0].handle = vector_handle;
  743. task->buffers[0].mode = STARPU_RW;
  744. task->cl_arg = &factor;
  745. task->cl_arg_size = sizeof(factor);
  746. @end smallexample
  747. @end cartouche
  748. @cartouche
  749. @smallexample
  750. /* @b{Submitting the task} */
  751. ret = starpu_task_submit(task);
  752. if (ret == -ENODEV) @{
  753. fprintf(stderr, "No worker may execute this task\n");
  754. return 1;
  755. @}
  756. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  757. /* @b{Waiting for its termination} */
  758. starpu_task_wait_for_all();
  759. /* @b{Update the vector in RAM} */
  760. starpu_data_acquire(vector_handle, STARPU_R);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Access the data} */
  766. for(i=0 ; i<NX; i++) @{
  767. fprintf(stderr, "%f ", vector[i]);
  768. @}
  769. fprintf(stderr, "\n");
  770. /* @b{Release the data and shutdown StarPU} */
  771. starpu_data_release(vector_handle);
  772. starpu_shutdown();
  773. return 0;
  774. @}
  775. @end smallexample
  776. @end cartouche
  777. @node Execution of Hybrid Vector Scaling
  778. @subsection Execution of Hybrid Vector Scaling
  779. The Makefile given at the beginning of the section must be extended to
  780. give the rules to compile the CUDA source code. Note that the source
  781. file of the OpenCL kernel does not need to be compiled now, it will
  782. be compiled at run-time when calling the function
  783. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  784. @cartouche
  785. @smallexample
  786. CFLAGS += $(shell pkg-config --cflags libstarpu)
  787. LDFLAGS += $(shell pkg-config --libs libstarpu)
  788. CC = gcc
  789. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  790. %.o: %.cu
  791. nvcc $(CFLAGS) $< -c $@
  792. clean:
  793. rm -f vector_scal *.o
  794. @end smallexample
  795. @end cartouche
  796. @smallexample
  797. % make
  798. @end smallexample
  799. and to execute it, with the default configuration:
  800. @smallexample
  801. % ./vector_scal
  802. 0.000000 3.000000 6.000000 9.000000 12.000000
  803. @end smallexample
  804. or for example, by disabling CPU devices:
  805. @smallexample
  806. % STARPU_NCPUS=0 ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  810. see @ref{Using accelerators}):
  811. @smallexample
  812. % STARPU_NCUDA=0 ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. @node Task and Worker Profiling
  816. @section Task and Worker Profiling
  817. A full example showing how to use the profiling API is available in
  818. the StarPU sources in the directory @code{examples/profiling/}.
  819. @cartouche
  820. @smallexample
  821. struct starpu_task *task = starpu_task_create();
  822. task->cl = &cl;
  823. task->synchronous = 1;
  824. /* We will destroy the task structure by hand so that we can
  825. * query the profiling info before the task is destroyed. */
  826. task->destroy = 0;
  827. /* Submit and wait for completion (since synchronous was set to 1) */
  828. starpu_task_submit(task);
  829. /* The task is finished, get profiling information */
  830. struct starpu_task_profiling_info *info = task->profiling_info;
  831. /* How much time did it take before the task started ? */
  832. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  833. /* How long was the task execution ? */
  834. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  835. /* We don't need the task structure anymore */
  836. starpu_task_destroy(task);
  837. @end smallexample
  838. @end cartouche
  839. @cartouche
  840. @smallexample
  841. /* Display the occupancy of all workers during the test */
  842. int worker;
  843. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  844. @{
  845. struct starpu_worker_profiling_info worker_info;
  846. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  847. STARPU_ASSERT(!ret);
  848. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  849. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  850. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  851. float executing_ratio = 100.0*executing_time/total_time;
  852. float sleeping_ratio = 100.0*sleeping_time/total_time;
  853. char workername[128];
  854. starpu_worker_get_name(worker, workername, 128);
  855. fprintf(stderr, "Worker %s:\n", workername);
  856. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  857. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  858. executing_ratio);
  859. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  860. sleeping_ratio);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. @node Partitioning Data
  865. @section Partitioning Data
  866. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  867. @cartouche
  868. @smallexample
  869. int vector[NX];
  870. starpu_data_handle handle;
  871. /* Declare data to StarPU */
  872. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  873. /* Partition the vector in PARTS sub-vectors */
  874. starpu_filter f =
  875. @{
  876. .filter_func = starpu_block_filter_func_vector,
  877. .nchildren = PARTS,
  878. .get_nchildren = NULL,
  879. .get_child_ops = NULL
  880. @};
  881. starpu_data_partition(handle, &f);
  882. @end smallexample
  883. @end cartouche
  884. @cartouche
  885. @smallexample
  886. /* Submit a task on each sub-vector */
  887. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  888. /* Get subdata number i (there is only 1 dimension) */
  889. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  890. struct starpu_task *task = starpu_task_create();
  891. task->buffers[0].handle = sub_handle;
  892. task->buffers[0].mode = STARPU_RW;
  893. task->cl = &cl;
  894. task->synchronous = 1;
  895. task->cl_arg = &factor;
  896. task->cl_arg_size = sizeof(factor);
  897. starpu_task_submit(task);
  898. @}
  899. @end smallexample
  900. @end cartouche
  901. Partitioning can be applied several times, see
  902. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  903. @node Performance model example
  904. @section Performance model example
  905. To achieve good scheduling, StarPU scheduling policies need to be able to
  906. estimate in advance the duration of a task. This is done by giving to codelets a
  907. performance model. There are several kinds of performance models.
  908. @itemize
  909. @item
  910. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  911. see for instance
  912. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  913. @item
  914. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  915. given set of data input/output sizes, the performance will always be about the
  916. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  917. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  918. few different sets of data input/output sizes. StarPU will then keep record of
  919. the average time of previous executions on the various processing units, and use
  920. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  921. for further executions. The following is a small code example.
  922. @cartouche
  923. @smallexample
  924. static struct starpu_perfmodel_t mult_perf_model = @{
  925. .type = STARPU_HISTORY_BASED,
  926. .symbol = "mult_perf_model"
  927. @};
  928. starpu_codelet cl = @{
  929. .where = STARPU_CPU,
  930. .cpu_func = cpu_mult,
  931. .nbuffers = 3,
  932. /* for the scheduling policy to be able to use performance models */
  933. .model = &mult_perf_model
  934. @};
  935. @end smallexample
  936. @end cartouche
  937. @item
  938. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  939. type). This still assumes performance regularity, but can work with various data
  940. input sizes, by applying a*n^b+c regression over observed execution times.
  941. @end itemize
  942. The same can be done for task power consumption estimation, by setting the
  943. @code{power_model} field the same way as the @code{model} field. Note: for
  944. now, the application has to give to the power consumption performance model
  945. a different name.
  946. @node Theoretical lower bound on execution time
  947. @section Theoretical lower bound on execution time
  948. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  949. bound for the execution time of a whole set of tasks. See for
  950. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  951. call @code{starpu_bound_start}, and after complete execution, call
  952. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  953. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  954. problem corresponding to the schedule of your tasks. Run it through
  955. @code{lp_solve} or any other linear programming solver, and that will give you a
  956. lower bound for the total execution time of your tasks. If StarPU was compiled
  957. with the glpk library installed, @code{starpu_bound_compute} can be used to
  958. solve it immediately and get the optimized minimum. Its @code{integer}
  959. parameter allows to decide whether integer resolution should be computed
  960. and returned.
  961. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  962. dependencies into account. It must be understood that the linear programming
  963. problem size is quadratic with the number of tasks and thus the time to solve it
  964. will be very long, it could be minutes for just a few dozen tasks. You should
  965. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  966. problem to MPS format and then use a better solver, @code{glpsol} might be
  967. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  968. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  969. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  970. of @code{lp_solve}. For instance, we often just use
  971. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  972. the @code{-gr} option can also be quite useful.
  973. Setting @code{deps} to 0 will only take into account the actual computations
  974. on processing units. It however still properly takes into account the varying
  975. performances of kernels and processing units, which is quite more accurate than
  976. just comparing StarPU performances with the fastest of the kernels being used.
  977. The @code{prio} parameter tells StarPU whether to simulate taking into account
  978. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  979. tasks before less prioritized tasks, to check to which extend this results
  980. to a less optimal solution. This increases even more computation time.
  981. Note that for simplicity, all this however doesn't take into account data
  982. transfers, which are assumed to be completely overlapped.
  983. @node More examples
  984. @section More examples
  985. More examples are available in the StarPU sources in the @code{examples/}
  986. directory. Simple examples include:
  987. @table @asis
  988. @item @code{incrementer/}:
  989. Trivial incrementation test.
  990. @item @code{basic_examples/}:
  991. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  992. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  993. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  994. interface, and an example using the variable data interface.
  995. @item @code{matvecmult/}:
  996. OpenCL example from NVidia, adapted to StarPU.
  997. @item @code{axpy/}:
  998. AXPY CUBLAS operation adapted to StarPU.
  999. @item @code{fortran/}:
  1000. Example of Fortran bindings.
  1001. @end table
  1002. More advanced examples include:
  1003. @table @asis
  1004. @item @code{filters/}:
  1005. Examples using filters, as shown in @ref{Partitioning Data}.
  1006. @item @code{lu/}:
  1007. LU matrix factorization.
  1008. @end table
  1009. @c ---------------------------------------------------------------------
  1010. @c Performance options
  1011. @c ---------------------------------------------------------------------
  1012. @node Performance optimization
  1013. @chapter How to optimize performance with StarPU
  1014. TODO: improve!
  1015. @menu
  1016. * Data management::
  1017. * Task scheduling policy::
  1018. * Task distribution vs Data transfer::
  1019. * Power-based scheduling::
  1020. * Profiling::
  1021. * CUDA-specific optimizations::
  1022. @end menu
  1023. Simply encapsulating application kernels into tasks already permits to
  1024. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1025. few additional changes are needed.
  1026. @node Data management
  1027. @section Data management
  1028. By default, StarPU does not enable data prefetching, because CUDA does
  1029. not announce when too many data transfers were scheduled and can thus block
  1030. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1031. .
  1032. By default, StarPU leaves replicates of data wherever they were used, in case they
  1033. will be re-used by other tasks, thus saving the data transfer time. When some
  1034. task modifies some data, all the other replicates are invalidated, and only the
  1035. processing unit will have a valid replicate of the data. If the application knows
  1036. that this data will not be re-used by further tasks, it should advise StarPU to
  1037. immediately replicate it to a desired list of memory nodes (given through a
  1038. bitmask). This can be understood like the write-through mode of CPU caches.
  1039. @example
  1040. starpu_data_set_wt_mask(img_handle, 1<<0);
  1041. @end example
  1042. will for instance request to always transfer a replicate into the main memory (node
  1043. 0), as bit 0 of the write-through bitmask is being set.
  1044. When the application allocates data, whenever possible it should use the
  1045. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1046. OpenCL to make the allocation itself and pin the corresponding allocated
  1047. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1048. transfer to overlap with computations.
  1049. @node Task scheduling policy
  1050. @section Task scheduling policy
  1051. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1052. because it provides correct load balance even if the application codelets do not
  1053. have performance models. If your application codelets have performance models,
  1054. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1055. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1056. the list of available schedulers.
  1057. Most schedulers are based on an estimation of codelet duration on each kind
  1058. of processing unit. For this to be possible, the application programmer needs
  1059. to configure a performance model for the codelets of the application (see
  1060. @ref{Performance model example} for instance). History-based performance models
  1061. use on-line calibration. StarPU will automatically calibrate codelets
  1062. which have never been calibrated yet. To force continuing calibration, use
  1063. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1064. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1065. Note: due to CUDA limitations, to be able to measure kernel duration,
  1066. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1067. disables data transfer / computation overlapping, and should thus not be used
  1068. for eventual benchmarks.
  1069. @node Task distribution vs Data transfer
  1070. @section Task distribution vs Data transfer
  1071. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1072. thus needs to find a balance between both. The target function that the
  1073. @code{dmda} scheduler of StarPU
  1074. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1075. @code{T_execution} is the estimated execution time of the codelet (usually
  1076. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1077. latter is however estimated based on bus calibration before execution start,
  1078. i.e. with an idle machine. You can force bus re-calibration by running
  1079. @code{starpu_calibrate_bus}. When StarPU manages several GPUs, such estimation
  1080. is not accurate any more. Beta can then be used to correct this by hand. For
  1081. instance, you can use @code{export STARPU_BETA=2} to double the transfer
  1082. time estimation, e.g. because there are two GPUs in the machine. This is of
  1083. course imprecise, but in practice, a rough estimation already gives the good
  1084. results that a precise estimation would give.
  1085. Measuring the actual data transfer time is however on our TODO-list to
  1086. accurately estimate data transfer penalty without the need of a hand-tuned beta parameter.
  1087. @node Power-based scheduling
  1088. @section Power-based scheduling
  1089. If the application can provide some power performance model (through
  1090. the @code{power_model} field of the codelet structure), StarPU will
  1091. take it into account when distributing tasks. The target function that
  1092. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1093. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1094. is the estimated task consumption in Joules. To tune this parameter, use
  1095. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1096. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1097. alpha and beta to zero permits to only take into account power consumption.
