| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 | /* dstevr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__10 = 10;static integer c__1 = 1;static integer c__2 = 2;static integer c__3 = 3;static integer c__4 = 4;/* Subroutine */ int _starpu_dstevr_(char *jobz, char *range, integer *n, doublereal *	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 	integer *iu, doublereal *abstol, integer *m, doublereal *w, 	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, jj;    doublereal eps, vll, vuu, tmp1;    integer imax;    doublereal rmin, rmax;    logical test;    doublereal tnrm;    integer itmp1;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical _starpu_lsame_(char *, char *);    char order[1];    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    integer lwmin;    logical wantz;    extern doublereal _starpu_dlamch_(char *);    logical alleig, indeig;    integer iscale, ieeeok, indibl, indifl;    logical valeig;    doublereal safmin;    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);    integer indisp;    extern /* Subroutine */ int _starpu_dstein_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *), 	    _starpu_dsterf_(integer *, doublereal *, doublereal *, integer *);    integer indiwo;    extern /* Subroutine */ int _starpu_dstebz_(char *, char *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *, doublereal *, integer *, integer *), 	    _starpu_dstemr_(char *, char *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, integer *, 	    logical *, doublereal *, integer *, integer *, integer *, integer 	    *);    integer liwmin;    logical tryrac;    integer nsplit;    doublereal smlnum;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEVR computes selected eigenvalues and, optionally, eigenvectors *//*  of a real symmetric tridiagonal matrix T.  Eigenvalues and *//*  eigenvectors can be selected by specifying either a range of values *//*  or a range of indices for the desired eigenvalues. *//*  Whenever possible, DSTEVR calls DSTEMR to compute the *//*  eigenspectrum using Relatively Robust Representations.  DSTEMR *//*  computes eigenvalues by the dqds algorithm, while orthogonal *//*  eigenvectors are computed from various "good" L D L^T representations *//*  (also known as Relatively Robust Representations). Gram-Schmidt *//*  orthogonalization is avoided as far as possible. More specifically, *//*  the various steps of the algorithm are as follows. For the i-th *//*  unreduced block of T, *//*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T *//*          is a relatively robust representation, *//*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high *//*         relative accuracy by the dqds algorithm, *//*     (c) If there is a cluster of close eigenvalues, "choose" sigma_i *//*         close to the cluster, and go to step (a), *//*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, *//*         compute the corresponding eigenvector by forming a *//*         rank-revealing twisted factorization. *//*  The desired accuracy of the output can be specified by the input *//*  parameter ABSTOL. *//*  For more details, see "A new O(n^2) algorithm for the symmetric *//*  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, *//*  Computer Science Division Technical Report No. UCB//CSD-97-971, *//*  UC Berkeley, May 1997. *//*  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested *//*  on machines which conform to the ieee-754 floating point standard. *//*  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and *//*  when partial spectrum requests are made. *//*  Normal execution of DSTEMR may create NaNs and infinities and *//*  hence may abort due to a floating point exception in environments *//*  which do not handle NaNs and infinities in the ieee standard default *//*  manner. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and *//* ********* DSTEIN are called *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the tridiagonal matrix *//*          A. *//*          On exit, D may be multiplied by a constant factor chosen *//*          to avoid over/underflow in computing the eigenvalues. *//*  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix A in elements 1 to N-1 of E. *//*          On exit, E may be multiplied by a constant factor chosen *//*          to avoid over/underflow in computing the eigenvalues. *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  ABSTOL  (input) DOUBLE PRECISION *//*          The absolute error tolerance for the eigenvalues. *//*          An approximate eigenvalue is accepted as converged *//*          when it is determined to lie in an interval [a,b] *//*          of width less than or equal to *//*                  ABSTOL + EPS *   max( |a|,|b| ) , *//*          where EPS is the machine precision.  