450_native_fortran_support.doxy 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016-2017 CNRS
  4. * Copyright (C) 2014,2016 Inria
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*! \page NativeFortranSupport The StarPU Native Fortran Support
  18. StarPU provides the necessary routines and support to natively access
  19. most of its functionalities from Fortran 2008+ codes.
  20. All symbols (functions, constants) are defined in <c>fstarpu_mod.f90</c>.
  21. Every symbol of the Native Fortran support API is prefixed by
  22. <c>fstarpu_</c>.
  23. Note: Mixing uses of <c>fstarpu_</c> and <c>starpu_</c>
  24. symbols in the same Fortran code has unspecified behaviour.
  25. See \ref APIMIX for a discussion about valid and unspecified
  26. combinations.
  27. \section Implementation Implementation Details and Specificities
  28. \subsection Prerequisites Prerequisites
  29. The Native Fortran support relies on Fortran 2008 specific constructs,
  30. as well as on the support of interoperability of assumed-shape arrays
  31. introduced as part of Fortran's Technical Specification ISO/IEC TS 29113:2012,
  32. for which no equivalent are available in previous versions of the
  33. standard. It has currently been tested successfully with GNU GFortran 4.9,
  34. GFortran 5.x, GFortran 6.x and the Intel Fortran Compiler >= 2016. It is known
  35. not to work with GNU GFortran < 4.9, Intel Fortran Compiler < 2016.
  36. See Section \ref OldFortran on information on how to write StarPU
  37. Fortran code with older compilers.
  38. \subsection Configuration Configuration
  39. The Native Fortran API is enabled and its companion
  40. <c>fstarpu_mod.f90</c> Fortran module source file is installed
  41. by default when a Fortran compiler is found, unless the detected Fortran
  42. compiler is known not to support the requirements for the Native Fortran
  43. API. The support can be disabled through the configure option \ref
  44. disable-fortran "--disable-fortran". Conditional compiled source codes
  45. may check for the availability of the Native Fortran Support by testing
  46. whether the preprocessor macro <c>STARPU_HAVE_FC</c> is defined or not.
  47. \subsection Examples Examples
  48. Several examples using the Native Fortran API are provided in
  49. StarPU's <c>examples/native_fortran/</c> examples directory, to showcase
  50. the Fortran flavor of various basic and more advanced StarPU features.
  51. \subsection AppCompile Compiling a Native Fortran Application
  52. The Fortran module <c>fstarpu_mod.f90</c> installed in StarPU's
  53. <c>include/</c> directory provides all the necessary API definitions. It
  54. must be compiled with the same compiler (same vendor, same version) as
  55. the application itself, and the resulting <c>fstarpu_mod.o</c> object
  56. file must linked with the application executable.
  57. Each example provided in StarPU's <c>examples/native_fortran/</c>
  58. examples directory comes with its own dedicated Makefile for out-of-tree
  59. build. Such example Makefiles may be used as starting points for
  60. building application codes with StarPU.
  61. \section Idioms Fortran Translation for Common StarPU API Idioms
  62. All these examples assume that the standard Fortran module <c>iso_c_binding</c>
  63. is in use.
  64. - Specifying a <c>NULL</c> pointer
  65. \code{.f90}
  66. type(c_ptr) :: my_ptr ! variable to store the pointer
  67. ! [...]
  68. my_ptr = C_NULL_PTR ! assign standard constant for NULL ptr
  69. \endcode
  70. - Obtaining a pointer to some object:
  71. \code{.f90}
  72. real(8), dimension(:), allocatable, target :: va
  73. type(c_ptr) :: p_va ! variable to store a pointer to array va
  74. ! [...]
  75. p_va = c_loc(va)
  76. \endcode
  77. - Obtaining a pointer to some subroutine:
  78. \code{.f90}
  79. ! pointed routine definition
  80. recursive subroutine myfunc () bind(C)
  81. ! [...]
  82. type(c_funptr) :: p_fun ! variable to store the routine pointer
  83. ! [...]
  84. p_fun = c_funloc(my_func)
  85. \endcode
  86. - Obtaining the size of some object:
  87. \code{.f90}
  88. real(8) :: a
  89. integer(c_size_t) :: sz_a ! variable to store the size of a
  90. ! [...]
  91. sz_a = c_sizeof(a)
  92. \endcode
  93. - Obtaining the length of an array dimension:
  94. \code{.f90}
  95. real(8), dimension(:,:), allocatable, target :: vb
  96. intger(c_int) :: ln_vb_1 ! variable to store the length of vb's dimension 1
  97. intger(c_int) :: ln_vb_2 ! variable to store the length of vb's dimension 2
  98. ! [...]
  99. ln_vb_1 = 1+ubound(vb,1)-lbound(vb,1) ! get length of dimension 1 of vb
  100. ln_vb_2 = 1+ubound(vb,2)-lbound(vb,2) ! get length of dimension 2 of vb
  101. \endcode
  102. - Specifying a string constant:
  103. \code{.f90}
  104. type(c_ptr) :: my_cl ! a StarPU codelet
  105. ! [...]
  106. ! set the name of a codelet to string 'my_codele't:
  107. call fstarpu_codelet_set_name(my_cl, C_CHAR_"my_codelet"//C_NULL_CHAR)
  108. ! note: using the C_CHAR_ prefix and the //C_NULL_CHAR concatenation at the end ensures
  109. ! that the string constant is properly '\0' terminated, and compatible with StarPU's
  110. ! internal C routines
  111. !
  112. ! note: plain Fortran string constants are not '\0' terminated, and as such, must not be
  113. ! passed to StarPU routines.
  114. \endcode
  115. - Combining multiple flag constants with a bitwise 'or':
  116. \code{.f90}
  117. type(c_ptr) :: my_cl ! a pointer for the codelet structure
  118. ! [...]