  1098. The power actually consumed by the total execution can be displayed by setting
  1099. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1100. @node Profiling
  1101. @section Profiling
  1102. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1103. calling @code{starpu_profiling_status_set} from the source code.
  1104. Statistics on the execution can then be obtained by using @code{export
  1105. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1106. stats will include an approximation of the number of executed tasks even if
  1107. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1108. execution did happen on accelerators without penalizing performance with
  1109. the profiling overhead. More details on performance feedback are provided by the
  1110. next chapter.
  1111. @node CUDA-specific optimizations
  1112. @section CUDA-specific optimizations
  1113. Due to CUDA limitations, StarPU will have a hard time overlapping
  1114. communications and computations if the application does not use a dedicated
  1115. CUDA stream for its computations. StarPU provides one by the use of
  1116. @code{starpu_cuda_get_local_stream()}. For instance:
  1117. @example
  1118. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1119. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1120. @end example
  1121. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1122. @c ---------------------------------------------------------------------
  1123. @c Performance feedback
  1124. @c ---------------------------------------------------------------------
  1125. @node Performance feedback
  1126. @chapter Performance feedback
  1127. @menu
  1128. * On-line:: On-line performance feedback
  1129. * Off-line:: Off-line performance feedback
  1130. * Codelet performance:: Performance of codelets
  1131. @end menu
  1132. @node On-line
  1133. @section On-line performance feedback
  1134. @menu
  1135. * Enabling monitoring:: Enabling on-line performance monitoring
  1136. * Task feedback:: Per-task feedback
  1137. * Codelet feedback:: Per-codelet feedback
  1138. * Worker feedback:: Per-worker feedback
  1139. * Bus feedback:: Bus-related feedback
  1140. @end menu
  1141. @node Enabling monitoring
  1142. @subsection Enabling on-line performance monitoring
  1143. In order to enable online performance monitoring, the application can call
  1144. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1145. detect whether monitoring is already enabled or not by calling
  1146. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1147. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1148. can also be set to 1 to achieve the same effect.
  1149. Likewise, performance monitoring is stopped by calling
  1150. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1151. does not reset the performance counters so that the application may consult
  1152. them later on.
  1153. More details about the performance monitoring API are available in section
  1154. @ref{Profiling API}.
  1155. @node Task feedback
  1156. @subsection Per-task feedback
  1157. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1158. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1159. structure when a task terminates.
  1160. This structure is automatically destroyed when the task structure is destroyed,
  1161. either automatically or by calling @code{starpu_task_destroy}.
  1162. The @code{starpu_task_profiling_info} structure indicates the date when the
  1163. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1164. terminated (@code{end_time}), relative to the initialization of
  1165. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1166. that has executed the task (@code{workerid}).
  1167. These date are stored as @code{timespec} structures which the user may convert
  1168. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1169. function.
  1170. It it worth noting that the application may directly access this structure from
  1171. the callback executed at the end of the task. The @code{starpu_task} structure
  1172. associated to the callback currently being executed is indeed accessible with
  1173. the @code{starpu_get_current_task()} function.
  1174. @node Codelet feedback
  1175. @subsection Per-codelet feedback
  1176. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1177. an array of counters. The i-th entry of the array is incremented every time a
  1178. task implementing the codelet is executed on the i-th worker.
  1179. This array is not reinitialized when profiling is enabled or disabled.
  1180. @node Worker feedback
  1181. @subsection Per-worker feedback
  1182. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1183. function is a @code{starpu_worker_profiling_info} structure that gives
  1184. statistics about the specified worker. This structure specifies when StarPU
  1185. started collecting profiling information for that worker (@code{start_time}),
  1186. the duration of the profiling measurement interval (@code{total_time}), the
  1187. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1188. because there is no task to execute at all (@code{sleeping_time}), and the
  1189. number of tasks that were executed while profiling was enabled.
  1190. These values give an estimation of the proportion of time spent do real work,
  1191. and the time spent either sleeping because there are not enough executable
  1192. tasks or simply wasted in pure StarPU overhead.
  1193. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1194. information associated to a worker.
  1195. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1196. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1197. generate a graphic showing the evolution of these values during the time, for
  1198. the different workers.
  1199. @node Bus feedback
  1200. @subsection Bus-related feedback
  1201. TODO
  1202. @c how to enable/disable performance monitoring
  1203. @c what kind of information do we get ?
  1204. @node Off-line
  1205. @section Off-line performance feedback
  1206. @menu
  1207. * Generating traces:: Generating traces with FxT
  1208. * Gantt diagram:: Creating a Gantt Diagram
  1209. * DAG:: Creating a DAG with graphviz
  1210. * starpu-top:: Monitoring activity
  1211. @end menu
  1212. @node Generating traces
  1213. @subsection Generating traces with FxT
  1214. StarPU can use the FxT library (see
  1215. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1216. with a limited runtime overhead.
  1217. You can either get the FxT library from CVS (autotools are required):
  1218. @example
  1219. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1220. % ./bootstrap
  1221. @end example
  1222. If autotools are not available on your machine, or if you prefer to do so,
  1223. FxT's code is also available as a tarball:
  1224. @example
  1225. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1226. @end example
  1227. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1228. done following the standard procedure:
  1229. @example
  1230. % ./configure --prefix=$FXTDIR
  1231. % make
  1232. % make install
  1233. @end example
  1234. In order to have StarPU to generate traces, StarPU should be configured with
  1235. the @code{--with-fxt} option:
  1236. @example
  1237. $ ./configure --with-fxt=$FXTDIR
  1238. @end example
  1239. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1240. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1241. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1242. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1243. @code{/tmp/} directory by default, or by the directory specified by
  1244. the @code{STARPU_FXT_PREFIX} environment variable.
  1245. @node Gantt diagram
  1246. @subsection Creating a Gantt Diagram
  1247. When the FxT trace file @code{filename} has been generated, it is possible to
  1248. generate a trace in the Paje format by calling:
  1249. @example
  1250. % starpu_fxt_tool -i filename
  1251. @end example
  1252. This will create a @code{paje.trace} file in the current directory that can be
  1253. inspected with the ViTE trace visualizing open-source tool. More information
  1254. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1255. possible to open the @code{paje.trace} file with ViTE by using the following
  1256. command:
  1257. @example
  1258. % vite paje.trace
  1259. @end example
  1260. @node DAG
  1261. @subsection Creating a DAG with graphviz
  1262. When the FxT trace file @code{filename} has been generated, it is possible to
  1263. generate a task graph in the DOT format by calling:
  1264. @example
  1265. $ starpu_fxt_tool -i filename
  1266. @end example
  1267. This will create a @code{dag.dot} file in the current directory. This file is a
  1268. task graph described using the DOT language. It is possible to get a
  1269. graphical output of the graph by using the graphviz library:
  1270. @example
  1271. $ dot -Tpdf dag.dot -o output.pdf
  1272. @end example
  1273. @node starpu-top
  1274. @subsection Monitoring activity
  1275. When the FxT trace file @code{filename} has been generated, it is possible to
  1276. generate a activity trace by calling:
  1277. @example
  1278. $ starpu_fxt_tool -i filename
  1279. @end example
  1280. This will create an @code{activity.data} file in the current
  1281. directory. A profile of the application showing the activity of StarPU
  1282. during the execution of the program can be generated:
  1283. @example
  1284. $ starpu_top.sh activity.data
  1285. @end example
  1286. This will create a file named @code{activity.eps} in the current directory.
  1287. This picture is composed of two parts.
  1288. The first part shows the activity of the different workers. The green sections
  1289. indicate which proportion of the time was spent executed kernels on the
  1290. processing unit. The red sections indicate the proportion of time spent in
  1291. StartPU: an important overhead may indicate that the granularity may be too
  1292. low, and that bigger tasks may be appropriate to use the processing unit more
  1293. efficiently. The black sections indicate that the processing unit was blocked
  1294. because there was no task to process: this may indicate a lack of parallelism
  1295. which may be alleviated by creating more tasks when it is possible.
  1296. The second part of the @code{activity.eps} picture is a graph showing the
  1297. evolution of the number of tasks available in the system during the execution.
  1298. Ready tasks are shown in black, and tasks that are submitted but not
  1299. schedulable yet are shown in grey.
  1300. @node Codelet performance
  1301. @section Performance of codelets
  1302. The performance model of codelets can be examined by using the
  1303. @code{starpu_perfmodel_display} tool:
  1304. @example
  1305. $ starpu_perfmodel_display -l
  1306. file: <malloc_pinned.hannibal>
  1307. file: <starpu_slu_lu_model_21.hannibal>
  1308. file: <starpu_slu_lu_model_11.hannibal>
  1309. file: <starpu_slu_lu_model_22.hannibal>
  1310. file: <starpu_slu_lu_model_12.hannibal>
  1311. @end example
  1312. Here, the codelets of the lu example are available. We can examine the
  1313. performance of the 22 kernel:
  1314. @example
  1315. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1316. performance model for cpu
  1317. # hash size mean dev n
  1318. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1319. performance model for cuda_0
  1320. # hash size mean dev n
  1321. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1322. performance model for cuda_1
  1323. # hash size mean dev n
  1324. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1325. performance model for cuda_2
  1326. # hash size mean dev n
  1327. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1328. @end example
  1329. We can see that for the given size, over a sample of a few hundreds of
  1330. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1331. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1332. CPUs.
  1333. @c ---------------------------------------------------------------------
  1334. @c MPI support
  1335. @c ---------------------------------------------------------------------
  1336. @node StarPU MPI support
  1337. @chapter StarPU MPI support
  1338. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1339. @c ---------------------------------------------------------------------
  1340. @c Configuration options
  1341. @c ---------------------------------------------------------------------
  1342. @node Configuring StarPU
  1343. @chapter Configuring StarPU
  1344. @menu
  1345. * Compilation configuration::
  1346. * Execution configuration through environment variables::
  1347. @end menu
  1348. @node Compilation configuration
  1349. @section Compilation configuration
  1350. The following arguments can be given to the @code{configure} script.
  1351. @menu
  1352. * Common configuration::
  1353. * Configuring workers::
  1354. * Advanced configuration::
  1355. @end menu
  1356. @node Common configuration
  1357. @subsection Common configuration
  1358. @menu
  1359. * --enable-debug::
  1360. * --enable-fast::
  1361. * --enable-verbose::
  1362. * --enable-coverage::
  1363. @end menu
  1364. @node --enable-debug
  1365. @subsubsection @code{--enable-debug}
  1366. @table @asis
  1367. @item @emph{Description}:
  1368. Enable debugging messages.
  1369. @end table
  1370. @node --enable-fast
  1371. @subsubsection @code{--enable-fast}
  1372. @table @asis
  1373. @item @emph{Description}:
  1374. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1375. @end table
  1376. @node --enable-verbose
  1377. @subsubsection @code{--enable-verbose}
  1378. @table @asis
  1379. @item @emph{Description}:
  1380. Augment the verbosity of the debugging messages.
  1381. @end table
  1382. @node --enable-coverage
  1383. @subsubsection @code{--enable-coverage}
  1384. @table @asis
  1385. @item @emph{Description}:
  1386. Enable flags for the @code{gcov} coverage tool.
  1387. @end table
  1388. @node Configuring workers
  1389. @subsection Configuring workers
  1390. @menu
  1391. * --enable-nmaxcpus::
  1392. * --disable-cpu::
  1393. * --enable-maxcudadev::
  1394. * --disable-cuda::
  1395. * --with-cuda-dir::
  1396. * --with-cuda-include-dir::
  1397. * --with-cuda-lib-dir::
  1398. * --enable-maxopencldev::
  1399. * --disable-opencl::
  1400. * --with-opencl-dir::
  1401. * --with-opencl-include-dir::
  1402. * --with-opencl-lib-dir::
  1403. * --enable-gordon::
  1404. * --with-gordon-dir::
  1405. @end menu
  1406. @node --enable-nmaxcpus
  1407. @subsubsection @code{--enable-nmaxcpus=<number>}
  1408. @table @asis
  1409. @item @emph{Description}:
  1410. Defines the maximum number of CPU cores that StarPU will support, then
  1411. available as the @code{STARPU_NMAXCPUS} macro.
  1412. @end table
  1413. @node --disable-cpu
  1414. @subsubsection @code{--disable-cpu}
  1415. @table @asis
  1416. @item @emph{Description}:
  1417. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1418. @end table
  1419. @node --enable-maxcudadev
  1420. @subsubsection @code{--enable-maxcudadev=<number>}
  1421. @table @asis
  1422. @item @emph{Description}:
  1423. Defines the maximum number of CUDA devices that StarPU will support, then
  1424. available as the @code{STARPU_MAXCUDADEVS} macro.
  1425. @end table
  1426. @node --disable-cuda
  1427. @subsubsection @code{--disable-cuda}
  1428. @table @asis
  1429. @item @emph{Description}:
  1430. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1431. @end table
  1432. @node --with-cuda-dir
  1433. @subsubsection @code{--with-cuda-dir=<path>}
  1434. @table @asis
  1435. @item @emph{Description}:
  1436. Specify the directory where CUDA is installed. This directory should notably contain
  1437. @code{include/cuda.h}.
