advanced-api.texi 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Defining a new data interface::
  9. * Multiformat Data Interface::
  10. * Task Bundles::
  11. * Task Lists::
  12. * Using Parallel Tasks::
  13. * Defining a new scheduling policy::
  14. * Expert mode::
  15. @end menu
  16. @node Defining a new data interface
  17. @section Defining a new data interface
  18. @menu
  19. * Data Interface API:: Data Interface API
  20. * An example of data interface:: An example of data interface
  21. @end menu
  22. @node Data Interface API
  23. @subsection Data Interface API
  24. @deftp {Data Type} {struct starpu_data_interface_ops}
  25. @anchor{struct starpu_data_interface_ops}
  26. Per-interface data transfer methods.
  27. @table @asis
  28. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, uint32_t home_node, void *data_interface)}
  29. Register an existing interface into a data handle.
  30. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, uint32_t node)}
  31. Allocate data for the interface on a given node.
  32. @item @code{ void (*free_data_on_node)(void *data_interface, uint32_t node)}
  33. Free data of the interface on a given node.
  34. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  35. ram/cuda/spu/opencl synchronous and asynchronous transfer methods.
  36. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, uint32_t node)}
  37. Return the current pointer (if any) for the handle on the given node.
  38. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  39. Return an estimation of the size of data, for performance models.
  40. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  41. Return a 32bit footprint which characterizes the data size.
  42. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  43. Compare the data size of two interfaces.
  44. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  45. Dump the sizes of a handle to a file.
  46. @item @code{ int (*convert_to_gordon)(void *data_interface, uint64_t *ptr, gordon_strideSize_t *ss)}
  47. Convert the data size to the spu size format. If no SPUs are used, this field can be seto NULL.
  48. @item @code{enum starpu_data_interface_id interfaceid}
  49. An identifier that is unique to each interface.
  50. @item @code{size_t interface_size}
  51. The size of the interface data descriptor.
  52. @item @code{ void (*allocate_new_data)(starpu_data_handle_t handle, void **data_interface)}
  53. Create a new data interface of the given type based on the handle @var{handle}.
  54. @end table
  55. @end deftp
  56. @deftp {Data Type} {struct starpu_data_copy_methods}
  57. Defines the per-interface methods.
  58. @table @asis
  59. @item @code{int @{ram,cuda,opencl,spu@}_to_@{ram,cuda,opencl,spu@}(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  60. These 16 functions define how to copy data from the @var{src_interface}
  61. interface on the @var{src_node} node to the @var{dst_interface} interface
  62. on the @var{dst_node} node. They return 0 on success.
  63. @item @code{int (*ram_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  64. Define how to copy data from the @var{src_interface} interface on the
  65. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  66. @var{dst_node} node (on a CUDA device), using the given @var{stream}. Return 0
  67. on success.
  68. @item @code{int (*cuda_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  69. Define how to copy data from the @var{src_interface} interface on the
  70. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on the
  71. @var{dst_node} node (in RAM), using the given @var{stream}. Return 0
  72. on success.
  73. @item @code{int (*cuda_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  74. Define how to copy data from the @var{src_interface} interface on the
  75. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on
  76. the @var{dst_node} node (on another CUDA device), using the given @var{stream}.
  77. Return 0 on success.
  78. @item @code{int (*ram_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  79. Define how to copy data from the @var{src_interface} interface on the
  80. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  81. @var{dst_node} node (on an OpenCL device), using @var{event}, a pointer to a
  82. cl_event. Return 0 on success.
  83. @item @code{int (*opencl_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  84. Define how to copy data from the @var{src_interface} interface on the
  85. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  86. on the @var{dst_node} node (in RAM), using the given @var{event}, a pointer to
  87. a cl_event. Return 0 on success.
  88. @item @code{int (*opencl_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  89. Define how to copy data from the @var{src_interface} interface on the
  90. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  91. on the @var{dst_node} node (on another OpenCL device), using the given
  92. @var{event}, a pointer to a cl_event. Return 0 on success.
  93. @end table
  94. @end deftp
  95. @deftypefun uint32_t starpu_crc32_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  96. Compute the CRC of a byte buffer seeded by the inputcrc "current
  97. state". The return value should be considered as the new "current
  98. state" for future CRC computation. This is used for computing data size
  99. footprint.
