basic-api.texi 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @node StarPU Basic API
  8. @chapter StarPU Basic API
  9. @menu
  10. * Initialization and Termination:: Initialization and Termination methods
  11. * Workers' Properties:: Methods to enumerate workers' properties
  12. * Data Library:: Methods to manipulate data
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Codelets and Tasks:: Methods to construct tasks
  16. * Explicit Dependencies:: Explicit Dependencies
  17. * Implicit Data Dependencies:: Implicit Data Dependencies
  18. * Performance Model API::
  19. * Profiling API:: Profiling API
  20. * CUDA extensions:: CUDA extensions
  21. * OpenCL extensions:: OpenCL extensions
  22. * Cell extensions:: Cell extensions
  23. * Miscellaneous helpers::
  24. @end menu
  25. @node Initialization and Termination
  26. @section Initialization and Termination
  27. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  28. This is StarPU initialization method, which must be called prior to any other
  29. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  30. policy, number of cores, ...) by passing a non-null argument. Default
  31. configuration is used if the passed argument is @code{NULL}.
  32. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  33. indicates that no worker was available (so that StarPU was not initialized).
  34. @end deftypefun
  35. @deftp {Data type} {struct starpu_conf}
  36. This structure is passed to the @code{starpu_init} function in order
  37. to configure StarPU.
  38. When the default value is used, StarPU automatically selects the number
  39. of processing units and takes the default scheduling policy. This parameter
  40. overwrites the equivalent environment variables.
  41. @table @asis
  42. @item @code{sched_policy_name} (default = NULL)
  43. This is the name of the scheduling policy. This can also be specified
  44. with the @code{STARPU_SCHED} environment variable.
  45. @item @code{sched_policy} (default = NULL)
  46. This is the definition of the scheduling policy. This field is ignored
  47. if @code{sched_policy_name} is set.
  48. @item @code{ncpus} (default = -1)
  49. This is the number of CPU cores that StarPU can use. This can also be
  50. specified with the @code{STARPU_NCPUS} environment variable.
  51. @item @code{ncuda} (default = -1)
  52. This is the number of CUDA devices that StarPU can use. This can also
  53. be specified with the @code{STARPU_NCUDA} environment variable.
  54. @item @code{nopencl} (default = -1)
  55. This is the number of OpenCL devices that StarPU can use. This can
  56. also be specified with the @code{STARPU_NOPENCL} environment variable.
  57. @item @code{nspus} (default = -1)
  58. This is the number of Cell SPUs that StarPU can use. This can also be
  59. specified with the @code{STARPU_NGORDON} environment variable.
  60. @item @code{use_explicit_workers_bindid} (default = 0)
  61. If this flag is set, the @code{workers_bindid} array indicates where
  62. the different workers are bound, otherwise StarPU automatically
  63. selects where to bind the different workers unless the
  64. @code{STARPU_WORKERS_CPUID} environment variable is set. The
  65. @code{STARPU_WORKERS_CPUID} environment variable is ignored if the
  66. @code{use_explicit_workers_bindid} flag is set.
  67. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  68. If the @code{use_explicit_workers_bindid} flag is set, this array
  69. indicates where to bind the different workers. The i-th entry of the
  70. @code{workers_bindid} indicates the logical identifier of the
  71. processor which should execute the i-th worker. Note that the logical
  72. ordering of the CPUs is either determined by the OS, or provided by
  73. the @code{hwloc} library in case it is available. When this flag is
  74. set, the @ref{STARPU_WORKERS_CPUID} environment variable is ignored.
  75. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  76. If this flag is set, the CUDA workers will be attached to the CUDA
  77. devices specified in the @code{workers_cuda_gpuid} array. Otherwise,
  78. StarPU affects the CUDA devices in a round-robin fashion. When this
  79. flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  80. ignored.
  81. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  82. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  83. contains the logical identifiers of the CUDA devices (as used by
  84. @code{cudaGetDevice}).
  85. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  86. If this flag is set, the OpenCL workers will be attached to the OpenCL
  87. devices specified in the @code{workers_opencl_gpuid} array. Otherwise,
  88. StarPU affects the OpenCL devices in a round-robin fashion.
  89. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  90. todo
  91. @item @code{calibrate} (default = 0)
  92. If this flag is set, StarPU will calibrate the performance models when
  93. executing tasks. If this value is equal to -1, the default value is
  94. used. The default value is overwritten by the @code{STARPU_CALIBRATE}
  95. environment variable when it is set.
  96. @item @code{single_combined_worker} (default = 0)
  97. By default, StarPU creates various combined workers according to the machine
  98. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  99. not support concurrent calls to parallel code. In such case, setting this flag
  100. makes StarPU only create one combined worker, containing all
  101. the CPU workers. The default value is overwritten by the
  102. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  103. @end table
  104. @end deftp
  105. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  106. This function initializes the @code{starpu_conf} structure passed as argument
  107. with the default values. In case some configuration parameters are already
  108. specified through environment variables, @code{starpu_conf_init} initializes
  109. the fields of the structure according to the environment variables. For
  110. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  111. @code{.ncuda} field of the structure passed as argument.
  112. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  113. indicates that the argument was NULL.
  114. @end deftypefun
  115. @deftypefun void starpu_shutdown (void)
  116. This is StarPU termination method. It must be called at the end of the
  117. application: statistics and other post-mortem debugging information are not
  118. guaranteed to be available until this method has been called.
  119. @end deftypefun
  120. @node Workers' Properties
  121. @section Workers' Properties
  122. @deftp {DataType} {enum starpu_archtype}
  123. The different values are:
  124. @table @asis
  125. @item @code{STARPU_CPU_WORKER}
  126. @item @code{STARPU_CUDA_WORKER}
  127. @item @code{STARPU_OPENCL_WORKER}
  128. @item @code{STARPU_GORDON_WORKER}
  129. @end table
  130. @end deftp
  131. @deftypefun unsigned starpu_worker_get_count (void)
  132. This function returns the number of workers (i.e. processing units executing
  133. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  134. @end deftypefun
  135. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  136. Returns the number of workers of the given type indicated by the argument. A positive
  137. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  138. the type is not valid otherwise.
  139. @end deftypefun
  140. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  141. This function returns the number of CPUs controlled by StarPU. The returned
  142. value should be at most @code{STARPU_MAXCPUS}.
  143. @end deftypefun
  144. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  145. This function returns the number of CUDA devices controlled by StarPU. The returned
  146. value should be at most @code{STARPU_MAXCUDADEVS}.