  1438. @end table
  1439. @node --with-cuda-include-dir
  1440. @subsubsection @code{--with-cuda-include-dir=<path>}
  1441. @table @asis
  1442. @item @emph{Description}:
  1443. Specify the directory where CUDA headers are installed. This directory should
  1444. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1445. value given to @code{--with-cuda-dir}.
  1446. @end table
  1447. @node --with-cuda-lib-dir
  1448. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1449. @table @asis
  1450. @item @emph{Description}:
  1451. Specify the directory where the CUDA library is installed. This directory should
  1452. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1453. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1454. @end table
  1455. @node --enable-maxopencldev
  1456. @subsubsection @code{--enable-maxopencldev=<number>}
  1457. @table @asis
  1458. @item @emph{Description}:
  1459. Defines the maximum number of OpenCL devices that StarPU will support, then
  1460. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1461. @end table
  1462. @node --disable-opencl
  1463. @subsubsection @code{--disable-opencl}
  1464. @table @asis
  1465. @item @emph{Description}:
  1466. Disable the use of OpenCL, even if the SDK is detected.
  1467. @end table
  1468. @node --with-opencl-dir
  1469. @subsubsection @code{--with-opencl-dir=<path>}
  1470. @table @asis
  1471. @item @emph{Description}:
  1472. Specify the location of the OpenCL SDK. This directory should notably contain
  1473. @code{include/CL/cl.h}.
  1474. @end table
  1475. @node --with-opencl-include-dir
  1476. @subsubsection @code{--with-opencl-include-dir=<path>}
  1477. @table @asis
  1478. @item @emph{Description}:
  1479. Specify the location of OpenCL headers. This directory should notably contain
  1480. @code{CL/cl.h}. This defaults to
  1481. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1482. @end table
  1483. @node --with-opencl-lib-dir
  1484. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1485. @table @asis
  1486. @item @emph{Description}:
  1487. Specify the location of the OpenCL library. This directory should notably
  1488. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1489. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1490. @end table
  1491. @node --enable-gordon
  1492. @subsubsection @code{--enable-gordon}
  1493. @table @asis
  1494. @item @emph{Description}:
  1495. Enable the use of the Gordon runtime for Cell SPUs.
  1496. @c TODO: rather default to enabled when detected
  1497. @end table
  1498. @node --with-gordon-dir
  1499. @subsubsection @code{--with-gordon-dir=<path>}
  1500. @table @asis
  1501. @item @emph{Description}:
  1502. Specify the location of the Gordon SDK.
  1503. @end table
  1504. @node Advanced configuration
  1505. @subsection Advanced configuration
  1506. @menu
  1507. * --enable-perf-debug::
  1508. * --enable-model-debug::
  1509. * --enable-stats::
  1510. * --enable-maxbuffers::
  1511. * --enable-allocation-cache::
  1512. * --enable-opengl-render::
  1513. * --enable-blas-lib::
  1514. * --with-magma::
  1515. * --with-fxt::
  1516. * --with-perf-model-dir::
  1517. * --with-mpicc::
  1518. * --with-goto-dir::
  1519. * --with-atlas-dir::
  1520. * --with-mkl-cflags::
  1521. * --with-mkl-ldflags::
  1522. @end menu
  1523. @node --enable-perf-debug
  1524. @subsubsection @code{--enable-perf-debug}
  1525. @table @asis
  1526. @item @emph{Description}:
  1527. Enable performance debugging.
  1528. @end table
  1529. @node --enable-model-debug
  1530. @subsubsection @code{--enable-model-debug}
  1531. @table @asis
  1532. @item @emph{Description}:
  1533. Enable performance model debugging.
  1534. @end table
  1535. @node --enable-stats
  1536. @subsubsection @code{--enable-stats}
  1537. @table @asis
  1538. @item @emph{Description}:
  1539. Enable statistics.
  1540. @end table
  1541. @node --enable-maxbuffers
  1542. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1543. @table @asis
  1544. @item @emph{Description}:
  1545. Define the maximum number of buffers that tasks will be able to take
  1546. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1547. @end table
  1548. @node --enable-allocation-cache
  1549. @subsubsection @code{--enable-allocation-cache}
  1550. @table @asis
  1551. @item @emph{Description}:
  1552. Enable the use of a data allocation cache to avoid the cost of it with
  1553. CUDA. Still experimental.
  1554. @end table
  1555. @node --enable-opengl-render
  1556. @subsubsection @code{--enable-opengl-render}
  1557. @table @asis
  1558. @item @emph{Description}:
  1559. Enable the use of OpenGL for the rendering of some examples.
  1560. @c TODO: rather default to enabled when detected
  1561. @end table
  1562. @node --enable-blas-lib
  1563. @subsubsection @code{--enable-blas-lib=<name>}
  1564. @table @asis
  1565. @item @emph{Description}:
  1566. Specify the blas library to be used by some of the examples. The
  1567. library has to be 'atlas' or 'goto'.
  1568. @end table
  1569. @node --with-magma
  1570. @subsubsection @code{--with-magma=<path>}
  1571. @table @asis
  1572. @item @emph{Description}:
  1573. Specify where magma is installed. This directory should notably contain
  1574. @code{include/magmablas.h}.
  1575. @end table
  1576. @node --with-fxt
  1577. @subsubsection @code{--with-fxt=<path>}
  1578. @table @asis
  1579. @item @emph{Description}:
  1580. Specify the location of FxT (for generating traces and rendering them
  1581. using ViTE). This directory should notably contain
  1582. @code{include/fxt/fxt.h}.
  1583. @c TODO add ref to other section
  1584. @end table
  1585. @node --with-perf-model-dir
  1586. @subsubsection @code{--with-perf-model-dir=<dir>}
  1587. @table @asis
  1588. @item @emph{Description}:
  1589. Specify where performance models should be stored (instead of defaulting to the
  1590. current user's home).
  1591. @end table
  1592. @node --with-mpicc
  1593. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1594. @table @asis
  1595. @item @emph{Description}:
  1596. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1597. @end table
  1598. @node --with-goto-dir
  1599. @subsubsection @code{--with-goto-dir=<dir>}
  1600. @table @asis
  1601. @item @emph{Description}:
  1602. Specify the location of GotoBLAS.
  1603. @end table
  1604. @node --with-atlas-dir
  1605. @subsubsection @code{--with-atlas-dir=<dir>}
  1606. @table @asis
  1607. @item @emph{Description}:
  1608. Specify the location of ATLAS. This directory should notably contain
  1609. @code{include/cblas.h}.
  1610. @end table
  1611. @node --with-mkl-cflags
  1612. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1613. @table @asis
  1614. @item @emph{Description}:
  1615. Specify the compilation flags for the MKL Library.
  1616. @end table
  1617. @node --with-mkl-ldflags
  1618. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1619. @table @asis
  1620. @item @emph{Description}:
  1621. Specify the linking flags for the MKL Library. Note that the
  1622. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1623. website provides a script to determine the linking flags.
  1624. @end table
  1625. @c ---------------------------------------------------------------------
  1626. @c Environment variables
  1627. @c ---------------------------------------------------------------------
  1628. @node Execution configuration through environment variables
  1629. @section Execution configuration through environment variables
  1630. @menu
  1631. * Workers:: Configuring workers
  1632. * Scheduling:: Configuring the Scheduling engine
  1633. * Misc:: Miscellaneous and debug
  1634. @end menu
  1635. Note: the values given in @code{starpu_conf} structure passed when
  1636. calling @code{starpu_init} will override the values of the environment
  1637. variables.
  1638. @node Workers
  1639. @subsection Configuring workers
  1640. @menu
  1641. * STARPU_NCPUS:: Number of CPU workers
  1642. * STARPU_NCUDA:: Number of CUDA workers
  1643. * STARPU_NOPENCL:: Number of OpenCL workers
  1644. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1645. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1646. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1647. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1648. @end menu
  1649. @node STARPU_NCPUS
  1650. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1651. @table @asis
  1652. @item @emph{Description}:
  1653. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1654. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1655. the accelerators.
  1656. @end table
  1657. @node STARPU_NCUDA
  1658. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1659. @table @asis
  1660. @item @emph{Description}:
  1661. Specify the number of CUDA devices that StarPU can use. If
  1662. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1663. possible to select which CUDA devices should be used by the means of the
  1664. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1665. create as many CUDA workers as there are CUDA devices.
  1666. @end table
  1667. @node STARPU_NOPENCL
  1668. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1669. @table @asis
  1670. @item @emph{Description}:
  1671. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1672. @end table
  1673. @node STARPU_NGORDON
  1674. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1675. @table @asis
  1676. @item @emph{Description}:
  1677. Specify the number of SPUs that StarPU can use.
  1678. @end table
  1679. @node STARPU_WORKERS_CPUID
  1680. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1681. @table @asis
  1682. @item @emph{Description}:
  1683. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1684. specifies on which logical CPU the different workers should be
  1685. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1686. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1687. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1688. determined by the OS, or provided by the @code{hwloc} library in case it is
  1689. available.
  1690. Note that the first workers correspond to the CUDA workers, then come the
  1691. OpenCL and the SPU, and finally the CPU workers. For example if
  1692. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1693. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1694. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1695. the logical CPUs #1 and #3 will be used by the CPU workers.
  1696. If the number of workers is larger than the array given in
  1697. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1698. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1699. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1700. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1701. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1702. @end table
  1703. @node STARPU_WORKERS_CUDAID
  1704. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1705. @table @asis
  1706. @item @emph{Description}:
  1707. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1708. possible to select which CUDA devices should be used by StarPU. On a machine
  1709. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1710. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1711. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1712. the one reported by CUDA).
  1713. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1714. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1715. @end table
  1716. @node STARPU_WORKERS_OPENCLID
  1717. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1718. @table @asis
  1719. @item @emph{Description}:
  1720. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1721. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1722. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1723. @end table
  1724. @node Scheduling
  1725. @subsection Configuring the Scheduling engine
  1726. @menu
  1727. * STARPU_SCHED:: Scheduling policy
  1728. * STARPU_CALIBRATE:: Calibrate performance models
  1729. * STARPU_PREFETCH:: Use data prefetch
  1730. * STARPU_SCHED_ALPHA:: Computation factor
  1731. * STARPU_SCHED_BETA:: Communication factor
  1732. @end menu
  1733. @node STARPU_SCHED
  1734. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1735. @table @asis
  1736. @item @emph{Description}:
  1737. This chooses between the different scheduling policies proposed by StarPU: work
  1738. random, stealing, greedy, with performance models, etc.
  1739. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1740. @end table
  1741. @node STARPU_CALIBRATE
  1742. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1743. @table @asis
  1744. @item @emph{Description}:
  1745. If this variable is set to 1, the performance models are calibrated during
  1746. the execution. If it is set to 2, the previous values are dropped to restart
  1747. calibration from scratch. Setting this variable to 0 disable calibration, this
  1748. is the default behaviour.
  1749. Note: this currently only applies to dm and dmda scheduling policies.
  1750. @end table
  1751. @node STARPU_PREFETCH
  1752. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1753. @table @asis
  1754. @item @emph{Description}:
  1755. This variable indicates whether data prefetching should be enabled (0 means
  1756. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1757. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1758. advance, so that data is already present on the GPU when the task starts. As a
  1759. result, computation and data transfers are overlapped.
  1760. @end table
  1761. @node STARPU_SCHED_ALPHA
  1762. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1763. @table @asis
  1764. @item @emph{Description}:
  1765. To estimate the cost of a task StarPU takes into account the estimated
  1766. computation time (obtained thanks to performance models). The alpha factor is
  1767. the coefficient to be applied to it before adding it to the communication part.
  1768. @end table
  1769. @node STARPU_SCHED_BETA
  1770. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1771. @table @asis
  1772. @item @emph{Description}:
  1773. To estimate the cost of a task StarPU takes into account the estimated
  1774. data transfer time (obtained thanks to performance models). The beta factor is
  1775. the coefficient to be applied to it before adding it to the computation part.
  1776. @end table
  1777. @node Misc
  1778. @subsection Miscellaneous and debug
  1779. @menu
  1780. * STARPU_LOGFILENAME:: Select debug file name
  1781. * STARPU_FXT_PREFIX:: FxT trace location
  1782. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1783. @end menu
  1784. @node STARPU_LOGFILENAME
  1785. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1786. @table @asis
  1787. @item @emph{Description}:
  1788. This variable specifies in which file the debugging output should be saved to.
  1789. @end table
  1790. @node STARPU_FXT_PREFIX
  1791. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1792. @table @asis
  1793. @item @emph{Description}
  1794. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1795. @end table
  1796. @node STARPU_LIMIT_GPU_MEM
  1797. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1798. @table @asis
  1799. @item @emph{Description}
  1800. This variable specifies the maximum number of megabytes that should be
  1801. available to the application on each GPUs. In case this value is smaller than
  1802. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1803. on the device. This variable is intended to be used for experimental purposes
  1804. as it emulates devices that have a limited amount of memory.