  100. @end deftypefun
  101. @deftypefun uint32_t starpu_crc32_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  102. Compute the CRC of a 32bit number seeded by the inputcrc "current
  103. state". The return value should be considered as the new "current
  104. state" for future CRC computation. This is used for computing data size
  105. footprint.
  106. @end deftypefun
  107. @deftypefun uint32_t starpu_crc32_string ({char *}@var{str}, uint32_t @var{inputcrc})
  108. Compute the CRC of a string seeded by the inputcrc "current state".
  109. The return value should be considered as the new "current state" for
  110. future CRC computation. This is used for computing data size footprint.
  111. @end deftypefun
  112. @node An example of data interface
  113. @subsection An example of data interface
  114. @deftypefun int starpu_data_interface_get_next_id ()
  115. Returns the next available id for a newly created data interface.
  116. @end deftypefun
  117. Let's define a new data interface to manage complex numbers.
  118. @cartouche
  119. @smallexample
  120. /* interface for complex numbers */
  121. struct starpu_complex_interface
  122. @{
  123. double *real;
  124. double *imaginary;
  125. int nx;
  126. @};
  127. @end smallexample
  128. @end cartouche
  129. Registering such a data to StarPU is easily done using the function
  130. @code{starpu_data_register} (@pxref{Basic Data Library API}). The last
  131. parameter of the function, @code{interface_complex_ops}, will be
  132. described below.
  133. @cartouche
  134. @smallexample
  135. void starpu_complex_data_register(starpu_data_handle_t *handle,
  136. uint32_t home_node, double *real, double *imaginary, int nx)
  137. @{
  138. struct starpu_complex_interface complex =
  139. @{
  140. .real = real,
  141. .imaginary = imaginary,
  142. .nx = nx
  143. @};
  144. if (interface_complex_ops.interfaceid == -1)
  145. @{
  146. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  147. @}
  148. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  149. @}
  150. @end smallexample
  151. @end cartouche
  152. Different operations need to be defined for a data interface through
  153. the type @code{struct starpu_data_interface_ops} (@pxref{Data
  154. Interface API}). We only define here the basic operations needed to
  155. run simple applications. The source code for the different functions
  156. can be found in the file
  157. @code{examples/interface/complex_interface.c}.
  158. @cartouche
  159. @smallexample
  160. static struct starpu_data_interface_ops interface_complex_ops =
  161. @{
  162. .register_data_handle = complex_register_data_handle,
  163. .allocate_data_on_node = complex_allocate_data_on_node,
  164. .copy_methods = &complex_copy_methods,
  165. .get_size = complex_get_size,
  166. .footprint = complex_footprint,
  167. .interfaceid = -1,
  168. .interface_size = sizeof(struct starpu_complex_interface),
  169. @};
  170. @end smallexample
  171. @end cartouche
  172. Functions need to be defined to access the different fields of the
  173. complex interface from a StarPU data handle.
  174. @cartouche
  175. @smallexample
  176. double *starpu_complex_get_real(starpu_data_handle_t handle)
  177. @{
  178. struct starpu_complex_interface *complex_interface =
  179. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, 0);
  180. return complex_interface->real;
  181. @}
  182. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  183. int starpu_complex_get_nx(starpu_data_handle_t handle);
  184. @end smallexample
  185. @end cartouche
  186. Similar functions need to be defined to access the different fields of the
  187. complex interface from a @code{void *} pointer to be used within codelet
  188. implemetations.
  189. @cartouche
  190. @smallexample
  191. #define STARPU_COMPLEX_GET_REAL(interface) \
  192. (((struct starpu_complex_interface *)(interface))->real)
  193. #define STARPU_COMPLEX_GET_IMAGINARY(interface) \
  194. (((struct starpu_complex_interface *)(interface))->imaginary)
  195. #define STARPU_COMPLEX_GET_NX(interface) \
  196. (((struct starpu_complex_interface *)(interface))->nx)
  197. @end smallexample
  198. @end cartouche
  199. Complex data interfaces can then be registered to StarPU.
  200. @cartouche
  201. @smallexample
  202. double real = 45.0;
  203. double imaginary = 12.0;
  204. starpu_complex_data_register(&handle1, 0, &real, &imaginary, 1);
  205. starpu_insert_task(&cl_display, STARPU_R, handle1, 0);
  206. @end smallexample
  207. @end cartouche
  208. and used by codelets.