  147. @end deftypefun
  148. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  149. This function returns the number of OpenCL devices controlled by StarPU. The returned
  150. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  151. @end deftypefun
  152. @deftypefun unsigned starpu_spu_worker_get_count (void)
  153. This function returns the number of Cell SPUs controlled by StarPU.
  154. @end deftypefun
  155. @deftypefun int starpu_worker_get_id (void)
  156. This function returns the identifier of the current worker, i.e the one associated to the calling
  157. thread. The returned value is either -1 if the current context is not a StarPU
  158. worker (i.e. when called from the application outside a task or a callback), or
  159. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  160. @end deftypefun
  161. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  162. This function gets the list of identifiers of workers with the given
  163. type. It fills the workerids array with the identifiers of the workers that have the type
  164. indicated in the first argument. The maxsize argument indicates the size of the
  165. workids array. The returned value gives the number of identifiers that were put
  166. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  167. workers with the appropriate type: in that case, the array is filled with the
  168. maxsize first elements. To avoid such overflows, the value of maxsize can be
  169. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  170. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  171. @end deftypefun
  172. @deftypefun int starpu_worker_get_devid (int @var{id})
  173. This functions returns the device id of the given worker. The worker
  174. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  175. CUDA worker, this device identifier is the logical device identifier exposed by
  176. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  177. identifier of a CPU worker is the logical identifier of the core on which the
  178. worker was bound; this identifier is either provided by the OS or by the
  179. @code{hwloc} library in case it is available.
  180. @end deftypefun
  181. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  182. This function returns the type of processing unit associated to a
  183. worker. The worker identifier is a value returned by the
  184. @code{starpu_worker_get_id} function). The returned value
  185. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  186. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  187. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  188. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  189. identifier is unspecified.
  190. @end deftypefun
  191. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  192. This function allows to get the name of a given worker.
  193. StarPU associates a unique human readable string to each processing unit. This
  194. function copies at most the @var{maxlen} first bytes of the unique string
  195. associated to a worker identified by its identifier @var{id} into the
  196. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  197. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  198. function on an invalid identifier results in an unspecified behaviour.
  199. @end deftypefun
  200. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  201. This function returns the identifier of the memory node associated to the
  202. worker identified by @var{workerid}.
  203. @end deftypefun
  204. @node Data Library
  205. @section Data Library
  206. @menu
  207. * Introduction to Data Library::
  208. * Basic Data Library API::
  209. * Access registered data from the application::
  210. @end menu
  211. This section describes the data management facilities provided by StarPU.
  212. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  213. design their own data interfaces if required.
  214. @node Introduction to Data Library
  215. @subsection Introduction
  216. Data management is done at a high-level in StarPU: rather than accessing a mere
  217. list of contiguous buffers, the tasks may manipulate data that are described by
  218. a high-level construct which we call data interface.
  219. An example of data interface is the "vector" interface which describes a
  220. contiguous data array on a spefic memory node. This interface is a simple
  221. structure containing the number of elements in the array, the size of the
  222. elements, and the address of the array in the appropriate address space (this
  223. address may be invalid if there is no valid copy of the array in the memory
  224. node). More informations on the data interfaces provided by StarPU are
  225. given in @ref{Data Interfaces}.
  226. When a piece of data managed by StarPU is used by a task, the task
  227. implementation is given a pointer to an interface describing a valid copy of
  228. the data that is accessible from the current processing unit.
  229. Every worker is associated to a memory node which is a logical abstraction of
  230. the address space from which the processing unit gets its data. For instance,
  231. the memory node associated to the different CPU workers represents main memory
  232. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  233. Every memory node is identified by a logical index which is accessible from the
  234. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  235. to StarPU, the specified memory node indicates where the piece of data
  236. initially resides (we also call this memory node the home node of a piece of
  237. data).
  238. @node Basic Data Library API
  239. @subsection Basic Data Library API
  240. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  241. This function allocates data of the given size in main memory. It will also try to pin it in
  242. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  243. thus permit data transfer and computation overlapping. The allocated buffer must
  244. be freed thanks to the @code{starpu_free} function.
  245. @end deftypefun
  246. @deftypefun int starpu_free (void *@var{A})
  247. This function frees memory which has previously allocated with
  248. @code{starpu_malloc}.
  249. @end deftypefun
  250. @deftp {Data Type} starpu_access_mode
  251. This datatype describes a data access mode. The different available modes are:
  252. @table @asis
  253. @item @code{STARPU_R}: read-only mode.
  254. @item @code{STARPU_W}: write-only mode.
  255. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  256. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  257. @item @code{STARPU_REDUX} reduction mode.
  258. @end table
  259. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  260. @end deftp
  261. @deftp {Data Type} {starpu_data_handle}
  262. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  263. data. Once a piece of data has been registered to StarPU, it is associated to a
  264. @code{starpu_data_handle} which keeps track of the state of the piece of data
  265. over the entire machine, so that we can maintain data consistency and locate
  266. data replicates for instance.
  267. @end deftp
  268. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops} *@var{ops})
  269. Register a piece of data into the handle located at the @var{handleptr}
  270. address. The @var{interface} buffer contains the initial description of the
  271. data in the home node. The @var{ops} argument is a pointer to a structure
  272. describing the different methods used to manipulate this type of interface. See
  273. @ref{struct starpu_data_interface_ops} for more details on this structure.
  274. If @code{home_node} is -1, StarPU will automatically
  275. allocate the memory when it is used for the
  276. first time in write-only mode. Once such data handle has been automatically
  277. allocated, it is possible to access it using any access mode.
  278. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  279. matrix) which can be registered by the means of helper functions (e.g.
  280. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  281. @end deftypefun
  282. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  283. This function unregisters a data handle from StarPU. If the data was
  284. automatically allocated by StarPU because the home node was -1, all
  285. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  286. is put back into the home node in the buffer that was initially registered.
  287. Using a data handle that has been unregistered from StarPU results in an
  288. undefined behaviour.
  289. @end deftypefun
  290. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle @var{handle})
  291. This is the same as starpu_data_unregister, except that StarPU does not put back
  292. a valid copy into the home node, in the buffer that was initially registered.
  293. @end deftypefun
  294. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  295. Destroy all replicates of the data handle. After data invalidation, the first
  296. access to the handle must be performed in write-only mode. Accessing an
  297. invalidated data in read-mode results in undefined behaviour.
  298. @end deftypefun
  299. @c TODO create a specific sections about user interaction with the DSM ?
  300. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  301. This function sets the write-through mask of a given data, i.e. a bitmask of
  302. nodes where the data should be always replicated after modification.
  303. @end deftypefun
  304. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  305. Issue a prefetch request for a given data to a given node, i.e.
  306. requests that the data be replicated to the given node, so that it is available
  307. there for tasks. If the @var{async} parameter is 0, the call will block until
  308. the transfer is achieved, else the call will return as soon as the request is
  309. scheduled (which may however have to wait for a task completion).
  310. @end deftypefun
  311. @deftypefun starpu_data_handle starpu_data_lookup ({const void *}@var{ptr})
  312. todo
  313. @end deftypefun
  314. @deftypefun int starpu_data_request_allocation (starpu_data_handle @var{handle}, uint32_t @var{node})
  315. todo
  316. @end deftypefun
  317. @deftypefun void starpu_data_query_status (starpu_data_handle @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  318. Query the status of the handle on the specified memory node.