  1805. @end table
  1806. @c ---------------------------------------------------------------------
  1807. @c StarPU API
  1808. @c ---------------------------------------------------------------------
  1809. @node StarPU API
  1810. @chapter StarPU API
  1811. @menu
  1812. * Initialization and Termination:: Initialization and Termination methods
  1813. * Workers' Properties:: Methods to enumerate workers' properties
  1814. * Data Library:: Methods to manipulate data
  1815. * Data Interfaces::
  1816. * Data Partition::
  1817. * Codelets and Tasks:: Methods to construct tasks
  1818. * Explicit Dependencies:: Explicit Dependencies
  1819. * Implicit Data Dependencies:: Implicit Data Dependencies
  1820. * Performance Model API::
  1821. * Profiling API:: Profiling API
  1822. * CUDA extensions:: CUDA extensions
  1823. * OpenCL extensions:: OpenCL extensions
  1824. * Cell extensions:: Cell extensions
  1825. * Miscellaneous helpers::
  1826. @end menu
  1827. @node Initialization and Termination
  1828. @section Initialization and Termination
  1829. @menu
  1830. * starpu_init:: Initialize StarPU
  1831. * struct starpu_conf:: StarPU runtime configuration
  1832. * starpu_conf_init:: Initialize starpu_conf structure
  1833. * starpu_shutdown:: Terminate StarPU
  1834. @end menu
  1835. @node starpu_init
  1836. @subsection @code{starpu_init} -- Initialize StarPU
  1837. @table @asis
  1838. @item @emph{Description}:
  1839. This is StarPU initialization method, which must be called prior to any other
  1840. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1841. policy, number of cores, ...) by passing a non-null argument. Default
  1842. configuration is used if the passed argument is @code{NULL}.
  1843. @item @emph{Return value}:
  1844. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1845. indicates that no worker was available (so that StarPU was not initialized).
  1846. @item @emph{Prototype}:
  1847. @code{int starpu_init(struct starpu_conf *conf);}
  1848. @end table
  1849. @node struct starpu_conf
  1850. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1851. @table @asis
  1852. @item @emph{Description}:
  1853. This structure is passed to the @code{starpu_init} function in order
  1854. to configure StarPU.
  1855. When the default value is used, StarPU automatically selects the number
  1856. of processing units and takes the default scheduling policy. This parameter
  1857. overwrites the equivalent environment variables.
  1858. @item @emph{Fields}:
  1859. @table @asis
  1860. @item @code{sched_policy_name} (default = NULL):
  1861. This is the name of the scheduling policy. This can also be specified with the
  1862. @code{STARPU_SCHED} environment variable.
  1863. @item @code{sched_policy} (default = NULL):
  1864. This is the definition of the scheduling policy. This field is ignored
  1865. if @code{sched_policy_name} is set.
  1866. @item @code{ncpus} (default = -1):
  1867. This is the number of CPU cores that StarPU can use. This can also be
  1868. specified with the @code{STARPU_NCPUS} environment variable.
  1869. @item @code{ncuda} (default = -1):
  1870. This is the number of CUDA devices that StarPU can use. This can also be
  1871. specified with the @code{STARPU_NCUDA} environment variable.
  1872. @item @code{nopencl} (default = -1):
  1873. This is the number of OpenCL devices that StarPU can use. This can also be
  1874. specified with the @code{STARPU_NOPENCL} environment variable.
  1875. @item @code{nspus} (default = -1):
  1876. This is the number of Cell SPUs that StarPU can use. This can also be
  1877. specified with the @code{STARPU_NGORDON} environment variable.
  1878. @item @code{use_explicit_workers_bindid} (default = 0)
  1879. If this flag is set, the @code{workers_bindid} array indicates where the
  1880. different workers are bound, otherwise StarPU automatically selects where to
  1881. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1882. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1883. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1884. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1885. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1886. where to bind the different workers. The i-th entry of the
  1887. @code{workers_bindid} indicates the logical identifier of the processor which
  1888. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1889. either determined by the OS, or provided by the @code{hwloc} library in case it
  1890. is available.
  1891. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1892. ignored.
  1893. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1894. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1895. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1896. CUDA devices in a round-robin fashion.
  1897. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1898. ignored.
  1899. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1900. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1901. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1902. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1903. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1904. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1905. OpenCL devices in a round-robin fashion.
  1906. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1907. @item @code{calibrate} (default = 0):
  1908. If this flag is set, StarPU will calibrate the performance models when
  1909. executing tasks. If this value is equal to -1, the default value is used. The
  1910. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1911. variable when it is set.
  1912. @end table
  1913. @end table
  1914. @node starpu_conf_init
  1915. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1916. @table @asis
  1917. This function initializes the @code{starpu_conf} structure passed as argument
  1918. with the default values. In case some configuration parameters are already
  1919. specified through environment variables, @code{starpu_conf_init} initializes
  1920. the fields of the structure according to the environment variables. For
  1921. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  1922. @code{.ncuda} field of the structure passed as argument.
  1923. @item @emph{Return value}:
  1924. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1925. indicates that the argument was NULL.
  1926. @item @emph{Prototype}:
  1927. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1928. @end table
  1929. @node starpu_shutdown
  1930. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1931. @table @asis
  1932. @item @emph{Description}:
  1933. This is StarPU termination method. It must be called at the end of the
  1934. application: statistics and other post-mortem debugging information are not
  1935. guaranteed to be available until this method has been called.
  1936. @item @emph{Prototype}:
  1937. @code{void starpu_shutdown(void);}
  1938. @end table
  1939. @node Workers' Properties
  1940. @section Workers' Properties
  1941. @menu
  1942. * starpu_worker_get_count:: Get the number of processing units
  1943. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1944. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1945. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1946. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1947. * starpu_worker_get_id:: Get the identifier of the current worker
  1948. * starpu_worker_get_devid:: Get the device identifier of a worker
  1949. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1950. * starpu_worker_get_name:: Get the name of a worker
  1951. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1952. @end menu
  1953. @node starpu_worker_get_count
  1954. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1955. @table @asis
  1956. @item @emph{Description}:
  1957. This function returns the number of workers (i.e. processing units executing
  1958. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1959. @item @emph{Prototype}:
  1960. @code{unsigned starpu_worker_get_count(void);}
  1961. @end table
  1962. @node starpu_cpu_worker_get_count
  1963. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1964. @table @asis
  1965. @item @emph{Description}:
  1966. This function returns the number of CPUs controlled by StarPU. The returned
  1967. value should be at most @code{STARPU_NMAXCPUS}.
  1968. @item @emph{Prototype}:
  1969. @code{unsigned starpu_cpu_worker_get_count(void);}
  1970. @end table
  1971. @node starpu_cuda_worker_get_count
  1972. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1973. @table @asis
  1974. @item @emph{Description}:
  1975. This function returns the number of CUDA devices controlled by StarPU. The returned
  1976. value should be at most @code{STARPU_MAXCUDADEVS}.
  1977. @item @emph{Prototype}:
  1978. @code{unsigned starpu_cuda_worker_get_count(void);}
  1979. @end table
  1980. @node starpu_opencl_worker_get_count
  1981. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1982. @table @asis
  1983. @item @emph{Description}:
  1984. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1985. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1986. @item @emph{Prototype}:
  1987. @code{unsigned starpu_opencl_worker_get_count(void);}
  1988. @end table
  1989. @node starpu_spu_worker_get_count
  1990. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1991. @table @asis
  1992. @item @emph{Description}:
  1993. This function returns the number of Cell SPUs controlled by StarPU.
  1994. @item @emph{Prototype}:
  1995. @code{unsigned starpu_opencl_worker_get_count(void);}
  1996. @end table
  1997. @node starpu_worker_get_id
  1998. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1999. @table @asis
  2000. @item @emph{Description}:
  2001. This function returns the identifier of the worker associated to the calling
  2002. thread. The returned value is either -1 if the current context is not a StarPU
  2003. worker (i.e. when called from the application outside a task or a callback), or
  2004. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2005. @item @emph{Prototype}:
  2006. @code{int starpu_worker_get_id(void);}
  2007. @end table
  2008. @node starpu_worker_get_devid
  2009. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2010. @table @asis
  2011. @item @emph{Description}:
  2012. This functions returns the device id of the worker associated to an identifier
  2013. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2014. CUDA worker, this device identifier is the logical device identifier exposed by
  2015. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2016. identifier of a CPU worker is the logical identifier of the core on which the
  2017. worker was bound; this identifier is either provided by the OS or by the
  2018. @code{hwloc} library in case it is available.
  2019. @item @emph{Prototype}:
  2020. @code{int starpu_worker_get_devid(int id);}
  2021. @end table
  2022. @node starpu_worker_get_type
  2023. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2024. @table @asis
  2025. @item @emph{Description}:
  2026. This function returns the type of worker associated to an identifier (as
  2027. returned by the @code{starpu_worker_get_id} function). The returned value
  2028. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2029. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2030. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2031. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2032. identifier is unspecified.
  2033. @item @emph{Prototype}:
  2034. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2035. @end table
  2036. @node starpu_worker_get_name
  2037. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2038. @table @asis
  2039. @item @emph{Description}:
  2040. StarPU associates a unique human readable string to each processing unit. This
  2041. function copies at most the @code{maxlen} first bytes of the unique string
  2042. associated to a worker identified by its identifier @code{id} into the
  2043. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2044. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2045. function on an invalid identifier results in an unspecified behaviour.
  2046. @item @emph{Prototype}:
  2047. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2048. @end table
  2049. @node starpu_worker_get_memory_node
  2050. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2051. @table @asis
  2052. @item @emph{Description}:
  2053. This function returns the identifier of the memory node associated to the
  2054. worker identified by @code{workerid}.
  2055. @item @emph{Prototype}:
  2056. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2057. @end table
  2058. @node Data Library
  2059. @section Data Library
  2060. This section describes the data management facilities provided by StarPU.
  2061. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2062. design their own data interfaces if required.
  2063. @menu
  2064. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2065. * starpu_access_mode:: Data access mode
  2066. * unsigned memory_node:: Memory node
  2067. * starpu_data_handle:: StarPU opaque data handle
  2068. * void *interface:: StarPU data interface
  2069. * starpu_data_register:: Register a piece of data to StarPU
  2070. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2071. * starpu_data_invalidate:: Invalidate all data replicates
  2072. * starpu_data_acquire:: Access registered data from the application
  2073. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2074. * starpu_data_release:: Release registered data from the application
  2075. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2076. @end menu
  2077. @node starpu_data_malloc_pinned_if_possible
  2078. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2079. @table @asis
  2080. @item @emph{Description}:
  2081. This function allocates data of the given size. It will also try to pin it in
  2082. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2083. thus permit data transfer and computation overlapping.
  2084. @item @emph{Prototype}:
  2085. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2086. @end table
  2087. @node starpu_access_mode
  2088. @subsection @code{starpu_access_mode} -- Data access mode
  2089. This datatype describes a data access mode. The different available modes are:
  2090. @table @asis
  2091. @table @asis
  2092. @item @code{STARPU_R} read-only mode.
  2093. @item @code{STARPU_W} write-only mode.
  2094. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2095. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2096. @end table
  2097. @end table
  2098. @node unsigned memory_node
  2099. @subsection @code{unsigned memory_node} -- Memory node
  2100. @table @asis
  2101. @item @emph{Description}:
  2102. Every worker is associated to a memory node which is a logical abstraction of
  2103. the address space from which the processing unit gets its data. For instance,
  2104. the memory node associated to the different CPU workers represents main memory
  2105. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2106. Every memory node is identified by a logical index which is accessible from the
  2107. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2108. to StarPU, the specified memory node indicates where the piece of data
  2109. initially resides (we also call this memory node the home node of a piece of
  2110. data).
  2111. @end table
  2112. @node starpu_data_handle
  2113. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2114. @table @asis
  2115. @item @emph{Description}:
  2116. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2117. data. Once a piece of data has been registered to StarPU, it is associated to a
  2118. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2119. over the entire machine, so that we can maintain data consistency and locate
  2120. data replicates for instance.
  2121. @end table
  2122. @node void *interface
  2123. @subsection @code{void *interface} -- StarPU data interface
  2124. @table @asis
  2125. @item @emph{Description}:
  2126. Data management is done at a high-level in StarPU: rather than accessing a mere
  2127. list of contiguous buffers, the tasks may manipulate data that are described by
  2128. a high-level construct which we call data interface.
  2129. An example of data interface is the "vector" interface which describes a
  2130. contiguous data array on a spefic memory node. This interface is a simple
  2131. structure containing the number of elements in the array, the size of the
  2132. elements, and the address of the array in the appropriate address space (this
  2133. address may be invalid if there is no valid copy of the array in the memory
  2134. node). More informations on the data interfaces provided by StarPU are
  2135. given in @ref{Data Interfaces}.
  2136. When a piece of data managed by StarPU is used by a task, the task
  2137. implementation is given a pointer to an interface describing a valid copy of
  2138. the data that is accessible from the current processing unit.