  209. @cartouche
  210. @smallexample
  211. void display_complex_codelet(void *descr[], __attribute__ ((unused)) void *_args)
  212. @{
  213. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  214. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  215. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  216. int i;
  217. for(i=0 ; i<nx ; i++)
  218. @{
  219. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  220. @}
  221. @}
  222. @end smallexample
  223. @end cartouche
  224. The whole code for this complex data interface is available in the
  225. directory @code{examples/interface/}.
  226. @node Multiformat Data Interface
  227. @section Multiformat Data Interface
  228. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  229. todo. The different fields are:
  230. @table @asis
  231. @item @code{size_t cpu_elemsize}
  232. the size of each element on CPUs,
  233. @item @code{size_t opencl_elemsize}
  234. the size of each element on OpenCL devices,
  235. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  236. pointer to a codelet which converts from CPU to OpenCL
  237. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  238. pointer to a codelet which converts from OpenCL to CPU
  239. @item @code{size_t cuda_elemsize}
  240. the size of each element on CUDA devices,
  241. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  242. pointer to a codelet which converts from CPU to CUDA
  243. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  244. pointer to a codelet which converts from CUDA to CPU
  245. @end table
  246. @end deftp
  247. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  248. Register a piece of data that can be represented in different ways, depending upon
  249. the processing unit that manipulates it. It allows the programmer, for instance, to
  250. use an array of structures when working on a CPU, and a structure of arrays when
  251. working on a GPU.
  252. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  253. the format.
  254. @end deftypefun
  255. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  256. returns the local pointer to the data with CPU format.
  257. @end defmac
  258. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  259. returns the local pointer to the data with CUDA format.
  260. @end defmac
  261. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  262. returns the local pointer to the data with OpenCL format.
  263. @end defmac
  264. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  265. returns the number of elements in the data.
  266. @end defmac
  267. @node Task Bundles
  268. @section Task Bundles
  269. @deftp {Data Type} {starpu_task_bundle_t}
  270. Opaque structure describing a list of tasks that should be scheduled
  271. on the same worker whenever it's possible. It must be considered as a
  272. hint given to the scheduler as there is no guarantee that they will be
  273. executed on the same worker.
  274. @end deftp
  275. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  276. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  277. @end deftypefun
  278. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  279. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  280. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  281. @end deftypefun
  282. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  283. Remove @var{task} from @var{bundle}.
  284. Of course @var{task} must have been previously inserted @var{bundle}.
  285. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  286. @end deftypefun
  287. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  288. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  289. @end deftypefun
  290. @node Task Lists
  291. @section Task Lists
  292. @deftp {Data Type} {struct starpu_task_list}
  293. Stores a double-chained list of tasks
  294. @end deftp
  295. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  296. Initialize a list structure
  297. @end deftypefun
  298. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  299. Push a task at the front of a list
  300. @end deftypefun
  301. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  302. Push a task at the back of a list
  303. @end deftypefun
  304. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  305. Get the front of the list (without removing it)
  306. @end deftypefun
  307. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  308. Get the back of the list (without removing it)
  309. @end deftypefun
  310. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  311. Test if a list is empty
  312. @end deftypefun
  313. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  314. Remove an element from the list
  315. @end deftypefun
  316. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  317. Remove the element at the front of the list
  318. @end deftypefun
  319. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  320. Remove the element at the back of the list
  321. @end deftypefun
  322. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  323. Get the first task of the list.
  324. @end deftypefun
  325. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  326. Get the end of the list.
  327. @end deftypefun
  328. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  329. Get the next task of the list. This is not erase-safe.
  330. @end deftypefun
  331. @node Using Parallel Tasks
  332. @section Using Parallel Tasks
  333. These are used by parallel tasks:
  334. @deftypefun int starpu_combined_worker_get_size (void)
  335. Return the size of the current combined worker, i.e. the total number of cpus
  336. running the same task in the case of SPMD parallel tasks, or the total number
  337. of threads that the task is allowed to start in the case of FORKJOIN parallel
  338. tasks.
