| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 | /* dsyev.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__0 = 0;static doublereal c_b17 = 1.;/* Subroutine */ int _starpu_dsyev_(char *jobz, char *uplo, integer *n, doublereal *a, 	 integer *lda, doublereal *w, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer nb;    doublereal eps;    integer inde;    doublereal anrm;    integer imax;    doublereal rmin, rmax;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    logical lower, wantz;    extern doublereal _starpu_dlamch_(char *);    integer iscale;    extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    doublereal safmin;    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    integer indtau;    extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 	     integer *);    extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *, 	    integer *, doublereal *);    integer indwrk;    extern /* Subroutine */ int _starpu_dorgtr_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), _starpu_dsteqr_(char *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_dsytrd_(char *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *);    integer llwork;    doublereal smlnum;    integer lwkopt;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYEV computes all eigenvalues and, optionally, eigenvectors of a *//*  real symmetric matrix A. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of A contains the *//*          upper triangular part of the matrix A.  If UPLO = 'L', *//*          the leading N-by-N lower triangular part of A contains *//*          the lower triangular part of the matrix A. *//*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the *//*          orthonormal eigenvectors of the matrix A. *//*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') *//*          or the upper triangle (if UPLO='U') of A, including the *//*          diagonal, is destroyed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= max(1,3*N-1). *//*          For optimal efficiency, LWORK >= (NB+2)*N, *//*          where NB is the blocksize for DSYTRD returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the algorithm failed to converge; i *//*                off-diagonal elements of an intermediate tridiagonal *//*                form did not converge to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --w;    --work;    /* Function Body */    wantz = _starpu_lsame_(jobz, "V");    lower = _starpu_lsame_(uplo, "L");    lquery = *lwork == -1;    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (lower || _starpu_lsame_(uplo, "U"))) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info == 0) {	nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);/* Computing MAX */	i__1 = 1, i__2 = (nb + 2) * *n;	lwkopt = max(i__1,i__2);	work[1] = (doublereal) lwkopt;/* Computing MAX */	i__1 = 1, i__2 = *n * 3 - 1;	if (*lwork < max(i__1,i__2) && ! lquery) {	    *info = -8;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYEV ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	w[1] = a[a_dim1 + 1];	work[1] = 2.;	if (wantz) {	    a[a_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);    rmax = sqrt(bignum);/*     Scale matrix to allowable range, if necessary. */    anrm = _starpu_dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);    iscale = 0;    if (anrm > 0. && anrm < rmin) {	iscale = 1;	sigma = rmin / anrm;    } else if (anrm > rmax) {	iscale = 1;	sigma = rmax / anrm;    }    if (iscale == 1) {	_starpu_dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, 		info);    }/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */    inde = 1;    indtau = inde + *n;    indwrk = indtau + *n;    llwork = *lwork - indwrk + 1;    _starpu_dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &	    work[indwrk], &llwork, &iinfo);/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call *//*     DORGTR to generate the orthogonal matrix, then call DSTEQR. */    if (! wantz) {	_starpu_dsterf_(n, &w[1], &work[inde], info);    } else {	_starpu_dorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &		llwork, &iinfo);	_starpu_dsteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau], 		 info);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */    if (iscale == 1) {	if (*info == 0) {	    imax = *n;	} else {	    imax = *info - 1;	}	d__1 = 1. / sigma;	_starpu_dscal_(&imax, &d__1, &w[1], &c__1);    }/*     Set WORK(1) to optimal workspace size. */    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYEV */} /* _starpu_dsyev_ */
 |