  2139. @end table
  2140. @node starpu_data_register
  2141. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2142. @table @asis
  2143. @item @emph{Description}:
  2144. Register a piece of data into the handle located at the @code{handleptr}
  2145. address. The @code{interface} buffer contains the initial description of the
  2146. data in the home node. The @code{ops} argument is a pointer to a structure
  2147. describing the different methods used to manipulate this type of interface. See
  2148. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2149. If @code{home_node} is -1, StarPU will automatically
  2150. allocate the memory when it is used for the
  2151. first time in write-only mode. Once such data handle has been automatically
  2152. allocated, it is possible to access it using any access mode.
  2153. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2154. matrix) which can be registered by the means of helper functions (e.g.
  2155. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2156. @item @emph{Prototype}:
  2157. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2158. uint32_t home_node,
  2159. void *interface,
  2160. struct starpu_data_interface_ops_t *ops);}
  2161. @end table
  2162. @node starpu_data_unregister
  2163. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2164. @table @asis
  2165. @item @emph{Description}:
  2166. This function unregisters a data handle from StarPU. If the data was
  2167. automatically allocated by StarPU because the home node was -1, all
  2168. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2169. is put back into the home node in the buffer that was initially registered.
  2170. Using a data handle that has been unregistered from StarPU results in an
  2171. undefined behaviour.
  2172. @item @emph{Prototype}:
  2173. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2174. @end table
  2175. @node starpu_data_invalidate
  2176. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2177. @table @asis
  2178. @item @emph{Description}:
  2179. Destroy all replicates of the data handle. After data invalidation, the first
  2180. access to the handle must be performed in write-only mode. Accessing an
  2181. invalidated data in read-mode results in undefined behaviour.
  2182. @item @emph{Prototype}:
  2183. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2184. @end table
  2185. @c TODO create a specific sections about user interaction with the DSM ?
  2186. @node starpu_data_acquire
  2187. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2188. @table @asis
  2189. @item @emph{Description}:
  2190. The application must call this function prior to accessing registered data from
  2191. main memory outside tasks. StarPU ensures that the application will get an
  2192. up-to-date copy of the data in main memory located where the data was
  2193. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2194. be consistent with the access mode specified in the @code{mode} argument.
  2195. @code{starpu_data_release} must be called once the application does not need to
  2196. access the piece of data anymore.
  2197. Note that implicit data dependencies are also enforced by
  2198. @code{starpu_data_acquire} in case they are enabled.
  2199. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2200. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2201. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2202. @item @emph{Prototype}:
  2203. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2204. @end table
  2205. @node starpu_data_acquire_cb
  2206. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2207. @table @asis
  2208. @item @emph{Description}:
  2209. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2210. @code{starpu_data_release}. When the data specified in the first argument is
  2211. available in the appropriate access mode, the callback function is executed.
  2212. The application may access the requested data during the execution of this
  2213. callback. The callback function must call @code{starpu_data_release} once the
  2214. application does not need to access the piece of data anymore.
  2215. Note that implicit data dependencies are also enforced by
  2216. @code{starpu_data_acquire_cb} in case they are enabled.
  2217. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2218. be called from task callbacks. Upon successful completion, this function
  2219. returns 0.
  2220. @item @emph{Prototype}:
  2221. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2222. @end table
  2223. @node starpu_data_release
  2224. @subsection @code{starpu_data_release} -- Release registered data from the application
  2225. @table @asis
  2226. @item @emph{Description}:
  2227. This function releases the piece of data acquired by the application either by
  2228. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2229. @item @emph{Prototype}:
  2230. @code{void starpu_data_release(starpu_data_handle handle);}
  2231. @end table
  2232. @node starpu_data_set_wt_mask
  2233. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2234. @table @asis
  2235. @item @emph{Description}:
  2236. This function sets the write-through mask of a given data, i.e. a bitmask of
  2237. nodes where the data should be always replicated after modification.
  2238. @item @emph{Prototype}:
  2239. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2240. @end table
  2241. @node Data Interfaces
  2242. @section Data Interfaces
  2243. @menu
  2244. * Variable Interface::
  2245. * Vector Interface::
  2246. * Matrix Interface::
  2247. * 3D Matrix Interface::
  2248. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2249. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2250. @end menu
  2251. @node Variable Interface
  2252. @subsection Variable Interface
  2253. @table @asis
  2254. @item @emph{Description}:
  2255. This variant of @code{starpu_data_register} uses the variable interface,
  2256. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2257. and @code{elemsize} is the size of the variable.
  2258. @item @emph{Prototype}:
  2259. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2260. uint32_t home_node,
  2261. uintptr_t ptr, size_t elemsize);}
  2262. @item @emph{Example}:
  2263. @cartouche
  2264. @smallexample
  2265. float var;
  2266. starpu_data_handle var_handle;
  2267. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2268. @end smallexample
  2269. @end cartouche
  2270. @end table
  2271. @node Vector Interface
  2272. @subsection Vector Interface
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. This variant of @code{starpu_data_register} uses the vector interface,
  2276. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2277. element in the home node. @code{nx} is the number of elements in the vector.
  2278. @code{elemsize} is the size of each element.
  2279. @item @emph{Prototype}:
  2280. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2281. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2282. @item @emph{Example}:
  2283. @cartouche
  2284. @smallexample
  2285. float vector[NX];
  2286. starpu_data_handle vector_handle;
  2287. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2288. sizeof(vector[0]));
  2289. @end smallexample
  2290. @end cartouche
  2291. @end table
  2292. @node Matrix Interface
  2293. @subsection Matrix Interface
  2294. @table @asis
  2295. @item @emph{Description}:
  2296. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2297. matrices of elements. @code{ptr} is the address of the first element in the home
  2298. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2299. of elements in a row (this can be different from @code{ld} if there are extra
  2300. elements for alignment for instance). @code{ny} is the number of rows.
  2301. @code{elemsize} is the size of each element.
  2302. @item @emph{Prototype}:
  2303. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2304. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2305. uint32_t ny, size_t elemsize);}
  2306. @item @emph{Example}:
  2307. @cartouche
  2308. @smallexample
  2309. float *matrix;
  2310. starpu_data_handle matrix_handle;
  2311. matrix = (float*)malloc(width * height * sizeof(float));
  2312. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2313. width, width, height, sizeof(float));
  2314. @end smallexample
  2315. @end cartouche
  2316. @end table
  2317. @node 3D Matrix Interface
  2318. @subsection 3D Matrix Interface
  2319. @table @asis
  2320. @item @emph{Description}:
  2321. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2322. @code{ptr} is the address of the array of first element in the home node.
  2323. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2324. of rows between z planes. @code{nx} is the number of elements in a row (this
  2325. can be different from @code{ldy} if there are extra elements for alignment
  2326. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2327. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2328. each element.
  2329. @item @emph{Prototype}:
  2330. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2331. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2332. uint32_t ny, uint32_t nz, size_t elemsize);}
  2333. @item @emph{Example}:
  2334. @cartouche
  2335. @smallexample
  2336. float *block;
  2337. starpu_data_handle block_handle;
  2338. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2339. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2340. nx, nx*ny, nx, ny, nz, sizeof(float));
  2341. @end smallexample
  2342. @end cartouche
  2343. @end table
  2344. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2345. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2346. @table @asis
  2347. @item @emph{Description}:
  2348. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2349. TODO
  2350. @item @emph{Prototype}:
  2351. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2352. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2353. @item @emph{Example}:
  2354. @cartouche
  2355. @smallexample
  2356. @end smallexample
  2357. @end cartouche
  2358. @end table
  2359. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2360. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2361. @table @asis
  2362. @item @emph{Description}:
  2363. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2364. TODO
  2365. @item @emph{Prototype}:
  2366. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2367. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2368. @item @emph{Example}:
  2369. @cartouche
  2370. @smallexample
  2371. @end smallexample
  2372. @end cartouche
  2373. @end table
  2374. @node Data Partition
  2375. @section Data Partition
  2376. @menu
  2377. * struct starpu_data_filter:: StarPU filter structure
  2378. * starpu_data_partition:: Partition Data
  2379. * starpu_data_unpartition:: Unpartition Data
  2380. * starpu_data_get_nb_children::
  2381. * starpu_data_get_sub_data::
  2382. * Predefined filter functions::
  2383. @end menu
  2384. @node struct starpu_data_filter
  2385. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2386. @table @asis
  2387. @item @emph{Description}:
  2388. The filter structure describes a data partitioning operation, to be given to the
  2389. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2390. @item @emph{Fields}:
  2391. @table @asis
  2392. @item @code{filter_func}:
  2393. This function fills the @code{child_interface} structure with interface
  2394. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2395. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2396. @item @code{nchildren}:
  2397. This is the number of parts to partition the data into.
  2398. @item @code{get_nchildren}:
  2399. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2400. children depends on the actual data (e.g. the number of blocks in a sparse
  2401. matrix).
  2402. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2403. @item @code{get_child_ops}:
  2404. In case the resulting children use a different data interface, this function
  2405. returns which interface is used by child number @code{id}.
  2406. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2407. @item @code{filter_arg}:
  2408. Some filters take an addition parameter, but this is usually unused.
  2409. @item @code{filter_arg_ptr}:
  2410. Some filters take an additional array parameter like the sizes of the parts, but
  2411. this is usually unused.
  2412. @end table
  2413. @end table
  2414. @node starpu_data_partition
  2415. @subsection starpu_data_partition -- Partition Data
  2416. @table @asis
  2417. @item @emph{Description}:
  2418. This requests partitioning one StarPU data @code{initial_handle} into several
  2419. subdata according to the filter @code{f}
  2420. @item @emph{Prototype}:
  2421. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2422. @item @emph{Example}:
  2423. @cartouche
  2424. @smallexample
  2425. struct starpu_data_filter f = @{
  2426. .filter_func = starpu_vertical_block_filter_func,
  2427. .nchildren = nslicesx,
  2428. .get_nchildren = NULL,
  2429. .get_child_ops = NULL
  2430. @};
  2431. starpu_data_partition(A_handle, &f);
  2432. @end smallexample
  2433. @end cartouche
  2434. @end table
  2435. @node starpu_data_unpartition
  2436. @subsection starpu_data_unpartition -- Unpartition data
  2437. @table @asis
  2438. @item @emph{Description}:
  2439. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2440. collected back into one big piece in the @code{gathering_node} (usually 0).
  2441. @item @emph{Prototype}:
  2442. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2443. @item @emph{Example}:
  2444. @cartouche
  2445. @smallexample
  2446. starpu_data_unpartition(A_handle, 0);
  2447. @end smallexample
  2448. @end cartouche
  2449. @end table
  2450. @node starpu_data_get_nb_children
  2451. @subsection starpu_data_get_nb_children
  2452. @table @asis
  2453. @item @emph{Description}:
  2454. This function returns the number of children.
  2455. @item @emph{Return value}:
  2456. The number of children.
  2457. @item @emph{Prototype}:
  2458. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2459. @end table
  2460. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2461. @node starpu_data_get_sub_data
  2462. @subsection starpu_data_get_sub_data
  2463. @table @asis
  2464. @item @emph{Description}:
  2465. After partitioning a StarPU data by applying a filter,
  2466. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2467. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2468. is the number of filters to traverse (in case several filters have been applied,
  2469. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2470. parameters are the indexes.
  2471. @item @emph{Return value}:
  2472. A handle to the subdata.
  2473. @item @emph{Prototype}:
  2474. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2475. @item @emph{Example}:
  2476. @cartouche
  2477. @smallexample
  2478. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2479. @end smallexample
  2480. @end cartouche
  2481. @end table
  2482. @node Predefined filter functions
  2483. @subsection Predefined filter functions
  2484. @menu
  2485. * Partitioning BCSR Data::
  2486. * Partitioning BLAS interface::
  2487. * Partitioning Vector Data::
  2488. * Partitioning Block Data::
  2489. @end menu
  2490. This section gives a partial list of the predefined partitioning functions.
  2491. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2492. list can be found in @code{starpu_data_filters.h} .
  2493. @node Partitioning BCSR Data
  2494. @subsubsection Partitioning BCSR Data
  2495. @table @asis
  2496. @item @emph{Description}:
  2497. TODO
  2498. @item @emph{Prototype}:
  2499. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2500. @end table
  2501. @table @asis
  2502. @item @emph{Description}:
  2503. TODO
  2504. @item @emph{Prototype}:
  2505. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2506. @end table
  2507. @node Partitioning BLAS interface
  2508. @subsubsection Partitioning BLAS interface
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. This partitions a dense Matrix into horizontal blocks.