  319. @end deftypefun
  320. @deftypefun void starpu_data_advise_as_important (starpu_data_handle @var{handle}, unsigned @var{is_important})
  321. This function allows to specify that a piece of data can be discarded
  322. without impacting the application.
  323. @end deftypefun
  324. @node Access registered data from the application
  325. @subsection Access registered data from the application
  326. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  327. The application must call this function prior to accessing registered data from
  328. main memory outside tasks. StarPU ensures that the application will get an
  329. up-to-date copy of the data in main memory located where the data was
  330. originally registered, and that all concurrent accesses (e.g. from tasks) will
  331. be consistent with the access mode specified in the @var{mode} argument.
  332. @code{starpu_data_release} must be called once the application does not need to
  333. access the piece of data anymore. Note that implicit data
  334. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  335. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  336. the data, unless that they have not been disabled explictly by calling
  337. @code{starpu_data_set_default_sequential_consistency_flag} or
  338. @code{starpu_data_set_sequential_consistency_flag}.
  339. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  340. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  341. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  342. @end deftypefun
  343. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  344. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  345. @code{starpu_data_release}. When the data specified in the first argument is
  346. available in the appropriate access mode, the callback function is executed.
  347. The application may access the requested data during the execution of this
  348. callback. The callback function must call @code{starpu_data_release} once the
  349. application does not need to access the piece of data anymore.
  350. Note that implicit data dependencies are also enforced by
  351. @code{starpu_data_acquire_cb} in case they are enabled.
  352. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  353. be called from task callbacks. Upon successful completion, this function
  354. returns 0.
  355. @end deftypefun
  356. @deftypefun void STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  357. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  358. except that the code to be executed in a callback is directly provided as a
  359. macro parameter, and the data handle is automatically released after it. This
  360. permits to easily execute code which depends on the value of some registered
  361. data. This is non-blocking too and may be called from task callbacks.
  362. @end deftypefun
  363. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  364. This function releases the piece of data acquired by the application either by
  365. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  366. @end deftypefun
  367. @node Data Interfaces
  368. @section Data Interfaces
  369. There are several ways to register a memory region so that it can be managed by
  370. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  371. matrices as well as BCSR and CSR sparse matrices.
  372. @deftypefun void starpu_void_data_register ({starpu_data_handle *}@var{handle})
  373. Register a void interface. There is no data really associated to that
  374. interface, but it may be used as a synchronization mechanism. It also
  375. permits to express an abstract piece of data that is managed by the
  376. application internally: this makes it possible to forbid the
  377. concurrent execution of different tasks accessing the same "void" data
  378. in read-write concurrently.
  379. @end deftypefun
  380. @deftypefun void starpu_variable_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  381. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  382. typically a scalar, and initialize @var{handle} to represent this data
  383. item.
  384. @smallexample
  385. float var;
  386. starpu_data_handle var_handle;
  387. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  388. @end smallexample
  389. @end deftypefun
  390. @deftypefun void starpu_vector_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{count}, size_t @var{size})
  391. Register the @var{count} @var{size}-byte elements pointed to by
  392. @var{ptr} and initialize @var{handle} to represent it.
  393. @example
  394. float vector[NX];
  395. starpu_data_handle vector_handle;
  396. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  397. sizeof(vector[0]));
  398. @end example
  399. @end deftypefun
  400. @deftypefun void starpu_matrix_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{size})
  401. Register the @var{nx}x@var{ny} 2D matrix of @var{size}-byte elements
  402. pointed by @var{ptr} and initialize @var{handle} to represent it.
  403. @var{ld} specifies the number of extra elements present at the end of
  404. each row; a non-zero @var{ld} adds padding, which can be useful for
  405. alignment purposes.
  406. @example
  407. float *matrix;
  408. starpu_data_handle matrix_handle;
  409. matrix = (float*)malloc(width * height * sizeof(float));
  410. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  411. width, width, height, sizeof(float));
  412. @end example
  413. @end deftypefun
  414. @deftypefun void starpu_block_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{size})
  415. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{size}-byte
  416. elements pointed by @var{ptr} and initialize @var{handle} to represent
  417. it. Again, @var{ldy} and @var{ldz} specify the number of extra elements
  418. present at the end of each row or column.
  419. @example
  420. float *block;
  421. starpu_data_handle block_handle;
  422. block = (float*)malloc(nx*ny*nz*sizeof(float));
  423. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  424. nx, nx*ny, nx, ny, nz, sizeof(float));
  425. @end example
  426. @end deftypefun
  427. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  428. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  429. Compressed Sparse Row Representation) sparse matrix interface.
  430. TODO
  431. @end deftypefun
  432. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  433. This variant of @code{starpu_data_register} uses the CSR (Compressed
  434. Sparse Row Representation) sparse matrix interface.
  435. TODO
  436. @end deftypefun
  437. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle @var{handle}, unsigned @var{memory_node})
  438. todo
  439. @end deftypefun
  440. @menu
  441. * Accessing Data Interfaces::
  442. @end menu
  443. @node Accessing Data Interfaces
  444. @subsection Accessing Data Interfaces
  445. Each data interface is provided with a set of field access functions.
  446. The ones using a @code{void *} parameter aimed to be used in codelet
  447. implementations (see for example the code in @ref{Source code of Vector Scaling}).