  339. @end deftypefun
  340. @deftypefun int starpu_combined_worker_get_rank (void)
  341. Return the rank of the current thread within the combined worker. Can only be
  342. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  343. @end deftypefun
  344. Most of these are used for schedulers which support parallel tasks.
  345. @deftypefun unsigned starpu_combined_worker_get_count (void)
  346. Return the number of different combined workers.
  347. @end deftypefun
  348. @deftypefun int starpu_combined_worker_get_id (void)
  349. Return the identifier of the current combined worker.
  350. @end deftypefun
  351. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  352. Register a new combined worker and get its identifier
  353. @end deftypefun
  354. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  355. Get the description of a combined worker
  356. @end deftypefun
  357. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  358. Variant of starpu_worker_can_execute_task compatible with combined workers
  359. @end deftypefun
  360. @node Defining a new scheduling policy
  361. @section Defining a new scheduling policy
  362. TODO
  363. A full example showing how to define a new scheduling policy is available in
  364. the StarPU sources in the directory @code{examples/scheduler/}.
  365. @menu
  366. * Scheduling Policy API:: Scheduling Policy API
  367. * Source code::
  368. @end menu
  369. @node Scheduling Policy API
  370. @subsection Scheduling Policy API
  371. While StarPU comes with a variety of scheduling policies (@pxref{Task
  372. scheduling policy}), it may sometimes be desirable to implement custom
  373. policies to address specific problems. The API described below allows
  374. users to write their own scheduling policy.
  375. @deftp {Data Type} {struct starpu_machine_topology}
  376. @table @asis
  377. @item @code{unsigned nworkers}
  378. Total number of workers.
  379. @item @code{unsigned ncombinedworkers}
  380. Total number of combined workers.
  381. @item @code{hwloc_topology_t hwtopology}
  382. Topology as detected by hwloc.
  383. To maintain ABI compatibility when hwloc is not available, the field
  384. is replaced with @code{void *dummy}
  385. @item @code{unsigned nhwcpus}
  386. Total number of CPUs, as detected by the topology code. May be different from
  387. the actual number of CPU workers.
  388. @item @code{unsigned nhwcudagpus}
  389. Total number of CUDA devices, as detected. May be different from the actual
  390. number of CUDA workers.
  391. @item @code{unsigned nhwopenclgpus}
  392. Total number of OpenCL devices, as detected. May be different from the actual
  393. number of CUDA workers.
  394. @item @code{unsigned ncpus}
  395. Actual number of CPU workers used by StarPU.
  396. @item @code{unsigned ncudagpus}
  397. Actual number of CUDA workers used by StarPU.
  398. @item @code{unsigned nopenclgpus}
  399. Actual number of OpenCL workers used by StarPU.
  400. @item @code{unsigned ngordon_spus}
  401. Actual number of Gordon workers used by StarPU.
  402. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  403. Indicates the successive cpu identifier that should be used to bind the
  404. workers. It is either filled according to the user's explicit
  405. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  406. variable. Otherwise, a round-robin policy is used to distributed the workers
  407. over the cpus.
  408. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  409. Indicates the successive cpu identifier that should be used by the CUDA
  410. driver. It is either filled according to the user's explicit parameters (from
  411. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  412. they are taken in ID order.
  413. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  414. Indicates the successive cpu identifier that should be used by the OpenCL
  415. driver. It is either filled according to the user's explicit parameters (from
  416. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  417. they are taken in ID order.
  418. @end table
  419. @end deftp
  420. @deftp {Data Type} {struct starpu_sched_policy}
  421. This structure contains all the methods that implement a scheduling policy. An
  422. application may specify which scheduling strategy in the @code{sched_policy}
  423. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  424. function. The different fields are:
  425. @table @asis
  426. @item @code{void (*init_sched)(struct starpu_machine_topology *, struct starpu_sched_policy *)}
  427. Initialize the scheduling policy.
  428. @item @code{void (*deinit_sched)(struct starpu_machine_topology *, struct starpu_sched_policy *)}
  429. Cleanup the scheduling policy.
  430. @item @code{int (*push_task)(struct starpu_task *)}
  431. Insert a task into the scheduler.
  432. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  433. Notify the scheduler that a task was pushed on a given worker. This method is
  434. called when a task that was explicitely assigned to a worker becomes ready and
  435. is about to be executed by the worker. This method therefore permits to keep
  436. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  437. strategy.
  438. @item @code{struct starpu_task *(*pop_task)(void)} (optional)
  439. Get a task from the scheduler. The mutex associated to the worker is already
  440. taken when this method is called. If this method is defined as @code{NULL}, the
  441. worker will only execute tasks from its local queue. In this case, the
  442. @code{push_task} method should use the @code{starpu_push_local_task} method to
  443. assign tasks to the different workers.