  2512. @item @emph{Prototype}:
  2513. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2514. @end table
  2515. @table @asis
  2516. @item @emph{Description}:
  2517. This partitions a dense Matrix into vertical blocks.
  2518. @item @emph{Prototype}:
  2519. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2520. @end table
  2521. @node Partitioning Vector Data
  2522. @subsubsection Partitioning Vector Data
  2523. @table @asis
  2524. @item @emph{Description}:
  2525. This partitions a vector into blocks of the same size.
  2526. @item @emph{Prototype}:
  2527. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2528. @end table
  2529. @table @asis
  2530. @item @emph{Description}:
  2531. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2532. @item @emph{Prototype}:
  2533. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2534. @end table
  2535. @table @asis
  2536. @item @emph{Description}:
  2537. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2538. @item @emph{Prototype}:
  2539. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2540. @end table
  2541. @node Partitioning Block Data
  2542. @subsubsection Partitioning Block Data
  2543. @table @asis
  2544. @item @emph{Description}:
  2545. This partitions a 3D matrix along the X axis.
  2546. @item @emph{Prototype}:
  2547. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2548. @end table
  2549. @node Codelets and Tasks
  2550. @section Codelets and Tasks
  2551. @menu
  2552. * struct starpu_codelet:: StarPU codelet structure
  2553. * struct starpu_task:: StarPU task structure
  2554. * starpu_task_init:: Initialize a Task
  2555. * starpu_task_create:: Allocate and Initialize a Task
  2556. * starpu_task_deinit:: Release all the resources used by a Task
  2557. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2558. * starpu_task_wait:: Wait for the termination of a Task
  2559. * starpu_task_submit:: Submit a Task
  2560. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2561. * starpu_get_current_task:: Return the task currently executed by the worker
  2562. * starpu_display_codelet_stats:: Display statistics
  2563. @end menu
  2564. @node struct starpu_codelet
  2565. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2566. @table @asis
  2567. @item @emph{Description}:
  2568. The codelet structure describes a kernel that is possibly implemented on various
  2569. targets. For compatibility, make sure to initialize the whole structure to zero.
  2570. @item @emph{Fields}:
  2571. @table @asis
  2572. @item @code{where}:
  2573. Indicates which types of processing units are able to execute the codelet.
  2574. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2575. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2576. indicates that it is only available on Cell SPUs.
  2577. @item @code{cpu_func} (optional):
  2578. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2579. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2580. argument being the array of data managed by the data management library, and
  2581. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2582. field of the @code{starpu_task} structure.
  2583. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2584. the @code{where} field, it must be non-null otherwise.
  2585. @item @code{cuda_func} (optional):
  2586. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2587. must be a host-function written in the CUDA runtime API}. Its prototype must
  2588. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2589. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2590. field, it must be non-null otherwise.
  2591. @item @code{opencl_func} (optional):
  2592. Is a function pointer to the OpenCL implementation of the codelet. Its
  2593. prototype must be:
  2594. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2595. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2596. @code{where} field, it must be non-null otherwise.
  2597. @item @code{gordon_func} (optional):
  2598. This is the index of the Cell SPU implementation within the Gordon library.
  2599. See Gordon documentation for more details on how to register a kernel and
  2600. retrieve its index.
  2601. @item @code{nbuffers}:
  2602. Specifies the number of arguments taken by the codelet. These arguments are
  2603. managed by the DSM and are accessed from the @code{void *buffers[]}
  2604. array. The constant argument passed with the @code{cl_arg} field of the
  2605. @code{starpu_task} structure is not counted in this number. This value should
  2606. not be above @code{STARPU_NMAXBUFS}.
  2607. @item @code{model} (optional):
  2608. This is a pointer to the task duration performance model associated to this
  2609. codelet. This optional field is ignored when set to @code{NULL}. TODO
  2610. @item @code{power_model} (optional):
  2611. This is a pointer to the task power consumption performance model associated
  2612. to this codelet. This optional field is ignored when set to @code{NULL}. TODO
  2613. @end table
  2614. @end table
  2615. @node struct starpu_task
  2616. @subsection @code{struct starpu_task} -- StarPU task structure
  2617. @table @asis
  2618. @item @emph{Description}:
  2619. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2620. processing units managed by StarPU. It instantiates a codelet. It can either be
  2621. allocated dynamically with the @code{starpu_task_create} method, or declared
  2622. statically. In the latter case, the programmer has to zero the
  2623. @code{starpu_task} structure and to fill the different fields properly. The
  2624. indicated default values correspond to the configuration of a task allocated
  2625. with @code{starpu_task_create}.
  2626. @item @emph{Fields}:
  2627. @table @asis
  2628. @item @code{cl}:
  2629. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2630. describes where the kernel should be executed, and supplies the appropriate
  2631. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2632. such empty tasks can be useful for synchronization purposes.
  2633. @item @code{buffers}:
  2634. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2635. different pieces of data accessed by the task, and how they should be accessed.
  2636. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2637. @code{handle} field specifies the handle of the piece of data, and the
  2638. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2639. of entries in this array must be specified in the @code{nbuffers} field of the
  2640. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2641. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2642. option when configuring StarPU.
  2643. @item @code{cl_arg} (optional) (default = NULL):
  2644. This pointer is passed to the codelet through the second argument
  2645. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2646. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2647. argument.
  2648. @item @code{cl_arg_size} (optional, Cell specific):
  2649. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2650. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2651. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2652. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2653. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2654. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2655. codelets.
  2656. @item @code{callback_func} (optional) (default = @code{NULL}):
  2657. This is a function pointer of prototype @code{void (*f)(void *)} which
  2658. specifies a possible callback. If this pointer is non-null, the callback
  2659. function is executed @emph{on the host} after the execution of the task. The
  2660. callback is passed the value contained in the @code{callback_arg} field. No
  2661. callback is executed if the field is set to @code{NULL}.
  2662. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2663. This is the pointer passed to the callback function. This field is ignored if
  2664. the @code{callback_func} is set to @code{NULL}.
  2665. @item @code{use_tag} (optional) (default = 0):
  2666. If set, this flag indicates that the task should be associated with the tag
  2667. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2668. with the task and to express task dependencies easily.
  2669. @item @code{tag_id}:
  2670. This fields contains the tag associated to the task if the @code{use_tag} field
  2671. was set, it is ignored otherwise.
  2672. @item @code{synchronous}:
  2673. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2674. returns only when the task has been executed (or if no worker is able to
  2675. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2676. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2677. This field indicates a level of priority for the task. This is an integer value
  2678. that must be set between the return values of the
  2679. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2680. and that of the @code{starpu_sched_get_max_priority} for the most important
  2681. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2682. are provided for convenience and respectively returns value of
  2683. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2684. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2685. order to allow static task initialization. Scheduling strategies that take
  2686. priorities into account can use this parameter to take better scheduling
  2687. decisions, but the scheduling policy may also ignore it.
  2688. @item @code{execute_on_a_specific_worker} (default = 0):
  2689. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2690. task to the worker specified by the @code{workerid} field.
  2691. @item @code{workerid} (optional):
  2692. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2693. which is the identifier of the worker that should process this task (as
  2694. returned by @code{starpu_worker_get_id}). This field is ignored if
  2695. @code{execute_on_a_specific_worker} field is set to 0.
  2696. @item @code{detach} (optional) (default = 1):
  2697. If this flag is set, it is not possible to synchronize with the task
  2698. by the means of @code{starpu_task_wait} later on. Internal data structures
  2699. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2700. flag is not set.
  2701. @item @code{destroy} (optional) (default = 1):
  2702. If this flag is set, the task structure will automatically be freed, either
  2703. after the execution of the callback if the task is detached, or during
  2704. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2705. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2706. called explicitly. Setting this flag for a statically allocated task structure
  2707. will result in undefined behaviour.
  2708. @item @code{predicted} (output field):
  2709. Predicted duration of the task. This field is only set if the scheduling
  2710. strategy used performance models.
  2711. @end table
  2712. @end table
  2713. @node starpu_task_init
  2714. @subsection @code{starpu_task_init} -- Initialize a Task
  2715. @table @asis
  2716. @item @emph{Description}:
  2717. Initialize a task structure with default values. This function is implicitly
  2718. called by @code{starpu_task_create}. By default, tasks initialized with
  2719. @code{starpu_task_init} must be deinitialized explicitly with
  2720. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2721. constant @code{STARPU_TASK_INITIALIZER}.
  2722. @item @emph{Prototype}:
  2723. @code{void starpu_task_init(struct starpu_task *task);}
  2724. @end table
  2725. @node starpu_task_create
  2726. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2727. @table @asis
  2728. @item @emph{Description}:
  2729. Allocate a task structure and initialize it with default values. Tasks
  2730. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2731. task is terminated. If the destroy flag is explicitly unset, the resources used
  2732. by the task are freed by calling
  2733. @code{starpu_task_destroy}.
  2734. @item @emph{Prototype}:
  2735. @code{struct starpu_task *starpu_task_create(void);}
  2736. @end table
  2737. @node starpu_task_deinit
  2738. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2739. @table @asis
  2740. @item @emph{Description}:
  2741. Release all the structures automatically allocated to execute the task. This is
  2742. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2743. freed. This should be used for statically allocated tasks for instance.
  2744. @item @emph{Prototype}:
  2745. @code{void starpu_task_deinit(struct starpu_task *task);}
  2746. @end table
  2747. @node starpu_task_destroy
  2748. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2749. @table @asis
  2750. @item @emph{Description}:
  2751. Free the resource allocated during @code{starpu_task_create}. This function can be
  2752. called automatically after the execution of a task by setting the
  2753. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2754. Calling this function on a statically allocated task results in an undefined
  2755. behaviour.
  2756. @item @emph{Prototype}:
  2757. @code{void starpu_task_destroy(struct starpu_task *task);}
  2758. @end table
  2759. @node starpu_task_wait
  2760. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2761. @table @asis
  2762. @item @emph{Description}:
  2763. This function blocks until the task has been executed. It is not possible to
  2764. synchronize with a task more than once. It is not possible to wait for
  2765. synchronous or detached tasks.
  2766. @item @emph{Return value}:
  2767. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2768. indicates that the specified task was either synchronous or detached.
  2769. @item @emph{Prototype}:
  2770. @code{int starpu_task_wait(struct starpu_task *task);}
  2771. @end table
  2772. @node starpu_task_submit
  2773. @subsection @code{starpu_task_submit} -- Submit a Task
  2774. @table @asis
  2775. @item @emph{Description}:
  2776. This function submits a task to StarPU. Calling this function does
  2777. not mean that the task will be executed immediately as there can be data or task
  2778. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2779. scheduling this task with respect to such dependencies.
  2780. This function returns immediately if the @code{synchronous} field of the
  2781. @code{starpu_task} structure was set to 0, and block until the termination of
  2782. the task otherwise. It is also possible to synchronize the application with
  2783. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2784. function for instance.
  2785. @item @emph{Return value}:
  2786. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2787. means that there is no worker able to process this task (e.g. there is no GPU
  2788. available and this task is only implemented for CUDA devices).
  2789. @item @emph{Prototype}:
  2790. @code{int starpu_task_submit(struct starpu_task *task);}
  2791. @end table
  2792. @node starpu_task_wait_for_all
  2793. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2794. @table @asis
  2795. @item @emph{Description}:
  2796. This function blocks until all the tasks that were submitted are terminated.
  2797. @item @emph{Prototype}:
  2798. @code{void starpu_task_wait_for_all(void);}
  2799. @end table
  2800. @node starpu_get_current_task
  2801. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2802. @table @asis
  2803. @item @emph{Description}:
  2804. This function returns the task currently executed by the worker, or
  2805. NULL if it is called either from a thread that is not a task or simply
  2806. because there is no task being executed at the moment.
  2807. @item @emph{Prototype}:
  2808. @code{struct starpu_task *starpu_get_current_task(void);}
  2809. @end table
  2810. @node starpu_display_codelet_stats
  2811. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2812. @table @asis
  2813. @item @emph{Description}:
  2814. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2815. @item @emph{Prototype}:
  2816. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2817. @end table
  2818. @c Callbacks : what can we put in callbacks ?
  2819. @node Explicit Dependencies
  2820. @section Explicit Dependencies
  2821. @menu
  2822. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2823. * starpu_tag_t:: Task logical identifier
  2824. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2825. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2826. * starpu_tag_wait:: Block until a Tag is terminated
  2827. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2828. * starpu_tag_remove:: Destroy a Tag
  2829. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2830. @end menu
  2831. @node starpu_task_declare_deps_array
  2832. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2833. @table @asis
  2834. @item @emph{Description}:
  2835. Declare task dependencies between a @code{task} and an array of tasks of length
  2836. @code{ndeps}. This function must be called prior to the submission of the task,
  2837. but it may called after the submission or the execution of the tasks in the
  2838. array provided the tasks are still valid (ie. they were not automatically
  2839. destroyed). Calling this function on a task that was already submitted or with
  2840. an entry of @code{task_array} that is not a valid task anymore results in an
  2841. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2842. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2843. same task, in this case, the dependencies are added. It is possible to have
  2844. redundancy in the task dependencies.
  2845. @item @emph{Prototype}:
  2846. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2847. @end table
  2848. @node starpu_tag_t
  2849. @subsection @code{starpu_tag_t} -- Task logical identifier
  2850. @table @asis
  2851. @item @emph{Description}:
  2852. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2853. dependencies between tasks by the means of those tags. To do so, fill the
  2854. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2855. be arbitrary) and set the @code{use_tag} field to 1.
  2856. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2857. not be started until the tasks which holds the declared dependency tags are
  2858. completed.
