| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 | /* dsytrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;static doublereal c_b22 = -1.;static doublereal c_b23 = 1.;/* Subroutine */ int _starpu_dsytrd_(char *uplo, integer *n, doublereal *a, integer *	lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *	work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, nb, kk, nx, iws;    extern logical _starpu_lsame_(char *, char *);    integer nbmin, iinfo;    logical upper;    extern /* Subroutine */ int _starpu_dsytd2_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dsyr2k_(char *, char *, integer *, integer *, doublereal 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 	     doublereal *, integer *), _starpu_dlatrd_(char *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, 	    integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYTRD reduces a real symmetric matrix A to real symmetric *//*  tridiagonal form T by an orthogonal similarity transformation: *//*  Q**T * A * Q = T. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          N-by-N upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading N-by-N lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if UPLO = 'U', the diagonal and first superdiagonal *//*          of A are overwritten by the corresponding elements of the *//*          tridiagonal matrix T, and the elements above the first *//*          superdiagonal, with the array TAU, represent the orthogonal *//*          matrix Q as a product of elementary reflectors; if UPLO *//*          = 'L', the diagonal and first subdiagonal of A are over- *//*          written by the corresponding elements of the tridiagonal *//*          matrix T, and the elements below the first subdiagonal, with *//*          the array TAU, represent the orthogonal matrix Q as a product *//*          of elementary reflectors. See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  D       (output) DOUBLE PRECISION array, dimension (N) *//*          The diagonal elements of the tridiagonal matrix T: *//*          D(i) = A(i,i). *//*  E       (output) DOUBLE PRECISION array, dimension (N-1) *//*          The off-diagonal elements of the tridiagonal matrix T: *//*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. *//*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= 1. *//*          For optimum performance LWORK >= N*NB, where NB is the *//*          optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  If UPLO = 'U', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(n-1) . . . H(2) H(1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in *//*  A(1:i-1,i+1), and tau in TAU(i). *//*  If UPLO = 'L', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(1) H(2) . . . H(n-1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), *//*  and tau in TAU(i). *//*  The contents of A on exit are illustrated by the following examples *//*  with n = 5: *//*  if UPLO = 'U':                       if UPLO = 'L': *//*    (  d   e   v2  v3  v4 )              (  d                  ) *//*    (      d   e   v3  v4 )              (  e   d              ) *//*    (          d   e   v4 )              (  v1  e   d          ) *//*    (              d   e  )              (  v1  v2  e   d      ) *//*    (                  d  )              (  v1  v2  v3  e   d  ) *//*  where d and e denote diagonal and off-diagonal elements of T, and vi *//*  denotes an element of the vector defining H(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --d__;    --e;    --tau;    --work;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    lquery = *lwork == -1;    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    } else if (*lwork < 1 && ! lquery) {	*info = -9;    }    if (*info == 0) {/*        Determine the block size. */	nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);	lwkopt = *n * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYTRD", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	work[1] = 1.;	return 0;    }    nx = *n;    iws = 1;    if (nb > 1 && nb < *n) {/*        Determine when to cross over from blocked to unblocked code *//*        (last block is always handled by unblocked code). *//* Computing MAX */	i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &		c_n1);	nx = max(i__1,i__2);	if (nx < *n) {/*           Determine if workspace is large enough for blocked code. */	    ldwork = *n;	    iws = ldwork * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  determine the *//*              minimum value of NB, and reduce NB or force use of *//*              unblocked code by setting NX = N. *//* Computing MAX */		i__1 = *lwork / ldwork;		nb = max(i__1,1);		nbmin = _starpu_ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);		if (nb < nbmin) {		    nx = *n;		}	    }	} else {	    nx = *n;	}    } else {	nb = 1;    }    if (upper) {/*        Reduce the upper triangle of A. *//*        Columns 1:kk are handled by the unblocked method. */	kk = *n - (*n - nx + nb - 1) / nb * nb;	i__1 = kk + 1;	i__2 = -nb;	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 		i__2) {/*           Reduce columns i:i+nb-1 to tridiagonal form and form the *//*           matrix W which is needed to update the unreduced part of *//*           the matrix */	    i__3 = i__ + nb - 1;	    _starpu_dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &		    work[1], &ldwork);/*           Update the unreduced submatrix A(1:i-1,1:i-1), using an *//*           update of the form:  A := A - V*W' - W*V' */	    i__3 = i__ - 1;	    _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 		    + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);/*           Copy superdiagonal elements back into A, and diagonal *//*           elements into D */	    i__3 = i__ + nb - 1;	    for (j = i__; j <= i__3; ++j) {		a[j - 1 + j * a_dim1] = e[j - 1];		d__[j] = a[j + j * a_dim1];/* L10: */	    }/* L20: */	}/*        Use unblocked code to reduce the last or only block */	_starpu_dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);    } else {/*        Reduce the lower triangle of A */	i__2 = *n - nx;	i__1 = nb;	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {/*           Reduce columns i:i+nb-1 to tridiagonal form and form the *//*           matrix W which is needed to update the unreduced part of *//*           the matrix */	    i__3 = *n - i__ + 1;	    _starpu_dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &		    tau[i__], &work[1], &ldwork);/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using *//*           an update of the form:  A := A - V*W' - W*V' */	    i__3 = *n - i__ - nb + 1;	    _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + 		    i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[		    i__ + nb + (i__ + nb) * a_dim1], lda);/*           Copy subdiagonal elements back into A, and diagonal *//*           elements into D */	    i__3 = i__ + nb - 1;	    for (j = i__; j <= i__3; ++j) {		a[j + 1 + j * a_dim1] = e[j];		d__[j] = a[j + j * a_dim1];/* L30: */	    }/* L40: */	}/*        Use unblocked code to reduce the last or only block */	i__1 = *n - i__ + 1;	_starpu_dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], 		&tau[i__], &iinfo);    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYTRD */} /* _starpu_dsytrd_ */
 |