  444. @item @code{struct starpu_task *(*pop_every_task)(void)}
  445. Remove all available tasks from the scheduler (tasks are chained by the means
  446. of the prev and next fields of the starpu_task structure). The mutex associated
  447. to the worker is already taken when this method is called. This is currently
  448. only used by the Gordon driver.
  449. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  450. This method is called every time a task is starting.
  451. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  452. This method is called every time a task has been executed.
  453. @item @code{const char *policy_name} (optional)
  454. Name of the policy.
  455. @item @code{const char *policy_description} (optional)
  456. Description of the policy.
  457. @end table
  458. @end deftp
  459. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  460. This function specifies the condition variable associated to a worker
  461. When there is no available task for a worker, StarPU blocks this worker on a
  462. condition variable. This function specifies which condition variable (and the
  463. associated mutex) should be used to block (and to wake up) a worker. Note that
  464. multiple workers may use the same condition variable. For instance, in the case
  465. of a scheduling strategy with a single task queue, the same condition variable
  466. would be used to block and wake up all workers.
  467. The initialization method of a scheduling strategy (@code{init_sched}) must
  468. call this function once per worker.
  469. @end deftypefun
  470. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  471. Defines the minimum priority level supported by the scheduling policy. The
  472. default minimum priority level is the same as the default priority level which
  473. is 0 by convention. The application may access that value by calling the
  474. @code{starpu_sched_get_min_priority} function. This function should only be
  475. called from the initialization method of the scheduling policy, and should not
  476. be used directly from the application.
  477. @end deftypefun
  478. @deftypefun void starpu_sched_set_max_priority (int @var{max_prio})
  479. Defines the maximum priority level supported by the scheduling policy. The
  480. default maximum priority level is 1. The application may access that value by
  481. calling the @code{starpu_sched_get_max_priority} function. This function should
  482. only be called from the initialization method of the scheduling policy, and
  483. should not be used directly from the application.
  484. @end deftypefun
  485. @deftypefun int starpu_sched_get_min_priority (void)
  486. Returns the current minimum priority level supported by the
  487. scheduling policy
  488. @end deftypefun
  489. @deftypefun int starpu_sched_get_max_priority (void)
  490. Returns the current maximum priority level supported by the
  491. scheduling policy
  492. @end deftypefun
  493. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  494. The scheduling policy may put tasks directly into a worker's local queue so
  495. that it is not always necessary to create its own queue when the local queue
  496. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  497. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  498. a FIFO ordering.
  499. @end deftypefun
  500. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  501. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  502. @end deftypefun
  503. @deftypefun double starpu_timing_now (void)
  504. Return the current date in µs
  505. @end deftypefun
  506. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  507. Returns expected task duration in µs
  508. @end deftypefun
  509. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perf_archtype} @var{perf_archtype})
  510. Returns an estimated speedup factor relative to CPU speed
  511. @end deftypefun
  512. @deftypefun double starpu_task_expected_data_transfer_time (uint32_t @var{memory_node}, {struct starpu_task *}@var{task})
  513. Returns expected data transfer time in µs
  514. @end deftypefun
  515. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_access_mode} @var{mode})
  516. Predict the transfer time (in µs) to move a handle to a memory node
  517. @end deftypefun
  518. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  519. Returns expected power consumption in J
  520. @end deftypefun
  521. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned {nimpl})
  522. Returns expected conversion time in ms (multiformat interface only)
  523. @end deftypefun
  524. @node Source code
  525. @subsection Source code
  526. @cartouche
  527. @smallexample
  528. static struct starpu_sched_policy dummy_sched_policy = @{
  529. .init_sched = init_dummy_sched,
  530. .deinit_sched = deinit_dummy_sched,
  531. .push_task = push_task_dummy,
  532. .push_prio_task = NULL,
  533. .pop_task = pop_task_dummy,
  534. .post_exec_hook = NULL,
  535. .pop_every_task = NULL,
  536. .policy_name = "dummy",
  537. .policy_description = "dummy scheduling strategy"
  538. @};
  539. @end smallexample
  540. @end cartouche
  541. @node Expert mode
  542. @section Expert mode
  543. @deftypefun void starpu_wake_all_blocked_workers (void)
  544. Wake all the workers, so they can inspect data requests and task submissions
  545. again.
  546. @end deftypefun
  547. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  548. Register a progression hook, to be called when workers are idle.
  549. @end deftypefun
  550. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  551. Unregister a given progression hook.
  552. @end deftypefun