| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 | /* dsygst.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b14 = 1.;static doublereal c_b16 = -.5;static doublereal c_b19 = -1.;static doublereal c_b52 = .5;/* Subroutine */ int _starpu_dsygst_(integer *itype, char *uplo, integer *n, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *	info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    integer k, kb, nb;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dsymm_(	    char *, char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *);    logical upper;    extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dsygs2_(	    integer *, char *, integer *, doublereal *, integer *, doublereal 	    *, integer *, integer *), _starpu_dsyr2k_(char *, char *, integer 	    *, integer *, doublereal *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, doublereal *, integer *)	    , _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYGST reduces a real symmetric-definite generalized eigenproblem *//*  to standard form. *//*  If ITYPE = 1, the problem is A*x = lambda*B*x, *//*  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) *//*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or *//*  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. *//*  B must have been previously factorized as U**T*U or L*L**T by DPOTRF. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); *//*          = 2 or 3: compute U*A*U**T or L**T*A*L. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored and B is factored as *//*                  U**T*U; *//*          = 'L':  Lower triangle of A is stored and B is factored as *//*                  L*L**T. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          N-by-N upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading N-by-N lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if INFO = 0, the transformed matrix, stored in the *//*          same format as A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) *//*          The triangular factor from the Cholesky factorization of B, *//*          as returned by DPOTRF. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYGST", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Determine the block size for this environment. */    nb = _starpu_ilaenv_(&c__1, "DSYGST", uplo, n, &c_n1, &c_n1, &c_n1);    if (nb <= 1 || nb >= *n) {/*        Use unblocked code */	_starpu_dsygs2_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);    } else {/*        Use blocked code */	if (*itype == 1) {	    if (upper) {/*              Compute inv(U')*A*inv(U) */		i__1 = *n;		i__2 = nb;		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {/* Computing MIN */		    i__3 = *n - k + 1;		    kb = min(i__3,nb);/*                 Update the upper triangle of A(k:n,k:n) */		    _starpu_dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 			    k * b_dim1], ldb, info);		    if (k + kb <= *n) {			i__3 = *n - k - kb + 1;			_starpu_dtrsm_("Left", uplo, "Transpose", "Non-unit", &kb, &				i__3, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 				(k + kb) * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 				&c_b14, &a[k + (k + kb) * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsyr2k_(uplo, "Transpose", &i__3, &kb, &c_b19, &a[k + 				(k + kb) * a_dim1], lda, &b[k + (k + kb) * 				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 				a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 				&c_b14, &a[k + (k + kb) * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dtrsm_("Right", uplo, "No transpose", "Non-unit", &kb, 				 &i__3, &c_b14, &b[k + kb + (k + kb) * b_dim1], ldb, &a[k + (k + kb) * a_dim1], lda);		    }/* L10: */		}	    } else {/*              Compute inv(L)*A*inv(L') */		i__2 = *n;		i__1 = nb;		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {/* Computing MIN */		    i__3 = *n - k + 1;		    kb = min(i__3,nb);/*                 Update the lower triangle of A(k:n,k:n) */		    _starpu_dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 			    k * b_dim1], ldb, info);		    if (k + kb <= *n) {			i__3 = *n - k - kb + 1;			_starpu_dtrsm_("Right", uplo, "Transpose", "Non-unit", &i__3, 				&kb, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 				kb + k * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &				c_b14, &a[k + kb + k * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsyr2k_(uplo, "No transpose", &i__3, &kb, &c_b19, &a[				k + kb + k * a_dim1], lda, &b[k + kb + k * 				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 				a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dsymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &				c_b14, &a[k + kb + k * a_dim1], lda);			i__3 = *n - k - kb + 1;			_starpu_dtrsm_("Left", uplo, "No transpose", "Non-unit", &				i__3, &kb, &c_b14, &b[k + kb + (k + kb) * 				b_dim1], ldb, &a[k + kb + k * a_dim1], lda);		    }/* L20: */		}	    }	} else {	    if (upper) {/*              Compute U*A*U' */		i__1 = *n;		i__2 = nb;		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {/* Computing MIN */		    i__3 = *n - k + 1;		    kb = min(i__3,nb);/*                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1) */		    i__3 = k - 1;		    _starpu_dtrmm_("Left", uplo, "No transpose", "Non-unit", &i__3, &			    kb, &c_b14, &b[b_offset], ldb, &a[k * a_dim1 + 1], 			     lda)			    ;		    i__3 = k - 1;		    _starpu_dsymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[			    k * a_dim1 + 1], lda);		    i__3 = k - 1;		    _starpu_dsyr2k_(uplo, "No transpose", &i__3, &kb, &c_b14, &a[k * 			    a_dim1 + 1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, 			     &a[a_offset], lda);		    i__3 = k - 1;		    _starpu_dsymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[			    k * a_dim1 + 1], lda);		    i__3 = k - 1;		    _starpu_dtrmm_("Right", uplo, "Transpose", "Non-unit", &i__3, &kb, 			     &c_b14, &b[k + k * b_dim1], ldb, &a[k * a_dim1 + 			    1], lda);		    _starpu_dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 			    k * b_dim1], ldb, info);/* L30: */		}	    } else {/*              Compute L'*A*L */		i__2 = *n;		i__1 = nb;		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {/* Computing MIN */		    i__3 = *n - k + 1;		    kb = min(i__3,nb);/*                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1) */		    i__3 = k - 1;		    _starpu_dtrmm_("Right", uplo, "No transpose", "Non-unit", &kb, &			    i__3, &c_b14, &b[b_offset], ldb, &a[k + a_dim1], 			    lda);		    i__3 = k - 1;		    _starpu_dsymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 			    a_dim1], lda);		    i__3 = k - 1;		    _starpu_dsyr2k_(uplo, "Transpose", &i__3, &kb, &c_b14, &a[k + 			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[			    a_offset], lda);		    i__3 = k - 1;		    _starpu_dsymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 			    a_dim1], lda);		    i__3 = k - 1;		    _starpu_dtrmm_("Left", uplo, "Transpose", "Non-unit", &kb, &i__3, 			    &c_b14, &b[k + k * b_dim1], ldb, &a[k + a_dim1], 			    lda);		    _starpu_dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 			    k * b_dim1], ldb, info);/* L40: */		}	    }	}    }    return 0;/*     End of DSYGST */} /* _starpu_dsygst_ */
 |