advanced-examples.texi 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @node Advanced Examples
  8. @chapter Advanced Examples
  9. @menu
  10. * Using multiple implementations of a codelet::
  11. * Task and Worker Profiling::
  12. * Partitioning Data:: Partitioning Data
  13. * Performance model example::
  14. * Theoretical lower bound on execution time::
  15. * Insert Task Utility::
  16. * More examples:: More examples shipped with StarPU
  17. * Debugging:: When things go wrong.
  18. @end menu
  19. @node Using multiple implementations of a codelet
  20. @section Using multiple implementations of a codelet
  21. One may want to write multiple implementations of a codelet for a single type of
  22. device and let StarPU choose which one to run. As an example, we will show how
  23. to use SSE to scale a vector. The codelet can be written as follows :
  24. @cartouche
  25. @smallexample
  26. #include <xmmintrin.h>
  27. void scal_sse_func(void *buffers[], void *cl_arg)
  28. @{
  29. float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
  30. unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
  31. unsigned int n_iterations = n/4;
  32. if (n % 4 != 0)
  33. n_iterations++;
  34. __m128 *VECTOR = (__m128*) vector;
  35. __m128 factor __attribute__((aligned(16)));
  36. factor = _mm_set1_ps(*(float *) cl_arg);
  37. unsigned int i;
  38. for (i = 0; i < n_iterations; i++)
  39. VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
  40. @}
  41. @end smallexample
  42. @end cartouche
  43. The @code{cpu_func} field of the @code{starpu_codelet} structure has to be set
  44. to the special value @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Note that
  45. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS} and
  46. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS} are also available.
  47. @cartouche
  48. @smallexample
  49. starpu_codelet cl = @{
  50. .where = STARPU_CPU,
  51. .cpu_func = STARPU_MULTIPLE_CPU_IMPLEMENTATIONS,
  52. .cpu_funcs = @{ scal_cpu_func, scal_sse_func @},
  53. .nbuffers = 1
  54. @};
  55. @end smallexample
  56. @end cartouche
  57. The scheduler will measure the performance of all the implementations it was
  58. given, and pick the one that seems to be the fastest.
  59. @node Task and Worker Profiling
  60. @section Task and Worker Profiling
  61. A full example showing how to use the profiling API is available in
  62. the StarPU sources in the directory @code{examples/profiling/}.
  63. @cartouche
  64. @smallexample
  65. struct starpu_task *task = starpu_task_create();
  66. task->cl = &cl;
  67. task->synchronous = 1;
  68. /* We will destroy the task structure by hand so that we can
  69. * query the profiling info before the task is destroyed. */
  70. task->destroy = 0;
  71. /* Submit and wait for completion (since synchronous was set to 1) */
  72. starpu_task_submit(task);
  73. /* The task is finished, get profiling information */
  74. struct starpu_task_profiling_info *info = task->profiling_info;
  75. /* How much time did it take before the task started ? */
  76. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  77. /* How long was the task execution ? */
  78. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  79. /* We don't need the task structure anymore */
  80. starpu_task_destroy(task);
  81. @end smallexample
  82. @end cartouche
  83. @cartouche
  84. @smallexample
  85. /* Display the occupancy of all workers during the test */
  86. int worker;
  87. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  88. @{
  89. struct starpu_worker_profiling_info worker_info;
  90. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  91. STARPU_ASSERT(!ret);
  92. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  93. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  94. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  95. float executing_ratio = 100.0*executing_time/total_time;
  96. float sleeping_ratio = 100.0*sleeping_time/total_time;
  97. char workername[128];
  98. starpu_worker_get_name(worker, workername, 128);
  99. fprintf(stderr, "Worker %s:\n", workername);
  100. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  101. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  102. executing_ratio);
  103. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  104. sleeping_ratio);
  105. @}
  106. @end smallexample
  107. @end cartouche
  108. @node Partitioning Data
  109. @section Partitioning Data
  110. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  111. @cartouche