  448. @menu
  449. * Accessing Variable Data Interfaces::
  450. * Accessing Vector Data Interfaces::
  451. * Accessing Matrix Data Interfaces::
  452. * Accessing Block Data Interfaces::
  453. * Accessing BCSR Data Interfaces::
  454. * Accessing CSR Data Interfaces::
  455. @end menu
  456. @node Accessing Variable Data Interfaces
  457. @subsubsection Accessing Variable Data Interfaces
  458. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle @var{handle})
  459. todo
  460. @end deftypefun
  461. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle @var{handle})
  462. todo
  463. @end deftypefun
  464. @deftypefun uintptr_t STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  465. todo
  466. @end deftypefun
  467. @deftypefun size_t STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  468. todo
  469. @end deftypefun
  470. @node Accessing Vector Data Interfaces
  471. @subsubsection Vector Data Interfaces
  472. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle @var{handle})
  473. todo
  474. @end deftypefun
  475. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle @var{handle})
  476. todo
  477. @end deftypefun
  478. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle @var{handle})
  479. todo
  480. @end deftypefun
  481. @deftypefun uintptr_t STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  482. todo
  483. @end deftypefun
  484. @deftypefun uint32_t STARPU_VECTOR_GET_NX ({void *}@var{interface})
  485. todo
  486. @end deftypefun
  487. @deftypefun size_t STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  488. todo
  489. @end deftypefun
  490. @node Accessing Matrix Data Interfaces
  491. @subsubsection Matrix Data Interfaces
  492. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle @var{handle})
  493. todo
  494. @end deftypefun
  495. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle @var{handle})
  496. todo
  497. @end deftypefun
  498. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle @var{handle})
  499. todo
  500. @end deftypefun
  501. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle @var{handle})
  502. todo
  503. @end deftypefun
  504. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle @var{handle})
  505. todo
  506. @end deftypefun
  507. @deftypefun uintptr_t STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  508. todo
  509. @end deftypefun
  510. @deftypefun uint32_t STARPU_MATRIX_GET_NX ({void *}@var{interface})
  511. todo
  512. @end deftypefun
  513. @deftypefun uint32_t STARPU_MATRIX_GET_NY ({void *}@var{interface})
  514. todo
  515. @end deftypefun
  516. @deftypefun uint32_t STARPU_MATRIX_GET_LD ({void *}@var{interface})
  517. todo
  518. @end deftypefun
  519. @deftypefun size_t STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  520. todo
  521. @end deftypefun
  522. @node Accessing Block Data Interfaces
  523. @subsubsection Block Data Interfaces
  524. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle @var{handle})
  525. todo
  526. @end deftypefun
  527. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle @var{handle})
  528. todo
  529. @end deftypefun
  530. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle @var{handle})
  531. todo
  532. @end deftypefun
  533. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle @var{handle})
  534. todo
  535. @end deftypefun
  536. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle @var{handle})
  537. todo
  538. @end deftypefun
  539. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle @var{handle})
  540. todo
  541. @end deftypefun
  542. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle @var{handle})
  543. todo
  544. @end deftypefun
  545. @deftypefun uintptr_t STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  546. todo
  547. @end deftypefun
  548. @deftypefun uint32_t STARPU_BLOCK_GET_NX ({void *}@var{interface})
  549. todo
  550. @end deftypefun
  551. @deftypefun uint32_t STARPU_BLOCK_GET_NY ({void *}@var{interface})
  552. todo
  553. @end deftypefun
  554. @deftypefun uint32_t STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  555. todo
  556. @end deftypefun
  557. @deftypefun uint32_t STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  558. todo
  559. @end deftypefun
  560. @deftypefun uint32_t STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  561. todo
  562. @end deftypefun
  563. @deftypefun size_t STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  564. todo
  565. @end deftypefun
  566. @node Accessing BCSR Data Interfaces
  567. @subsubsection BCSR Data Interfaces
  568. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle @var{handle})
  569. todo
  570. @end deftypefun
  571. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle @var{handle})
  572. todo
  573. @end deftypefun
  574. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle @var{handle})
  575. todo
  576. @end deftypefun
  577. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle @var{handle})
  578. todo
  579. @end deftypefun
  580. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle @var{handle})
  581. todo
  582. @end deftypefun
  583. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle @var{handle})
  584. todo
  585. @end deftypefun
  586. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle @var{handle})
  587. todo
  588. @end deftypefun
  589. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle @var{handle})
  590. todo
  591. @end deftypefun
  592. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle @var{handle})
  593. todo
  594. @end deftypefun
  595. @node Accessing CSR Data Interfaces
  596. @subsubsection CSR Data Interfaces
  597. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle @var{handle})
  598. todo
  599. @end deftypefun
  600. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle @var{handle})
  601. todo
  602. @end deftypefun
  603. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle @var{handle})
  604. todo
  605. @end deftypefun
  606. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle @var{handle})
  607. todo
  608. @end deftypefun
  609. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle @var{handle})
  610. todo
  611. @end deftypefun
  612. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle @var{handle})
  613. todo
  614. @end deftypefun
  615. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle @var{handle})
  616. todo
  617. @end deftypefun
  618. @deftypefun uint32_t STARPU_CSR_GET_NNZ ({void *}@var{interface})
  619. todo
  620. @end deftypefun
  621. @deftypefun uint32_t STARPU_CSR_GET_NROW ({void *}@var{interface})
  622. todo
  623. @end deftypefun
  624. @deftypefun uintptr_t STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  625. todo
  626. @end deftypefun
  627. @deftypefun {uint32_t *} STARPU_CSR_GET_COLIND ({void *}@var{interface})
  628. todo
  629. @end deftypefun
  630. @deftypefun {uint32_t *} STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  631. todo
  632. @end deftypefun
  633. @deftypefun uint32_t STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  634. todo
  635. @end deftypefun
  636. @deftypefun size_t STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  637. todo
  638. @end deftypefun
  639. @node Data Partition
  640. @section Data Partition
  641. @menu
  642. * Basic API::
  643. * Predefined filter functions::
  644. @end menu
  645. @node Basic API
  646. @subsection Basic API
  647. @deftp {Data Type} {struct starpu_data_filter}
  648. The filter structure describes a data partitioning operation, to be given to the
  649. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  650. for an example. The different fields are:
  651. @table @asis
  652. @item @code{filter_func}
  653. This function fills the @code{child_interface} structure with interface
  654. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  655. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  656. @item @code{nchildren}
  657. This is the number of parts to partition the data into.
  658. @item @code{get_nchildren}
  659. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  660. children depends on the actual data (e.g. the number of blocks in a sparse
  661. matrix).
  662. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  663. @item @code{get_child_ops}
  664. In case the resulting children use a different data interface, this function
  665. returns which interface is used by child number @code{id}.
  666. @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  667. @item @code{filter_arg}
  668. Some filters take an addition parameter, but this is usually unused.
  669. @item @code{filter_arg_ptr}
  670. Some filters take an additional array parameter like the sizes of the parts, but
  671. this is usually unused.
  672. @end table
  673. @end deftp
  674. @deftypefun void starpu_data_partition (starpu_data_handle @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  675. @anchor{starpu_data_partition}
  676. This requests partitioning one StarPU data @code{initial_handle} into several
  677. subdata according to the filter @code{f}, as shown in the following example:
  678. @cartouche
  679. @smallexample
  680. struct starpu_data_filter f = @{
  681. .filter_func = starpu_vertical_block_filter_func,
  682. .nchildren = nslicesx,
  683. .get_nchildren = NULL,
  684. .get_child_ops = NULL
  685. @};
  686. starpu_data_partition(A_handle, &f);
  687. @end smallexample
  688. @end cartouche
  689. @end deftypefun
  690. @deftypefun void starpu_data_unpartition (starpu_data_handle @var{root_data}, uint32_t @var{gathering_node})
  691. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  692. collected back into one big piece in the @code{gathering_node} (usually 0).