  2859. @end table
  2860. @node starpu_tag_declare_deps
  2861. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2862. @table @asis
  2863. @item @emph{Description}:
  2864. Specify the dependencies of the task identified by tag @code{id}. The first
  2865. argument specifies the tag which is configured, the second argument gives the
  2866. number of tag(s) on which @code{id} depends. The following arguments are the
  2867. tags which have to be terminated to unlock the task.
  2868. This function must be called before the associated task is submitted to StarPU
  2869. with @code{starpu_task_submit}.
  2870. @item @emph{Remark}
  2871. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2872. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2873. typically need to be explicitly casted. Using the
  2874. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2875. @item @emph{Prototype}:
  2876. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2877. @item @emph{Example}:
  2878. @cartouche
  2879. @example
  2880. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2881. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2882. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2883. @end example
  2884. @end cartouche
  2885. @end table
  2886. @node starpu_tag_declare_deps_array
  2887. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2888. @table @asis
  2889. @item @emph{Description}:
  2890. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2891. does not take a variable number of arguments but an array of tags of size
  2892. @code{ndeps}.
  2893. @item @emph{Prototype}:
  2894. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2895. @item @emph{Example}:
  2896. @cartouche
  2897. @example
  2898. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2899. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2900. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2901. @end example
  2902. @end cartouche
  2903. @end table
  2904. @node starpu_tag_wait
  2905. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2906. @table @asis
  2907. @item @emph{Description}:
  2908. This function blocks until the task associated to tag @code{id} has been
  2909. executed. This is a blocking call which must therefore not be called within
  2910. tasks or callbacks, but only from the application directly. It is possible to
  2911. synchronize with the same tag multiple times, as long as the
  2912. @code{starpu_tag_remove} function is not called. Note that it is still
  2913. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2914. data structure was freed (e.g. if the @code{destroy} flag of the
  2915. @code{starpu_task} was enabled).
  2916. @item @emph{Prototype}:
  2917. @code{void starpu_tag_wait(starpu_tag_t id);}
  2918. @end table
  2919. @node starpu_tag_wait_array
  2920. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2921. @table @asis
  2922. @item @emph{Description}:
  2923. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2924. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2925. terminated.
  2926. @item @emph{Prototype}:
  2927. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2928. @end table
  2929. @node starpu_tag_remove
  2930. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2931. @table @asis
  2932. @item @emph{Description}:
  2933. This function releases the resources associated to tag @code{id}. It can be
  2934. called once the corresponding task has been executed and when there is
  2935. no other tag that depend on this tag anymore.
  2936. @item @emph{Prototype}:
  2937. @code{void starpu_tag_remove(starpu_tag_t id);}
  2938. @end table
  2939. @node starpu_tag_notify_from_apps
  2940. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2941. @table @asis
  2942. @item @emph{Description}:
  2943. This function explicitly unlocks tag @code{id}. It may be useful in the
  2944. case of applications which execute part of their computation outside StarPU
  2945. tasks (e.g. third-party libraries). It is also provided as a
  2946. convenient tool for the programmer, for instance to entirely construct the task
  2947. DAG before actually giving StarPU the opportunity to execute the tasks.
  2948. @item @emph{Prototype}:
  2949. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2950. @end table
  2951. @node Implicit Data Dependencies
  2952. @section Implicit Data Dependencies
  2953. @menu
  2954. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2955. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2956. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2957. @end menu
  2958. In this section, we describe how StarPU makes it possible to insert implicit
  2959. task dependencies in order to enforce sequential data consistency. When this
  2960. data consistency is enabled on a specific data handle, any data access will
  2961. appear as sequentially consistent from the application. For instance, if the
  2962. application submits two tasks that access the same piece of data in read-only
  2963. mode, and then a third task that access it in write mode, dependencies will be
  2964. added between the two first tasks and the third one. Implicit data dependencies
  2965. are also inserted in the case of data accesses from the application.
  2966. @node starpu_data_set_default_sequential_consistency_flag
  2967. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2968. @table @asis
  2969. @item @emph{Description}:
  2970. Set the default sequential consistency flag. If a non-zero value is passed, a
  2971. sequential data consistency will be enforced for all handles registered after
  2972. this function call, otherwise it is disabled. By default, StarPU enables
  2973. sequential data consistency. It is also possible to select the data consistency
  2974. mode of a specific data handle with the
  2975. @code{starpu_data_set_sequential_consistency_flag} function.
  2976. @item @emph{Prototype}:
  2977. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2978. @end table
  2979. @node starpu_data_get_default_sequential_consistency_flag
  2980. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2981. @table @asis
  2982. @item @emph{Description}:
  2983. This function returns the current default sequential consistency flag.
  2984. @item @emph{Prototype}:
  2985. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2986. @end table
  2987. @node starpu_data_set_sequential_consistency_flag
  2988. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2989. @table @asis
  2990. @item @emph{Description}:
  2991. Select the data consistency mode associated to a data handle. The consistency
  2992. mode set using this function has the priority over the default mode which can
  2993. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2994. @item @emph{Prototype}:
  2995. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2996. @end table
  2997. @node Performance Model API
  2998. @section Performance Model API
  2999. @menu
  3000. * starpu_load_history_debug::
  3001. * starpu_perfmodel_debugfilepath::
  3002. * starpu_perfmodel_get_arch_name::
  3003. * starpu_force_bus_sampling::
  3004. @end menu
  3005. @node starpu_load_history_debug
  3006. @subsection @code{starpu_load_history_debug}
  3007. @table @asis
  3008. @item @emph{Description}:
  3009. TODO
  3010. @item @emph{Prototype}:
  3011. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3012. @end table
  3013. @node starpu_perfmodel_debugfilepath
  3014. @subsection @code{starpu_perfmodel_debugfilepath}
  3015. @table @asis
  3016. @item @emph{Description}:
  3017. TODO
  3018. @item @emph{Prototype}:
  3019. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3020. @end table
  3021. @node starpu_perfmodel_get_arch_name
  3022. @subsection @code{starpu_perfmodel_get_arch_name}
  3023. @table @asis
  3024. @item @emph{Description}:
  3025. TODO
  3026. @item @emph{Prototype}:
  3027. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3028. @end table
  3029. @node starpu_force_bus_sampling
  3030. @subsection @code{starpu_force_bus_sampling}
  3031. @table @asis
  3032. @item @emph{Description}:
  3033. This forces sampling the bus performance model again.
  3034. @item @emph{Prototype}:
  3035. @code{void starpu_force_bus_sampling(void);}
  3036. @end table
  3037. @node Profiling API
  3038. @section Profiling API
  3039. @menu
  3040. * starpu_profiling_status_set:: starpu_profiling_status_set
  3041. * starpu_profiling_status_get:: starpu_profiling_status_get
  3042. * struct starpu_task_profiling_info:: task profiling information
  3043. * struct starpu_worker_profiling_info:: worker profiling information
  3044. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3045. * struct starpu_bus_profiling_info:: bus profiling information
  3046. * starpu_bus_get_count::
  3047. * starpu_bus_get_id::
  3048. * starpu_bus_get_src::
  3049. * starpu_bus_get_dst::
  3050. * starpu_timing_timespec_delay_us::
  3051. * starpu_timing_timespec_to_us::
  3052. * starpu_bus_profiling_helper_display_summary::
  3053. * starpu_worker_profiling_helper_display_summary::
  3054. @end menu
  3055. @node starpu_profiling_status_set
  3056. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3057. @table @asis
  3058. @item @emph{Description}:
  3059. Thie function sets the profiling status. Profiling is activated by passing
  3060. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3061. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3062. resets all profiling measurements. When profiling is enabled, the
  3063. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3064. to a valid @code{struct starpu_task_profiling_info} structure containing
  3065. information about the execution of the task.
  3066. @item @emph{Return value}:
  3067. Negative return values indicate an error, otherwise the previous status is
  3068. returned.
  3069. @item @emph{Prototype}:
  3070. @code{int starpu_profiling_status_set(int status);}
  3071. @end table
  3072. @node starpu_profiling_status_get
  3073. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3074. @table @asis
  3075. @item @emph{Description}:
  3076. Return the current profiling status or a negative value in case there was an error.
  3077. @item @emph{Prototype}:
  3078. @code{int starpu_profiling_status_get(void);}
  3079. @end table
  3080. @node struct starpu_task_profiling_info
  3081. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3082. @table @asis
  3083. @item @emph{Description}:
  3084. This structure contains information about the execution of a task. It is
  3085. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3086. structure if profiling was enabled.
  3087. @item @emph{Fields}:
  3088. @table @asis
  3089. @item @code{submit_time}:
  3090. Date of task submission (relative to the initialization of StarPU).
  3091. @item @code{start_time}:
  3092. Date of task execution beginning (relative to the initialization of StarPU).
  3093. @item @code{end_time}:
  3094. Date of task execution termination (relative to the initialization of StarPU).
  3095. @item @code{workerid}:
  3096. Identifier of the worker which has executed the task.
  3097. @end table
  3098. @end table
  3099. @node struct starpu_worker_profiling_info
  3100. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3101. @table @asis
  3102. @item @emph{Description}:
  3103. This structure contains the profiling information associated to a worker.
  3104. @item @emph{Fields}:
  3105. @table @asis
  3106. @item @code{start_time}:
  3107. Starting date for the reported profiling measurements.
  3108. @item @code{total_time}:
  3109. Duration of the profiling measurement interval.
  3110. @item @code{executing_time}:
  3111. Time spent by the worker to execute tasks during the profiling measurement interval.
  3112. @item @code{sleeping_time}:
  3113. Time spent idling by the worker during the profiling measurement interval.
  3114. @item @code{executed_tasks}:
  3115. Number of tasks executed by the worker during the profiling measurement interval.
  3116. @end table
  3117. @end table
  3118. @node starpu_worker_get_profiling_info
  3119. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3120. @table @asis
  3121. @item @emph{Description}:
  3122. Get the profiling info associated to the worker identified by @code{workerid},
  3123. and reset the profiling measurements. If the @code{worker_info} argument is
  3124. NULL, only reset the counters associated to worker @code{workerid}.
  3125. @item @emph{Return value}:
  3126. Upon successful completion, this function returns 0. Otherwise, a negative
  3127. value is returned.
  3128. @item @emph{Prototype}:
  3129. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3130. @end table
  3131. @node struct starpu_bus_profiling_info
  3132. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3133. @table @asis
  3134. @item @emph{Description}:
  3135. TODO
  3136. @item @emph{Fields}:
  3137. @table @asis
  3138. @item @code{start_time}:
  3139. TODO
  3140. @item @code{total_time}:
  3141. TODO
  3142. @item @code{transferred_bytes}:
  3143. TODO
  3144. @item @code{transfer_count}:
  3145. TODO
  3146. @end table
  3147. @end table
  3148. @node starpu_bus_get_count
  3149. @subsection @code{starpu_bus_get_count}
  3150. @table @asis
  3151. @item @emph{Description}:
  3152. TODO
  3153. @item @emph{Prototype}:
  3154. @code{int starpu_bus_get_count(void);}
  3155. @end table
  3156. @node starpu_bus_get_id
  3157. @subsection @code{starpu_bus_get_id}
  3158. @table @asis
  3159. @item @emph{Description}:
  3160. TODO
  3161. @item @emph{Prototype}:
  3162. @code{int starpu_bus_get_id(int src, int dst);}
  3163. @end table
  3164. @node starpu_bus_get_src
  3165. @subsection @code{starpu_bus_get_src}
  3166. @table @asis
  3167. @item @emph{Description}:
  3168. TODO
  3169. @item @emph{Prototype}:
  3170. @code{int starpu_bus_get_src(int busid);}
  3171. @end table
  3172. @node starpu_bus_get_dst
  3173. @subsection @code{starpu_bus_get_dst}
  3174. @table @asis
  3175. @item @emph{Description}:
  3176. TODO
  3177. @item @emph{Prototype}:
  3178. @code{int starpu_bus_get_dst(int busid);}
  3179. @end table
  3180. @node starpu_timing_timespec_delay_us
  3181. @subsection @code{starpu_timing_timespec_delay_us}
  3182. @table @asis
  3183. @item @emph{Description}:
  3184. TODO
  3185. @item @emph{Prototype}:
  3186. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3187. @end table
  3188. @node starpu_timing_timespec_to_us
  3189. @subsection @code{starpu_timing_timespec_to_us}
  3190. @table @asis
  3191. @item @emph{Description}:
  3192. TODO
  3193. @item @emph{Prototype}:
  3194. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3195. @end table
  3196. @node starpu_bus_profiling_helper_display_summary
  3197. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3198. @table @asis
  3199. @item @emph{Description}:
  3200. TODO
  3201. @item @emph{Prototype}:
  3202. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3203. @end table
  3204. @node starpu_worker_profiling_helper_display_summary
  3205. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3206. @table @asis
  3207. @item @emph{Description}:
  3208. TODO
  3209. @item @emph{Prototype}:
  3210. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3211. @end table
  3212. @node CUDA extensions
  3213. @section CUDA extensions
  3214. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3215. @menu
  3216. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3217. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3218. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3219. @end menu
  3220. @node starpu_cuda_get_local_stream
  3221. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3222. @table @asis
  3223. @item @emph{Description}:
  3224. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3225. function is only provided for convenience so that programmers can easily use
  3226. asynchronous operations within codelets without having to create a stream by
  3227. hand. Note that the application is not forced to use the stream provided by
  3228. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3229. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3230. the likelihood of having all transfers overlapped.
