| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 | /* dsyequb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dsyequb_(char *uplo, integer *n, doublereal *a, integer *	lda, doublereal *s, doublereal *scond, doublereal *amax, doublereal *	work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);    /* Local variables */    doublereal d__;    integer i__, j;    doublereal t, u, c0, c1, c2, si;    logical up;    doublereal avg, std, tol, base;    integer iter;    doublereal smin, smax, scale;    extern logical _starpu_lsame_(char *, char *);    doublereal sumsq;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);    doublereal smlnum;/*     -- LAPACK routine (version 3.2)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- November 2008                                                -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYEQUB computes row and column scalings intended to equilibrate a *//*  symmetric matrix A and reduce its condition number *//*  (with respect to the two-norm).  S contains the scale factors, *//*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with *//*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This *//*  choice of S puts the condition number of B within a factor N of the *//*  smallest possible condition number over all possible diagonal *//*  scalings. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The N-by-N symmetric matrix whose scaling *//*          factors are to be computed.  Only the diagonal elements of A *//*          are referenced. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  S       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, S contains the scale factors for A. *//*  SCOND   (output) DOUBLE PRECISION *//*          If INFO = 0, S contains the ratio of the smallest S(i) to *//*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too *//*          large nor too small, it is not worth scaling by S. *//*  AMAX    (output) DOUBLE PRECISION *//*          Absolute value of largest matrix element.  If AMAX is very *//*          close to overflow or very close to underflow, the matrix *//*          should be scaled. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. *//*  Further Details *//*  ======= ======= *//*  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", *//*  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. *//*  DOI 10.1023/B:NUMA.0000016606.32820.69 *//*  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --s;    --work;    /* Function Body */    *info = 0;    if (! (_starpu_lsame_(uplo, "U") || _starpu_lsame_(uplo, "L"))) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYEQUB", &i__1);	return 0;    }    up = _starpu_lsame_(uplo, "U");    *amax = 0.;/*     Quick return if possible. */    if (*n == 0) {	*scond = 1.;	return 0;    }    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	s[i__] = 0.;    }    *amax = 0.;    if (up) {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = j - 1;	    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		s[i__] = max(d__2,d__3);/* Computing MAX */		d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		s[j] = max(d__2,d__3);/* Computing MAX */		d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		*amax = max(d__2,d__3);	    }/* Computing MAX */	    d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));	    s[j] = max(d__2,d__3);/* Computing MAX */	    d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));	    *amax = max(d__2,d__3);	}    } else {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/* Computing MAX */	    d__2 = s[j], d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));	    s[j] = max(d__2,d__3);/* Computing MAX */	    d__2 = *amax, d__3 = (d__1 = a[j + j * a_dim1], abs(d__1));	    *amax = max(d__2,d__3);	    i__2 = *n;	    for (i__ = j + 1; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = s[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		s[i__] = max(d__2,d__3);/* Computing MAX */		d__2 = s[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		s[j] = max(d__2,d__3);/* Computing MAX */		d__2 = *amax, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));		*amax = max(d__2,d__3);	    }	}    }    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	s[j] = 1. / s[j];    }    tol = 1. / sqrt(*n * 2.);    for (iter = 1; iter <= 100; ++iter) {	scale = 0.;	sumsq = 0.;/*       BETA = |A|S */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    work[i__] = 0.;	}	if (up) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = j - 1;		for (i__ = 1; i__ <= i__2; ++i__) {		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));		    work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[			    j];		    work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[			    i__];		}		work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		work[j] += (d__1 = a[j + j * a_dim1], abs(d__1)) * s[j];		i__2 = *n;		for (i__ = j + 1; i__ <= i__2; ++i__) {		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));		    work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[			    j];		    work[j] += (d__1 = a[i__ + j * a_dim1], abs(d__1)) * s[			    i__];		}	    }	}/*       avg = s^T beta / n */	avg = 0.;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    avg += s[i__] * work[i__];	}	avg /= *n;	std = 0.;	i__1 = *n * 3;	for (i__ = (*n << 1) + 1; i__ <= i__1; ++i__) {	    work[i__] = s[i__ - (*n << 1)] * work[i__ - (*n << 1)] - avg;	}	_starpu_dlassq_(n, &work[(*n << 1) + 1], &c__1, &scale, &sumsq);	std = scale * sqrt(sumsq / *n);	if (std < tol * avg) {	    goto L999;	}	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    t = (d__1 = a[i__ + i__ * a_dim1], abs(d__1));	    si = s[i__];	    c2 = (*n - 1) * t;	    c1 = (*n - 2) * (work[i__] - t * si);	    c0 = -(t * si) * si + work[i__] * 2 * si - *n * avg;	    d__ = c1 * c1 - c0 * 4 * c2;	    if (d__ <= 0.) {		*info = -1;		return 0;	    }	    si = c0 * -2 / (c1 + sqrt(d__));	    d__ = si - s[i__];	    u = 0.;	    if (up) {		i__2 = i__;		for (j = 1; j <= i__2; ++j) {		    t = (d__1 = a[j + i__ * a_dim1], abs(d__1));		    u += s[j] * t;		    work[j] += d__ * t;		}		i__2 = *n;		for (j = i__ + 1; j <= i__2; ++j) {		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));		    u += s[j] * t;		    work[j] += d__ * t;		}	    } else {		i__2 = i__;		for (j = 1; j <= i__2; ++j) {		    t = (d__1 = a[i__ + j * a_dim1], abs(d__1));		    u += s[j] * t;		    work[j] += d__ * t;		}		i__2 = *n;		for (j = i__ + 1; j <= i__2; ++j) {		    t = (d__1 = a[j + i__ * a_dim1], abs(d__1));		    u += s[j] * t;		    work[j] += d__ * t;		}	    }	    avg += (u + work[i__]) * d__ / *n;	    s[i__] = si;	}    }L999:    smlnum = _starpu_dlamch_("SAFEMIN");    bignum = 1. / smlnum;    smin = bignum;    smax = 0.;    t = 1. / sqrt(avg);    base = _starpu_dlamch_("B");    u = 1. / log(base);    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	i__2 = (integer) (u * log(s[i__] * t));	s[i__] = pow_di(&base, &i__2);/* Computing MIN */	d__1 = smin, d__2 = s[i__];	smin = min(d__1,d__2);/* Computing MAX */	d__1 = smax, d__2 = s[i__];	smax = max(d__1,d__2);    }    *scond = max(smin,smlnum) / min(smax,bignum);    return 0;} /* _starpu_dsyequb_ */
 |