  693. @cartouche
  694. @smallexample
  695. starpu_data_unpartition(A_handle, 0);
  696. @end smallexample
  697. @end cartouche
  698. @end deftypefun
  699. @deftypefun int starpu_data_get_nb_children (starpu_data_handle @var{handle})
  700. This function returns the number of children.
  701. @end deftypefun
  702. @deftypefun starpu_data_handle starpu_data_get_child (starpu_data_handle @var{handle}, unsigned @var{i})
  703. todo
  704. @end deftypefun
  705. @deftypefun starpu_data_handle starpu_data_get_sub_data (starpu_data_handle @var{root_data}, unsigned @var{depth}, ... )
  706. After partitioning a StarPU data by applying a filter,
  707. @code{starpu_data_get_sub_data} can be used to get handles for each of
  708. the data portions. @code{root_data} is the parent data that was
  709. partitioned. @code{depth} is the number of filters to traverse (in
  710. case several filters have been applied, to e.g. partition in row
  711. blocks, and then in column blocks), and the subsequent
  712. parameters are the indexes. The function returns a handle to the
  713. subdata.
  714. @cartouche
  715. @smallexample
  716. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  717. @end smallexample
  718. @end cartouche
  719. @end deftypefun
  720. @deftypefun starpu_data_handle starpu_data_vget_sub_data (starpu_data_handle @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  721. This function is similar to @code{starpu_data_get_sub_data} but uses a
  722. va_list for the parameter list.
  723. @end deftypefun
  724. @deftypefun void starpu_data_map_filters (starpu_data_handle @var{root_data}, unsigned @var{nfilters}, ...)
  725. todo
  726. @end deftypefun
  727. @deftypefun void starpu_data_vmap_filters (starpu_data_handle @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  728. todo
  729. @end deftypefun
  730. @node Predefined filter functions
  731. @subsection Predefined filter functions
  732. @menu
  733. * Partitioning BCSR Data::
  734. * Partitioning BLAS interface::
  735. * Partitioning Vector Data::
  736. * Partitioning Block Data::
  737. @end menu
  738. This section gives a partial list of the predefined partitioning functions.
  739. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  740. list can be found in @code{starpu_data_filters.h} .
  741. @node Partitioning BCSR Data
  742. @subsubsection Partitioning BCSR Data
  743. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  744. TODO
  745. @end deftypefun
  746. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  747. TODO
  748. @end deftypefun
  749. @node Partitioning BLAS interface
  750. @subsubsection Partitioning BLAS interface
  751. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  752. This partitions a dense Matrix into horizontal blocks.
  753. @end deftypefun
  754. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  755. This partitions a dense Matrix into vertical blocks.
  756. @end deftypefun
  757. @node Partitioning Vector Data
  758. @subsubsection Partitioning Vector Data
  759. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  760. This partitions a vector into blocks of the same size.
  761. @end deftypefun
  762. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  763. This partitions a vector into blocks of sizes given in the @var{filter_arg_ptr}
  764. field of @var{f}, supposed to point on a @code{uint32_t*} array.
  765. @end deftypefun
  766. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  767. This partitions a vector into two blocks, the first block size being given in
  768. the @var{filter_arg} field of @var{f}.
  769. @end deftypefun
  770. @node Partitioning Block Data
  771. @subsubsection Partitioning Block Data
  772. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  773. This partitions a 3D matrix along the X axis.
  774. @end deftypefun
  775. @node Codelets and Tasks
  776. @section Codelets and Tasks
  777. This section describes the interface to manipulate codelets and tasks.
  778. @deftp {Data Type} {struct starpu_codelet}
  779. The codelet structure describes a kernel that is possibly implemented on various
  780. targets. For compatibility, make sure to initialize the whole structure to zero.
  781. @table @asis
  782. @item @code{where}
  783. Indicates which types of processing units are able to execute the codelet.
  784. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  785. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  786. indicates that it is only available on Cell SPUs.
  787. @item @code{cpu_func} (optional)
  788. Is a function pointer to the CPU implementation of the codelet. Its prototype
  789. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  790. argument being the array of data managed by the data management library, and
  791. the second argument is a pointer to the argument passed from the @code{cl_arg}
  792. field of the @code{starpu_task} structure.
  793. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  794. the @code{where} field, it must be non-null otherwise. When multiple CPU
  795. implementations are used, this field must be set to
  796. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}.
  797. @item @code{cpu_funcs} (optional)
  798. Is an array of function pointers to the CPU implementations of the codelet. This
  799. field is ignored if the @code{cpu_func} field is set to anything else than
  800. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Otherwise, it should contain at
  801. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  802. @item @code{cuda_func} (optional)
  803. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  804. must be a host-function written in the CUDA runtime API}. Its prototype must
  805. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  806. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  807. field, it must be non-null otherwise. When multiple CUDA implementations are
  808. used, this field must be set to @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}.
  809. @item @code{cuda_funcs} (optional)
  810. Is an array of function pointers to the CUDA implementations of the codelet.
  811. This field is ignored if the @code{cuda_func} field is set to anything else than
  812. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}. Otherwise, it should contain at
  813. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  814. @item @code{opencl_func} (optional)
  815. Is a function pointer to the OpenCL implementation of the codelet. Its
  816. prototype must be:
  817. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  818. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  819. @code{where} field, it must be non-null otherwise. When multiple OpenCL
  820. implementations are used, this field must be set to
  821. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}.
  822. @item @code{opencl_funcs} (optional)
  823. Is an array of function pointers to the OpenCL implementations of the codelet.
  824. This field is ignored if the @code{opencl_func} field is set to anything else
  825. than @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}. Otherwise, it should contain
  826. at least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  827. @item @code{gordon_func} (optional)
  828. This is the index of the Cell SPU implementation within the Gordon library.
  829. See Gordon documentation for more details on how to register a kernel and
  830. retrieve its index.
  831. @item @code{nbuffers}
  832. Specifies the number of arguments taken by the codelet. These arguments are
  833. managed by the DSM and are accessed from the @code{void *buffers[]}
  834. array. The constant argument passed with the @code{cl_arg} field of the
  835. @code{starpu_task} structure is not counted in this number. This value should
  836. not be above @code{STARPU_NMAXBUFS}.
  837. @item @code{model} (optional)
  838. This is a pointer to the task duration performance model associated to this
  839. codelet. This optional field is ignored when set to @code{NULL}.
  840. TODO
  841. @item @code{power_model} (optional)
  842. This is a pointer to the task power consumption performance model associated
  843. to this codelet. This optional field is ignored when set to @code{NULL}.
  844. In the case of parallel codelets, this has to account for all processing units
  845. involved in the parallel execution.
  846. TODO
  847. @end table
  848. @end deftp
  849. @deftp {Data Type} {struct starpu_task}
  850. The @code{starpu_task} structure describes a task that can be offloaded on the various
  851. processing units managed by StarPU. It instantiates a codelet. It can either be
  852. allocated dynamically with the @code{starpu_task_create} method, or declared
  853. statically. In the latter case, the programmer has to zero the
  854. @code{starpu_task} structure and to fill the different fields properly. The
  855. indicated default values correspond to the configuration of a task allocated
  856. with @code{starpu_task_create}.