  119. ! add a managed buffer to a codelet, specifying both the Read/Write access mode and the Locality hint
  120. call fstarpu_codelet_add_buffer(my_cl, FSTARPU_RW.ior.FSTARPU_LOCALITY)
  121. \endcode
  122. \section InitExit Uses, Initialization and Shutdown
  123. The snippet below show an example of minimal StarPU code using the
  124. Native Fortran support. The program should <c>use</c> the standard
  125. module <c>iso_c_binding</c> as well as StarPU's <c>fstarpu_mod</c>. The
  126. StarPU runtime engine is initialized with a call to function
  127. <c>fstarpu_init</c>, which returns an integer status of 0 if successful
  128. or non-0 otherwise. Eventually, a call to <c>fstarpu_shutdown</c> ends
  129. the runtime engine and frees all internal StarPU data structures.
  130. \snippet nf_initexit.f90 To be included. You should update doxygen if you see this text.
  131. \section InsertTask Fortran Flavor of StarPU's Variadic Insert_task
  132. Fortran does not have a construction similar to C variadic functions on which
  133. <c>starpu_insert_task</c> relies at the time of this writing. However, Fortran's variable
  134. length arrays of <c>c_ptr</c> elements enable to emulate much of the
  135. convenience of C's variadic functions. This is the approach retained for
  136. implementing <c>fstarpu_insert_task</c>.
  137. The general syntax for using <c>fstarpu_insert_task</c> is as follows:
  138. \code{.f90}
  139. call fstarpu_insert_task((/ <codelet ptr> &
  140. [, <access mode flags>, <data handle>]* &
  141. [, <argument type constant>, <argument>]* &
  142. , C_NULL_PTR /))
  143. \endcode
  144. There is thus a unique array argument <c>(/ ... /)</c> passed to
  145. <c>fstarpu_insert_task</c> which itself contains the task settings.
  146. Each element of the array must be of type <c>type(c_ptr)</c>.
  147. The last element of the array must be <c>C_NULL_PTR</c>.
  148. Example extracted from nf_vector.f90:
  149. \code{.f90}
  150. call fstarpu_insert_task((/ cl_vec, & ! codelet
  151. FSTARPU_R, dh_va, & ! a first data handle
  152. FSTARPU_RW.ior.FSTARPU_LOCALITY, dh_vb, & ! a second data handle
  153. C_NULL_PTR /)) ! no more args
  154. \endcode
  155. \section Structs Functions and Subroutines Expecting Data Structures Arguments
  156. Several StarPU structures that are expected to be passed to the C API,
  157. are replaced by function/subroutine wrapper sets to allocate, set fields
  158. and free such structure. This strategy has been prefered over defining
  159. native Fortran equivalent of such structures using Fortran's derived
  160. types, to avoid potential layout mismatch between C and Fortran StarPU
  161. data structures. Examples of such data structures wrappers include
  162. <c>fstarpu_conf_allocate</c> and alike, <c>fstarpu_codelet_allocate</c>
  163. and alike, <c>fstarpu_data_filter_allocate</c> and alike.
  164. Here is an example of allocating, filling and deallocating a codelet
  165. structure:
  166. \code{.f90}
  167. ! a pointer for the codelet structure
  168. type(c_ptr) :: cl_vec
  169. ! [...]
  170. ! allocate an empty codelet structure
  171. cl_vec = fstarpu_codelet_allocate()
  172. ! add a CPU implementation function to the codelet
  173. call fstarpu_codelet_add_cpu_func(cl_vec, C_FUNLOC(cl_cpu_func_vec))
  174. ! set the codelet name
  175. call fstarpu_codelet_set_name(cl_vec, C_CHAR_"my_vec_codelet"//C_NULL_CHAR)
  176. ! add a Read-only mode data buffer to the codelet
  177. call fstarpu_codelet_add_buffer(cl_vec, FSTARPU_R)
  178. ! add a Read-Write mode data buffer to the codelet
  179. call fstarpu_codelet_add_buffer(cl_vec, FSTARPU_RW.ior.FSTARPU_LOCALITY)
  180. ! [...]
  181. ! free codelet structure
  182. call fstarpu_codelet_free(cl_vec)
  183. \endcode
  184. \section Notes Additional Notes about the Native Fortran Support
  185. \subsection OldFortran Using StarPU with Older Fortran Compilers
  186. When using older compilers, Fortran applications may still interoperate
  187. with StarPU using C marshalling functions as exemplified in StarPU's
  188. <c>examples/fortran/</c> and <c>examples/fortran90/</c> example
  189. directories, though the process will be less convenient.
  190. Basically, the main FORTRAN code calls some C wrapper functions to
  191. submit tasks to StarPU. Then, when StarPU starts a task, another C
  192. wrapper function calls the FORTRAN routine for the task.
  193. Note that this marshalled FORTRAN support remains available even
  194. when specifying configure option \ref disable-fortran "--disable-fortran"
  195. (which only disables StarPU's native Fortran layer).
  196. \subsection APIMIX Valid API Mixes and Language Mixes
  197. Mixing uses of
  198. <c>fstarpu_</c> and <c>starpu_</c> symbols in the same
  199. Fortran code has unspecified behaviour. Using <c>fstarpu_</c>
  200. symbols in C code has unspecified behaviour.
  201. For multi-language applications using both C and Fortran source files:
  202. - C source files must use <c>starpu_</c> symbols exclusively
  203. - Fortran sources must uniformly use either <c>fstarpu_</c> symbols
  204. exclusively, or <c>starpu_</c> symbols exclusively. Every other
  205. combination has unspecified behaviour.
  206. */