  112. @smallexample
  113. int vector[NX];
  114. starpu_data_handle handle;
  115. /* Declare data to StarPU */
  116. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  117. /* Partition the vector in PARTS sub-vectors */
  118. starpu_filter f =
  119. @{
  120. .filter_func = starpu_block_filter_func_vector,
  121. .nchildren = PARTS
  122. @};
  123. starpu_data_partition(handle, &f);
  124. @end smallexample
  125. @end cartouche
  126. @cartouche
  127. @smallexample
  128. /* Submit a task on each sub-vector */
  129. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  130. /* Get subdata number i (there is only 1 dimension) */
  131. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  132. struct starpu_task *task = starpu_task_create();
  133. task->buffers[0].handle = sub_handle;
  134. task->buffers[0].mode = STARPU_RW;
  135. task->cl = &cl;
  136. task->synchronous = 1;
  137. task->cl_arg = &factor;
  138. task->cl_arg_size = sizeof(factor);
  139. starpu_task_submit(task);
  140. @}
  141. @end smallexample
  142. @end cartouche
  143. Partitioning can be applied several times, see
  144. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  145. @node Performance model example
  146. @section Performance model example
  147. To achieve good scheduling, StarPU scheduling policies need to be able to
  148. estimate in advance the duration of a task. This is done by giving to codelets
  149. a performance model, by defining a @code{starpu_perfmodel} structure and
  150. providing its address in the @code{model} field of the @code{starpu_codelet}
  151. structure. The @code{symbol} and @code{type} fields of @code{starpu_perfmodel}
  152. are mandatory, to give a name to the model, and the type of the model, since
  153. there are several kinds of performance models.
  154. @itemize
  155. @item
  156. Measured at runtime (@code{STARPU_HISTORY_BASED} model type). This assumes that for a
  157. given set of data input/output sizes, the performance will always be about the
  158. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  159. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  160. few different sets of data input/output sizes. StarPU will then keep record of
  161. the average time of previous executions on the various processing units, and use
  162. it as an estimation. History is done per task size, by using a hash of the input
  163. and ouput sizes as an index.
  164. It will also save it in @code{~/.starpu/sampling/codelets}
  165. for further executions, and can be observed by using the
  166. @code{starpu_perfmodel_display} command, or drawn by using
  167. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  168. share the models between machines (e.g. for a homogeneous cluster), use
  169. @code{export STARPU_HOSTNAME=some_global_name}. Measurements are only done when using a task scheduler which makes use of it, such as @code{heft} or @code{dmda}.
  170. The following is a small code example.
  171. If e.g. the code is recompiled with other compilation options, or several
  172. variants of the code are used, the symbol string should be changed to reflect
  173. that, in order to recalibrate a new model from zero. The symbol string can even
  174. be constructed dynamically at execution time, as long as this is done before
  175. submitting any task using it.
  176. @cartouche
  177. @smallexample
  178. static struct starpu_perfmodel mult_perf_model = @{
  179. .type = STARPU_HISTORY_BASED,
  180. .symbol = "mult_perf_model"
  181. @};
  182. starpu_codelet cl = @{
  183. .where = STARPU_CPU,
  184. .cpu_func = cpu_mult,
  185. .nbuffers = 3,
  186. /* for the scheduling policy to be able to use performance models */
  187. .model = &mult_perf_model
  188. @};
  189. @end smallexample
  190. @end cartouche
  191. @item
  192. Measured at runtime and refined by regression (@code{STARPU_REGRESSION_*_BASED}
  193. model type). This still assumes performance regularity, but can work
  194. with various data input sizes, by applying regression over observed
  195. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  196. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  197. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  198. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  199. model for the @code{memset} operation.
  200. @item
  201. Provided as an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  202. see for instance
  203. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}.