  857. @table @asis
  858. @item @code{cl}
  859. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  860. describes where the kernel should be executed, and supplies the appropriate
  861. implementations. When set to @code{NULL}, no code is executed during the tasks,
  862. such empty tasks can be useful for synchronization purposes.
  863. @item @code{buffers}
  864. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  865. different pieces of data accessed by the task, and how they should be accessed.
  866. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  867. @code{handle} field specifies the handle of the piece of data, and the
  868. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  869. of entries in this array must be specified in the @code{nbuffers} field of the
  870. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  871. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  872. option when configuring StarPU.
  873. @item @code{cl_arg} (optional; default: @code{NULL})
  874. This pointer is passed to the codelet through the second argument
  875. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  876. In the specific case of the Cell processor, see the @code{cl_arg_size}
  877. argument.
  878. @item @code{cl_arg_size} (optional, Cell-specific)
  879. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  880. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  881. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  882. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  883. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  884. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  885. codelets, where the @code{cl_arg} pointer is given as such.
  886. @item @code{callback_func} (optional) (default: @code{NULL})
  887. This is a function pointer of prototype @code{void (*f)(void *)} which
  888. specifies a possible callback. If this pointer is non-null, the callback
  889. function is executed @emph{on the host} after the execution of the task. The
  890. callback is passed the value contained in the @code{callback_arg} field. No
  891. callback is executed if the field is set to @code{NULL}.
  892. @item @code{callback_arg} (optional) (default: @code{NULL})
  893. This is the pointer passed to the callback function. This field is ignored if
  894. the @code{callback_func} is set to @code{NULL}.
  895. @item @code{use_tag} (optional) (default: @code{0})
  896. If set, this flag indicates that the task should be associated with the tag
  897. contained in the @code{tag_id} field. Tag allow the application to synchronize
  898. with the task and to express task dependencies easily.
  899. @item @code{tag_id}
  900. This fields contains the tag associated to the task if the @code{use_tag} field
  901. was set, it is ignored otherwise.
  902. @item @code{synchronous}
  903. If this flag is set, the @code{starpu_task_submit} function is blocking and
  904. returns only when the task has been executed (or if no worker is able to
  905. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  906. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  907. This field indicates a level of priority for the task. This is an integer value
  908. that must be set between the return values of the
  909. @code{starpu_sched_get_min_priority} function for the least important tasks,
  910. and that of the @code{starpu_sched_get_max_priority} for the most important
  911. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  912. are provided for convenience and respectively returns value of
  913. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  914. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  915. order to allow static task initialization. Scheduling strategies that take
  916. priorities into account can use this parameter to take better scheduling
  917. decisions, but the scheduling policy may also ignore it.
  918. @item @code{execute_on_a_specific_worker} (default: @code{0})
  919. If this flag is set, StarPU will bypass the scheduler and directly affect this
  920. task to the worker specified by the @code{workerid} field.
  921. @item @code{workerid} (optional)
  922. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  923. which is the identifier of the worker that should process this task (as
  924. returned by @code{starpu_worker_get_id}). This field is ignored if
  925. @code{execute_on_a_specific_worker} field is set to 0.
  926. @item @code{detach} (optional) (default: @code{1})
  927. If this flag is set, it is not possible to synchronize with the task
  928. by the means of @code{starpu_task_wait} later on. Internal data structures
  929. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  930. flag is not set.
  931. @item @code{destroy} (optional) (default: @code{1})
  932. If this flag is set, the task structure will automatically be freed, either
  933. after the execution of the callback if the task is detached, or during
  934. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  935. allocated data structures will not be freed until @code{starpu_task_destroy} is
  936. called explicitly. Setting this flag for a statically allocated task structure
  937. will result in undefined behaviour.
  938. @item @code{predicted} (output field)
  939. Predicted duration of the task. This field is only set if the scheduling
  940. strategy used performance models.
  941. @end table
  942. @end deftp
  943. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  944. Initialize @var{task} with default values. This function is implicitly
  945. called by @code{starpu_task_create}. By default, tasks initialized with
  946. @code{starpu_task_init} must be deinitialized explicitly with
  947. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  948. constant @code{STARPU_TASK_INITIALIZER}.
  949. @end deftypefun
  950. @deftypefun {struct starpu_task *} starpu_task_create (void)
  951. Allocate a task structure and initialize it with default values. Tasks
  952. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  953. task is terminated. If the destroy flag is explicitly unset, the resources used
  954. by the task are freed by calling
  955. @code{starpu_task_destroy}.
  956. @end deftypefun
  957. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  958. Release all the structures automatically allocated to execute @var{task}. This is
  959. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  960. freed. This should be used for statically allocated tasks for instance.
  961. @end deftypefun
  962. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  963. Free the resource allocated during @code{starpu_task_create} and
  964. associated with @var{task}. This function can be called automatically
  965. after the execution of a task by setting the @code{destroy} flag of the
  966. @code{starpu_task} structure (default behaviour). Calling this function
  967. on a statically allocated task results in an undefined behaviour.
  968. @end deftypefun
  969. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  970. This function blocks until @var{task} has been executed. It is not possible to
  971. synchronize with a task more than once. It is not possible to wait for
  972. synchronous or detached tasks.
  973. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  974. indicates that the specified task was either synchronous or detached.
  975. @end deftypefun
  976. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  977. This function submits @var{task} to StarPU. Calling this function does
  978. not mean that the task will be executed immediately as there can be data or task
  979. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  980. scheduling this task with respect to such dependencies.
  981. This function returns immediately if the @code{synchronous} field of the
  982. @code{starpu_task} structure was set to 0, and block until the termination of
  983. the task otherwise. It is also possible to synchronize the application with
  984. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  985. function for instance.
  986. In case of success, this function returns 0, a return value of @code{-ENODEV}
  987. means that there is no worker able to process this task (e.g. there is no GPU
  988. available and this task is only implemented for CUDA devices).
  989. @end deftypefun
  990. @deftypefun int starpu_task_wait_for_all (void)
  991. This function blocks until all the tasks that were submitted are terminated.
  992. @end deftypefun
  993. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  994. This function returns the task currently executed by the worker, or
  995. NULL if it is called either from a thread that is not a task or simply
  996. because there is no task being executed at the moment.
  997. @end deftypefun
  998. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  999. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1000. @end deftypefun
  1001. @c Callbacks : what can we put in callbacks ?
  1002. @node Explicit Dependencies
  1003. @section Explicit Dependencies
  1004. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1005. Declare task dependencies between a @var{task} and an array of tasks of length
  1006. @var{ndeps}. This function must be called prior to the submission of the task,
  1007. but it may called after the submission or the execution of the tasks in the
  1008. array provided the tasks are still valid (ie. they were not automatically
  1009. destroyed). Calling this function on a task that was already submitted or with
  1010. an entry of @var{task_array} that is not a valid task anymore results in an
  1011. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1012. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1013. same task, in this case, the dependencies are added. It is possible to have
  1014. redundancy in the task dependencies.