  3231. @item @emph{Prototype}:
  3232. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3233. @end table
  3234. @node starpu_helper_cublas_init
  3235. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3236. @table @asis
  3237. @item @emph{Description}:
  3238. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3239. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3240. controlled by StarPU. This call blocks until CUBLAS has been properly
  3241. initialized on every device.
  3242. @item @emph{Prototype}:
  3243. @code{void starpu_helper_cublas_init(void);}
  3244. @end table
  3245. @node starpu_helper_cublas_shutdown
  3246. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3247. @table @asis
  3248. @item @emph{Description}:
  3249. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3250. @item @emph{Prototype}:
  3251. @code{void starpu_helper_cublas_shutdown(void);}
  3252. @end table
  3253. @node OpenCL extensions
  3254. @section OpenCL extensions
  3255. @menu
  3256. * Enabling OpenCL:: Enabling OpenCL
  3257. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3258. * Loading OpenCL kernels:: Loading OpenCL kernels
  3259. * OpenCL statistics:: Collecting statistics from OpenCL
  3260. @end menu
  3261. @node Enabling OpenCL
  3262. @subsection Enabling OpenCL
  3263. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3264. enabled by default. To enable OpenCL, you need either to disable CUDA
  3265. when configuring StarPU:
  3266. @example
  3267. % ./configure --disable-cuda
  3268. @end example
  3269. or when running applications:
  3270. @example
  3271. % STARPU_NCUDA=0 ./application
  3272. @end example
  3273. OpenCL will automatically be started on any device not yet used by
  3274. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3275. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3276. so:
  3277. @example
  3278. % STARPU_NCUDA=2 ./application
  3279. @end example
  3280. @node Compiling OpenCL kernels
  3281. @subsection Compiling OpenCL kernels
  3282. Source codes for OpenCL kernels can be stored in a file or in a
  3283. string. StarPU provides functions to build the program executable for
  3284. each available OpenCL device as a @code{cl_program} object. This
  3285. program executable can then be loaded within a specific queue as
  3286. explained in the next section. These are only helpers, Applications
  3287. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3288. use (e.g. different programs on the different OpenCL devices, for
  3289. relocation purpose for instance).
  3290. @menu
  3291. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3292. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3293. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3294. @end menu
  3295. @node starpu_opencl_load_opencl_from_file
  3296. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3297. @table @asis
  3298. @item @emph{Description}:
  3299. TODO
  3300. @item @emph{Prototype}:
  3301. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3302. @end table
  3303. @node starpu_opencl_load_opencl_from_string
  3304. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3305. @table @asis
  3306. @item @emph{Description}:
  3307. TODO
  3308. @item @emph{Prototype}:
  3309. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3310. @end table
  3311. @node starpu_opencl_unload_opencl
  3312. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3313. @table @asis
  3314. @item @emph{Description}:
  3315. TODO
  3316. @item @emph{Prototype}:
  3317. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3318. @end table
  3319. @node Loading OpenCL kernels
  3320. @subsection Loading OpenCL kernels
  3321. @menu
  3322. * starpu_opencl_load_kernel:: Loading a kernel
  3323. * starpu_opencl_relase_kernel:: Releasing a kernel
  3324. @end menu
  3325. @node starpu_opencl_load_kernel
  3326. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3327. @table @asis
  3328. @item @emph{Description}:
  3329. TODO
  3330. @item @emph{Prototype}:
  3331. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3332. }
  3333. @end table
  3334. @node starpu_opencl_relase_kernel
  3335. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3336. @table @asis
  3337. @item @emph{Description}:
  3338. TODO
  3339. @item @emph{Prototype}:
  3340. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3341. @end table
  3342. @node OpenCL statistics
  3343. @subsection OpenCL statistics
  3344. @menu
  3345. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3346. @end menu
  3347. @node starpu_opencl_collect_stats
  3348. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3349. @table @asis
  3350. @item @emph{Description}:
  3351. After termination of the kernels, the OpenCL codelet should call this function
  3352. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3353. collect statistics about the kernel execution (used cycles, consumed power).
  3354. @item @emph{Prototype}:
  3355. @code{int starpu_opencl_collect_stats(cl_event event);}
  3356. @end table
  3357. @node Cell extensions
  3358. @section Cell extensions
  3359. nothing yet.
  3360. @node Miscellaneous helpers
  3361. @section Miscellaneous helpers
  3362. @menu
  3363. * starpu_data_cpy:: Copy a data handle into another data handle
  3364. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3365. @end menu
  3366. @node starpu_data_cpy
  3367. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3368. @table @asis
  3369. @item @emph{Description}:
  3370. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3371. The @code{asynchronous} parameter indicates whether the function should
  3372. block or not. In the case of an asynchronous call, it is possible to
  3373. synchronize with the termination of this operation either by the means of
  3374. implicit dependencies (if enabled) or by calling
  3375. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3376. this callback function is executed after the handle has been copied, and it is
  3377. given the @code{callback_arg} pointer as argument.
  3378. @item @emph{Prototype}:
  3379. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3380. @end table
  3381. @node starpu_execute_on_each_worker
  3382. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3383. @table @asis
  3384. @item @emph{Description}:
  3385. When calling this method, the offloaded function specified by the first argument is
  3386. executed by every StarPU worker that may execute the function.
  3387. The second argument is passed to the offloaded function.
  3388. The last argument specifies on which types of processing units the function
  3389. should be executed. Similarly to the @code{where} field of the
  3390. @code{starpu_codelet} structure, it is possible to specify that the function
  3391. should be executed on every CUDA device and every CPU by passing
  3392. @code{STARPU_CPU|STARPU_CUDA}.
  3393. This function blocks until the function has been executed on every appropriate
  3394. processing units, so that it may not be called from a callback function for
  3395. instance.
  3396. @item @emph{Prototype}:
  3397. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3398. @end table
  3399. @c ---------------------------------------------------------------------
  3400. @c Advanced Topics
  3401. @c ---------------------------------------------------------------------
  3402. @node Advanced Topics
  3403. @chapter Advanced Topics
  3404. @menu
  3405. * Defining a new data interface::
  3406. * Defining a new scheduling policy::
  3407. @end menu
  3408. @node Defining a new data interface
  3409. @section Defining a new data interface
  3410. @menu
  3411. * struct starpu_data_interface_ops_t:: Per-interface methods
  3412. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3413. * An example of data interface:: An example of data interface
  3414. @end menu
  3415. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3416. @node struct starpu_data_interface_ops_t
  3417. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3418. @table @asis
  3419. @item @emph{Description}:
  3420. TODO describe all the different fields
  3421. @end table
  3422. @node struct starpu_data_copy_methods
  3423. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3424. @table @asis
  3425. @item @emph{Description}:
  3426. TODO describe all the different fields
  3427. @end table
  3428. @node An example of data interface
  3429. @subsection An example of data interface
  3430. @table @asis
  3431. TODO
  3432. @end table
  3433. @node Defining a new scheduling policy
  3434. @section Defining a new scheduling policy
  3435. TODO
  3436. A full example showing how to define a new scheduling policy is available in
  3437. the StarPU sources in the directory @code{examples/scheduler/}.
  3438. @menu
  3439. * struct starpu_sched_policy_s::
  3440. * starpu_worker_set_sched_condition::
  3441. * starpu_sched_set_min_priority:: Set the minimum priority level
  3442. * starpu_sched_set_max_priority:: Set the maximum priority level
  3443. * Source code::
  3444. @end menu
  3445. @node struct starpu_sched_policy_s
  3446. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3447. @table @asis
  3448. @item @emph{Description}:
  3449. This structure contains all the methods that implement a scheduling policy. An
  3450. application may specify which scheduling strategy in the @code{sched_policy}
  3451. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3452. function.
  3453. @item @emph{Fields}:
  3454. @table @asis
  3455. @item @code{init_sched}:
  3456. Initialize the scheduling policy.
  3457. @item @code{deinit_sched}:
  3458. Cleanup the scheduling policy.
  3459. @item @code{push_task}:
  3460. Insert a task into the scheduler.
  3461. @item @code{push_prio_task}:
  3462. Insert a priority task into the scheduler.
  3463. @item @code{pop_task}:
  3464. Get a task from the scheduler. The mutex associated to the worker is already
  3465. taken when this method is called.
  3466. @item @code{pop_every_task}:
  3467. Remove all available tasks from the scheduler (tasks are chained by the means
  3468. of the prev and next fields of the starpu_task structure). The mutex associated
  3469. to the worker is already taken when this method is called.
  3470. @item @code{post_exec_hook} (optionnal):
  3471. This method is called every time a task has been executed.
  3472. @item @code{policy_name}:
  3473. Name of the policy (optionnal).
  3474. @item @code{policy_description}:
  3475. Description of the policy (optionnal).
  3476. @end table
  3477. @end table
  3478. @node starpu_worker_set_sched_condition
  3479. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3480. @table @asis
  3481. @item @emph{Description}:
  3482. When there is no available task for a worker, StarPU blocks this worker on a
  3483. condition variable. This function specifies which condition variable (and the
  3484. associated mutex) should be used to block (and to wake up) a worker. Note that
  3485. multiple workers may use the same condition variable. For instance, in the case
  3486. of a scheduling strategy with a single task queue, the same condition variable
  3487. would be used to block and wake up all workers.
  3488. The initialization method of a scheduling strategy (@code{init_sched}) must
  3489. call this function once per worker.
  3490. @item @emph{Prototype}:
  3491. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3492. @end table
  3493. @node starpu_sched_set_min_priority
  3494. @subsection @code{starpu_sched_set_min_priority}
  3495. @table @asis
  3496. @item @emph{Description}:
  3497. Defines the minimum priority level supported by the scheduling policy. The
  3498. default minimum priority level is the same as the default priority level which
  3499. is 0 by convention. The application may access that value by calling the
  3500. @code{starpu_sched_get_min_priority} function. This function should only be
  3501. called from the initialization method of the scheduling policy, and should not
  3502. be used directly from the application.
  3503. @item @emph{Prototype}:
  3504. @code{void starpu_sched_set_min_priority(int min_prio)}
  3505. @end table
  3506. @node starpu_sched_set_max_priority
  3507. @subsection @code{starpu_sched_set_max_priority}
  3508. @table @asis
  3509. @item @emph{Description}:
  3510. Defines the maximum priority level supported by the scheduling policy. The
  3511. default maximum priority level is 1. The application may access that value by
  3512. calling the @code{starpu_sched_get_max_priority} function. This function should
  3513. only be called from the initialization method of the scheduling policy, and
  3514. should not be used directly from the application.
  3515. @item @emph{Prototype}:
  3516. @code{void starpu_sched_set_min_priority(int max_prio)}
  3517. @end table
  3518. @node Source code
  3519. @subsection Source code
  3520. @cartouche
  3521. @smallexample
  3522. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3523. .init_sched = init_dummy_sched,
  3524. .deinit_sched = deinit_dummy_sched,
  3525. .push_task = push_task_dummy,
  3526. .push_prio_task = NULL,
  3527. .pop_task = pop_task_dummy,
  3528. .post_exec_hook = NULL,
  3529. .pop_every_task = NULL,
  3530. .policy_name = "dummy",
  3531. .policy_description = "dummy scheduling strategy"
  3532. @};
  3533. @end smallexample
  3534. @end cartouche
  3535. @c ---------------------------------------------------------------------
  3536. @c Appendices
  3537. @c ---------------------------------------------------------------------
  3538. @c ---------------------------------------------------------------------
  3539. @c Full source code for the 'Scaling a Vector' example
  3540. @c ---------------------------------------------------------------------
  3541. @node Full source code for the 'Scaling a Vector' example
  3542. @appendix Full source code for the 'Scaling a Vector' example
  3543. @menu
  3544. * Main application::
  3545. * CPU Kernel::
  3546. * CUDA Kernel::
  3547. * OpenCL Kernel::
  3548. @end menu
  3549. @node Main application
  3550. @section Main application
  3551. @smallexample
  3552. @include vector_scal_c.texi
  3553. @end smallexample
  3554. @node CPU Kernel
  3555. @section CPU Kernel
  3556. @smallexample
  3557. @include vector_scal_cpu.texi
  3558. @end smallexample
  3559. @node CUDA Kernel
  3560. @section CUDA Kernel
  3561. @smallexample
  3562. @include vector_scal_cuda.texi
  3563. @end smallexample
  3564. @node OpenCL Kernel
  3565. @section OpenCL Kernel
  3566. @menu
  3567. * Invoking the kernel::
  3568. * Source of the kernel::
  3569. @end menu
  3570. @node Invoking the kernel
  3571. @subsection Invoking the kernel
  3572. @smallexample
  3573. @include vector_scal_opencl.texi
  3574. @end smallexample
  3575. @node Source of the kernel
  3576. @subsection Source of the kernel
  3577. @smallexample
  3578. @include vector_scal_opencl_codelet.texi
  3579. @end smallexample
  3580. @bye