  204. @item
  205. Provided explicitly by the application (@code{STARPU_PER_ARCH} model type): the
  206. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  207. functions which return the expected duration of the task in micro-seconds, one
  208. per architecture.
  209. @end itemize
  210. How to use schedulers which can benefit from such performance model is explained
  211. in @ref{Task scheduling policy}.
  212. The same can be done for task power consumption estimation, by setting the
  213. @code{power_model} field the same way as the @code{model} field. Note: for
  214. now, the application has to give to the power consumption performance model
  215. a name which is different from the execution time performance model.
  216. The application can request time estimations from the StarPU performance
  217. models by filling a task structure as usual without actually submitting
  218. it. The data handles can be created by calling @code{starpu_data_register}
  219. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  220. and the desired data sizes. The @code{starpu_task_expected_length} and
  221. @code{starpu_task_expected_power} functions can then be called to get an
  222. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  223. needs to be called to destroy the dummy task afterwards. See
  224. @code{tests/perfmodels/regression_based.c} for an example.
  225. @node Theoretical lower bound on execution time
  226. @section Theoretical lower bound on execution time
  227. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  228. bound for the execution time of a whole set of tasks. See for
  229. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  230. call @code{starpu_bound_start}, and after complete execution, call
  231. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  232. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  233. problem corresponding to the schedule of your tasks. Run it through
  234. @code{lp_solve} or any other linear programming solver, and that will give you a
  235. lower bound for the total execution time of your tasks. If StarPU was compiled
  236. with the glpk library installed, @code{starpu_bound_compute} can be used to
  237. solve it immediately and get the optimized minimum, in ms. Its @code{integer}
  238. parameter allows to decide whether integer resolution should be computed
  239. and returned too.
  240. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  241. dependencies into account. It must be understood that the linear programming
  242. problem size is quadratic with the number of tasks and thus the time to solve it
  243. will be very long, it could be minutes for just a few dozen tasks. You should
  244. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  245. problem to MPS format and then use a better solver, @code{glpsol} might be
  246. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  247. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  248. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  249. of @code{lp_solve}. For instance, we often just use
  250. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  251. the @code{-gr} option can also be quite useful.
  252. Setting @code{deps} to 0 will only take into account the actual computations
  253. on processing units. It however still properly takes into account the varying
  254. performances of kernels and processing units, which is quite more accurate than
  255. just comparing StarPU performances with the fastest of the kernels being used.
  256. The @code{prio} parameter tells StarPU whether to simulate taking into account
  257. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  258. tasks before less prioritized tasks, to check to which extend this results
  259. to a less optimal solution. This increases even more computation time.
  260. Note that for simplicity, all this however doesn't take into account data
  261. transfers, which are assumed to be completely overlapped.
  262. @node Insert Task Utility
  263. @section Insert Task Utility
  264. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  265. the creation and submission of tasks.
  266. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  267. Create and submit a task corresponding to @var{cl} with the following
  268. arguments. The argument list must be zero-terminated.
  269. The arguments following the codelets can be of the following types:
  270. @itemize
  271. @item
  272. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  273. @item
  274. @code{STARPU_VALUE} followed by a pointer to a constant value and
  275. the size of the constant;
  276. @item
  277. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  278. @item
  279. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  280. argument to the callback function;
  281. @item
  282. @code{STARPU_CALLBACK_WITH_ARG} followed by two pointers: one to a callback
  283. function, and the other to be given as an argument to the callback
  284. function; this is equivalent to using both @code{STARPU_CALLBACK} and
  285. @code{STARPU_CALLBACK_WITH_ARG}
  286. @item
  287. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  288. @end itemize
  289. Parameters to be passed to the codelet implementation are defined
  290. through the type @code{STARPU_VALUE}. The function
  291. @code{starpu_unpack_cl_args} must be called within the codelet
  292. implementation to retrieve them.