  1015. @end deftypefun
  1016. @deftp {Data Type} {starpu_tag}
  1017. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1018. dependencies between tasks by the means of those tags. To do so, fill the
  1019. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1020. be arbitrary) and set the @code{use_tag} field to 1.
  1021. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1022. not be started until the tasks which holds the declared dependency tags are
  1023. completed.
  1024. @end deftp
  1025. @deftypefun void starpu_tag_declare_deps (starpu_tag @var{id}, unsigned @var{ndeps}, ...)
  1026. Specify the dependencies of the task identified by tag @code{id}. The first
  1027. argument specifies the tag which is configured, the second argument gives the
  1028. number of tag(s) on which @code{id} depends. The following arguments are the
  1029. tags which have to be terminated to unlock the task.
  1030. This function must be called before the associated task is submitted to StarPU
  1031. with @code{starpu_task_submit}.
  1032. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1033. last arguments @emph{must} be of type @code{starpu_tag}: constant values
  1034. typically need to be explicitly casted. Using the
  1035. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1036. @cartouche
  1037. @example
  1038. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1039. starpu_tag_declare_deps((starpu_tag)0x1,
  1040. 2, (starpu_tag)0x32, (starpu_tag)0x52);
  1041. @end example
  1042. @end cartouche
  1043. @end deftypefun
  1044. @deftypefun void starpu_tag_declare_deps_array (starpu_tag @var{id}, unsigned @var{ndeps}, {starpu_tag *}@var{array})
  1045. This function is similar to @code{starpu_tag_declare_deps}, except
  1046. that its does not take a variable number of arguments but an array of
  1047. tags of size @code{ndeps}.
  1048. @cartouche
  1049. @example
  1050. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1051. starpu_tag tag_array[2] = @{0x32, 0x52@};
  1052. starpu_tag_declare_deps_array((starpu_tag)0x1, 2, tag_array);
  1053. @end example
  1054. @end cartouche
  1055. @end deftypefun
  1056. @deftypefun void starpu_tag_wait (starpu_tag @var{id})
  1057. This function blocks until the task associated to tag @var{id} has been
  1058. executed. This is a blocking call which must therefore not be called within
  1059. tasks or callbacks, but only from the application directly. It is possible to
  1060. synchronize with the same tag multiple times, as long as the
  1061. @code{starpu_tag_remove} function is not called. Note that it is still
  1062. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1063. data structure was freed (e.g. if the @code{destroy} flag of the
  1064. @code{starpu_task} was enabled).
  1065. @end deftypefun
  1066. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag *@var{id})
  1067. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1068. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1069. terminated.
  1070. @end deftypefun
  1071. @deftypefun void starpu_tag_remove (starpu_tag @var{id})
  1072. This function releases the resources associated to tag @var{id}. It can be
  1073. called once the corresponding task has been executed and when there is
  1074. no other tag that depend on this tag anymore.
  1075. @end deftypefun
  1076. @deftypefun void starpu_tag_notify_from_apps (starpu_tag @var{id})
  1077. This function explicitly unlocks tag @var{id}. It may be useful in the
  1078. case of applications which execute part of their computation outside StarPU
  1079. tasks (e.g. third-party libraries). It is also provided as a
  1080. convenient tool for the programmer, for instance to entirely construct the task
  1081. DAG before actually giving StarPU the opportunity to execute the tasks.
  1082. @end deftypefun
  1083. @node Implicit Data Dependencies
  1084. @section Implicit Data Dependencies
  1085. In this section, we describe how StarPU makes it possible to insert implicit
  1086. task dependencies in order to enforce sequential data consistency. When this
  1087. data consistency is enabled on a specific data handle, any data access will
  1088. appear as sequentially consistent from the application. For instance, if the
  1089. application submits two tasks that access the same piece of data in read-only
  1090. mode, and then a third task that access it in write mode, dependencies will be
  1091. added between the two first tasks and the third one. Implicit data dependencies
  1092. are also inserted in the case of data accesses from the application.
  1093. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1094. Set the default sequential consistency flag. If a non-zero value is passed, a
  1095. sequential data consistency will be enforced for all handles registered after
  1096. this function call, otherwise it is disabled. By default, StarPU enables
  1097. sequential data consistency. It is also possible to select the data consistency
  1098. mode of a specific data handle with the
  1099. @code{starpu_data_set_sequential_consistency_flag} function.
  1100. @end deftypefun
  1101. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1102. Return the default sequential consistency flag
  1103. @end deftypefun
  1104. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  1105. This function returns the current default sequential consistency flag.
  1106. @end deftypefun
  1107. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  1108. Sets the data consistency mode associated to a data handle. The consistency
  1109. mode set using this function has the priority over the default mode which can
  1110. be set with @code{starpu_data_set_sequential_consistency_flag}.
  1111. @end deftypefun
  1112. @node Performance Model API
  1113. @section Performance Model API
  1114. @deftp {Data Type} {enum starpu_perf_archtype}
  1115. TODO.
  1116. The different values are:
  1117. @table @asis
  1118. @item @code{STARPU_CPU_DEFAULT}
  1119. @item @code{STARPU_CUDA_DEFAULT}
  1120. @item @code{STARPU_OPENCL_DEFAULT}
  1121. @item @code{STARPU_GORDON_DEFAULT}
  1122. @end table
  1123. @end deftp
  1124. @deftp {Data Type} {struct starpu_perfmodel}
  1125. TODO
  1126. @end deftp
  1127. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1128. TODO
  1129. @end deftypefun
  1130. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  1131. TODO
  1132. @end deftypefun
  1133. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  1134. TODO
  1135. @end deftypefun
  1136. @deftypefun void starpu_force_bus_sampling (void)
  1137. This forces sampling the bus performance model again.
  1138. @end deftypefun
  1139. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1140. todo
  1141. @end deftypefun
  1142. @node Profiling API
  1143. @section Profiling API
  1144. @deftypefun int starpu_profiling_status_set (int @var{status})
  1145. Thie function sets the profiling status. Profiling is activated by passing
  1146. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  1147. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1148. resets all profiling measurements. When profiling is enabled, the
  1149. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1150. to a valid @code{struct starpu_task_profiling_info} structure containing
  1151. information about the execution of the task.
  1152. Negative return values indicate an error, otherwise the previous status is
  1153. returned.