  293. @end deftypefun
  294. Here the implementation of the codelet:
  295. @smallexample
  296. void func_cpu(void *descr[], void *_args)
  297. @{
  298. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  299. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  300. int ifactor;
  301. float ffactor;
  302. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  303. *x0 = *x0 * ifactor;
  304. *x1 = *x1 * ffactor;
  305. @}
  306. starpu_codelet mycodelet = @{
  307. .where = STARPU_CPU,
  308. .cpu_func = func_cpu,
  309. .nbuffers = 2
  310. @};
  311. @end smallexample
  312. And the call to the @code{starpu_insert_task} wrapper:
  313. @smallexample
  314. starpu_insert_task(&mycodelet,
  315. STARPU_VALUE, &ifactor, sizeof(ifactor),
  316. STARPU_VALUE, &ffactor, sizeof(ffactor),
  317. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  318. 0);
  319. @end smallexample
  320. The call to @code{starpu_insert_task} is equivalent to the following
  321. code:
  322. @smallexample
  323. struct starpu_task *task = starpu_task_create();
  324. task->cl = &mycodelet;
  325. task->buffers[0].handle = data_handles[0];
  326. task->buffers[0].mode = STARPU_RW;
  327. task->buffers[1].handle = data_handles[1];
  328. task->buffers[1].mode = STARPU_RW;
  329. char *arg_buffer;
  330. size_t arg_buffer_size;
  331. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  332. STARPU_VALUE, &ifactor, sizeof(ifactor),
  333. STARPU_VALUE, &ffactor, sizeof(ffactor),
  334. 0);
  335. task->cl_arg = arg_buffer;
  336. task->cl_arg_size = arg_buffer_size;
  337. int ret = starpu_task_submit(task);
  338. @end smallexample
  339. If some part of the task insertion depends on the value of some computation,
  340. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  341. instance, assuming that the index variable @code{i} was registered as handle
  342. @code{i_handle}:
  343. @smallexample
  344. /* Compute which portion we will work on, e.g. pivot */
  345. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  346. /* And submit the corresponding task */
  347. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  348. @end smallexample
  349. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  350. acquiring data @code{i} for the main application, and will execute the code
  351. given as third parameter when it is acquired. In other words, as soon as the
  352. value of @code{i} computed by the @code{which_index} codelet can be read, the
  353. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  354. be executed, and is allowed to read from @code{i} to use it e.g. as an
  355. index. Note that this macro is only avaible when compiling StarPU with
  356. the compiler @code{gcc}.
  357. @node Debugging
  358. @section Debugging
  359. StarPU provides several tools to help debugging aplications. Execution traces
  360. can be generated and displayed graphically, see @ref{Generating traces}. Some
  361. gdb helpers are also provided to show the whole StarPU state:
  362. @smallexample
  363. (gdb) source tools/gdbinit
  364. (gdb) help starpu
  365. @end smallexample
  366. @node More examples
  367. @section More examples
  368. More examples are available in the StarPU sources in the @code{examples/}
  369. directory. Simple examples include:
  370. @table @asis
  371. @item @code{incrementer/}:
  372. Trivial incrementation test.
  373. @item @code{basic_examples/}:
  374. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  375. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  376. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  377. interface, an example using the variable data interface, and an example
  378. using different formats on CPUs and GPUs.
  379. @item @code{matvecmult/}:
  380. OpenCL example from NVidia, adapted to StarPU.
  381. @item @code{axpy/}:
  382. AXPY CUBLAS operation adapted to StarPU.
  383. @item @code{fortran/}:
  384. Example of Fortran bindings.
  385. @end table
  386. More advanced examples include:
  387. @table @asis
  388. @item @code{filters/}:
  389. Examples using filters, as shown in @ref{Partitioning Data}.
  390. @item @code{lu/}:
  391. LU matrix factorization, see for instance @code{xlu_implicit.c}
  392. @item @code{cholesky/}:
  393. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  394. @end table