  1154. @end deftypefun
  1155. @deftypefun int starpu_profiling_status_get (void)
  1156. Return the current profiling status or a negative value in case there was an error.
  1157. @end deftypefun
  1158. @deftp {Data Type} {struct starpu_task_profiling_info}
  1159. This structure contains information about the execution of a task. It is
  1160. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1161. structure if profiling was enabled. The different fields are:
  1162. @table @asis
  1163. @item @code{submit_time}
  1164. Date of task submission (relative to the initialization of StarPU).
  1165. @item @code{start_time}
  1166. Date of task execution beginning (relative to the initialization of StarPU).
  1167. @item @code{end_time}
  1168. Date of task execution termination (relative to the initialization of StarPU).
  1169. @item @code{workerid}
  1170. Identifier of the worker which has executed the task.
  1171. @end table
  1172. @end deftp
  1173. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1174. This structure contains the profiling information associated to a
  1175. worker. The different fields are:
  1176. @table @asis
  1177. @item @code{start_time}
  1178. Starting date for the reported profiling measurements.
  1179. @item @code{total_time}
  1180. Duration of the profiling measurement interval.
  1181. @item @code{executing_time}
  1182. Time spent by the worker to execute tasks during the profiling measurement interval.
  1183. @item @code{sleeping_time}
  1184. Time spent idling by the worker during the profiling measurement interval.
  1185. @item @code{executed_tasks}
  1186. Number of tasks executed by the worker during the profiling measurement interval.
  1187. @end table
  1188. @end deftp
  1189. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1190. Get the profiling info associated to the worker identified by @code{workerid},
  1191. and reset the profiling measurements. If the @code{worker_info} argument is
  1192. NULL, only reset the counters associated to worker @code{workerid}.
  1193. Upon successful completion, this function returns 0. Otherwise, a negative
  1194. value is returned.
  1195. @end deftypefun
  1196. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1197. TODO. The different fields are:
  1198. @table @asis
  1199. @item @code{start_time}
  1200. TODO
  1201. @item @code{total_time}
  1202. TODO
  1203. @item @code{transferred_bytes}
  1204. TODO
  1205. @item @code{transfer_count}
  1206. TODO
  1207. @end table
  1208. @end deftp
  1209. @deftypefun int starpu_bus_get_count (void)
  1210. TODO
  1211. @end deftypefun
  1212. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1213. TODO
  1214. @end deftypefun
  1215. @deftypefun int starpu_bus_get_src (int @var{busid})
  1216. TODO
  1217. @end deftypefun
  1218. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1219. TODO
  1220. @end deftypefun
  1221. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1222. TODO
  1223. @end deftypefun
  1224. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1225. TODO
  1226. @end deftypefun
  1227. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1228. TODO
  1229. @end deftypefun
  1230. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1231. TODO
  1232. @end deftypefun
  1233. @node CUDA extensions
  1234. @section CUDA extensions
  1235. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  1236. This function gets the current worker's CUDA stream.
  1237. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1238. function is only provided for convenience so that programmers can easily use
  1239. asynchronous operations within codelets without having to create a stream by
  1240. hand. Note that the application is not forced to use the stream provided by
  1241. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1242. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1243. the likelihood of having all transfers overlapped.
  1244. @end deftypefun
  1245. @deftypefun void starpu_helper_cublas_init (void)
  1246. This function initializes CUBLAS on every CUDA device.
  1247. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1248. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1249. controlled by StarPU. This call blocks until CUBLAS has been properly
  1250. initialized on every device.
  1251. @end deftypefun
  1252. @deftypefun void starpu_helper_cublas_shutdown (void)
  1253. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1254. @end deftypefun
  1255. @node OpenCL extensions
  1256. @section OpenCL extensions
  1257. @menu
  1258. * Writing OpenCL kernels:: Writing OpenCL kernels
  1259. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1260. * Loading OpenCL kernels:: Loading OpenCL kernels
  1261. * OpenCL statistics:: Collecting statistics from OpenCL
  1262. @end menu
  1263. @node Writing OpenCL kernels
  1264. @subsection Writing OpenCL kernels
  1265. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1266. todo
  1267. @end deftypefun
  1268. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1269. todo
  1270. @end deftypefun
  1271. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1272. todo
  1273. @end deftypefun
  1274. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1275. todo
  1276. @end deftypefun
  1277. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue});
  1278. todo
  1279. @end deftypefun
  1280. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1281. todo
  1282. @end deftypefun
  1283. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1284. todo
  1285. @end deftypefun
  1286. @node Compiling OpenCL kernels
  1287. @subsection Compiling OpenCL kernels
  1288. Source codes for OpenCL kernels can be stored in a file or in a
  1289. string. StarPU provides functions to build the program executable for
  1290. each available OpenCL device as a @code{cl_program} object. This
  1291. program executable can then be loaded within a specific queue as
  1292. explained in the next section. These are only helpers, Applications
  1293. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1294. use (e.g. different programs on the different OpenCL devices, for
  1295. relocation purpose for instance).
  1296. @deftp {Data Type} {struct starpu_opencl_program}
  1297. todo
  1298. @end deftp
  1299. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1300. @anchor{starpu_opencl_load_opencl_from_file}
  1301. This function compiles an OpenCL source code stored in a file.
  1302. @end deftypefun
  1303. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1304. This function compiles an OpenCL source code stored in a string.
  1305. @end deftypefun
  1306. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1307. This function unloads an OpenCL compiled code.
  1308. @end deftypefun
  1309. @node Loading OpenCL kernels
  1310. @subsection Loading OpenCL kernels
  1311. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  1312. TODO
  1313. @end deftypefun
  1314. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1315. TODO
  1316. @end deftypefun
  1317. @node OpenCL statistics
  1318. @subsection OpenCL statistics
  1319. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1320. This function allows to collect statistics on a kernel execution.
  1321. After termination of the kernels, the OpenCL codelet should call this function
  1322. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1323. collect statistics about the kernel execution (used cycles, consumed power).
  1324. @end deftypefun
  1325. @node Cell extensions
  1326. @section Cell extensions
  1327. nothing yet.
  1328. @node Miscellaneous helpers
  1329. @section Miscellaneous helpers
  1330. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1331. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1332. The @var{asynchronous} parameter indicates whether the function should
  1333. block or not. In the case of an asynchronous call, it is possible to
  1334. synchronize with the termination of this operation either by the means of
  1335. implicit dependencies (if enabled) or by calling
  1336. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1337. this callback function is executed after the handle has been copied, and it is
  1338. given the @var{callback_arg} pointer as argument.
  1339. @end deftypefun
  1340. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1341. This function executes the given function on a subset of workers.
  1342. When calling this method, the offloaded function specified by the first argument is
  1343. executed by every StarPU worker that may execute the function.
  1344. The second argument is passed to the offloaded function.
  1345. The last argument specifies on which types of processing units the function
  1346. should be executed. Similarly to the @var{where} field of the
  1347. @code{starpu_codelet} structure, it is possible to specify that the function
  1348. should be executed on every CUDA device and every CPU by passing
  1349. @code{STARPU_CPU|STARPU_CUDA}.
  1350. This function blocks until the function has been executed on every appropriate
  1351. processing units, so that it may not be called from a callback function for
  1352. instance.
  1353. @end deftypefun