If ABSTOL is less than *//*          or equal to zero, then  EPS*|T|  will be used in its place, *//*          where |T| is the 1-norm of the tridiagonal matrix obtained *//*          by reducing A to tridiagonal form. *//*          See "Computing Small Singular Values of Bidiagonal Matrices *//*          with Guaranteed High Relative Accuracy," by Demmel and *//*          Kahan, LAPACK Working Note #3. *//*          If high relative accuracy is important, set ABSTOL to *//*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that *//*          eigenvalues are computed to high relative accuracy when *//*          possible in future releases.  The current code does not *//*          make any guarantees about high relative accuracy, but *//*          future releases will. See J. Barlow and J. Demmel, *//*          "Computing Accurate Eigensystems of Scaled Diagonally *//*          Dominant Matrices", LAPACK Working Note #7, for a discussion *//*          of which matrices define their eigenvalues to high relative *//*          accuracy. *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          The first M elements contain the selected eigenvalues in *//*          ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) *//*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z *//*          contain the orthonormal eigenvectors of the matrix A *//*          corresponding to the selected eigenvalues, with the i-th *//*          column of Z holding the eigenvector associated with W(i). *//*          Note: the user must ensure that at least max(1,M) columns are *//*          supplied in the array Z; if RANGE = 'V', the exact value of M *//*          is not known in advance and an upper bound must be used. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) *//*          The support of the eigenvectors in Z, i.e., the indices *//*          indicating the nonzero elements in Z. The i-th eigenvector *//*          is nonzero only in elements ISUPPZ( 2*i-1 ) through *//*          ISUPPZ( 2*i ). *//* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal (and *//*          minimal) LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,20*N). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal sizes of the WORK and IWORK *//*          arrays, returns these values as the first entries of the WORK *//*          and IWORK arrays, and no error message related to LWORK or *//*          LIWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal (and *//*          minimal) LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal sizes of the WORK and *//*          IWORK arrays, returns these values as the first entries of *//*          the WORK and IWORK arrays, and no error message related to *//*          LWORK or LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  Internal error *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Inderjit Dhillon, IBM Almaden, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Ken Stanley, Computer Science Division, University of *//*       California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --isuppz;    --work;    --iwork;    /* Function Body */    ieeeok = _starpu_ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4);    wantz = _starpu_lsame_(jobz, "V");    alleig = _starpu_lsame_(range, "A");    valeig = _starpu_lsame_(range, "V");    indeig = _starpu_lsame_(range, "I");    lquery = *lwork == -1 || *liwork == -1;/* Computing MAX */    i__1 = 1, i__2 = *n * 20;    lwmin = max(i__1,i__2);/* Computing MAX */    i__1 = 1, i__2 = *n * 10;    liwmin = max(i__1,i__2);    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (alleig || valeig || indeig)) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else {	if (valeig) {	    if (*n > 0 && *vu <= *vl) {		*info = -7;	    }	} else if (indeig) {	    if (*il < 1 || *il > max(1,*n)) {		*info = -8;	    } else if (*iu < min(*n,*il) || *iu > *n) {		*info = -9;	    }	}    }    if (*info == 0) {	if (*ldz < 1 || wantz && *ldz < *n) {	    *info = -14;	}    }    if (*info == 0) {	work[1] = (doublereal) lwmin;	iwork[1] = liwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -17;	} else if (*liwork < liwmin && ! lquery) {	    *info = -19;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSTEVR", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    *m = 0;    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (alleig || indeig) {	    *m = 1;	    w[1] = d__[1];	} else {	    if (*vl < d__[1] && *vu >= d__[1]) {		*m = 1;		w[1] = d__[1];	    }	}	if (wantz) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);/* Computing MIN */    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));    rmax = min(d__1,d__2);/*     Scale matrix to allowable range, if necessary. */    iscale = 0;    vll = *vl;    vuu = *vu;    tnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);    if (tnrm > 0. && tnrm < rmin) {	iscale = 1;	sigma = rmin / tnrm;    } else if (tnrm > rmax) {	iscale = 1;	sigma = rmax / tnrm;    }    if (iscale == 1) {	_starpu_dscal_(n, &sigma, &d__[1], &c__1);	i__1 = *n - 1;	_starpu_dscal_(&i__1, &sigma, &e[1], &c__1);	if (valeig) {	    vll = *vl * sigma;	    vuu = *vu * sigma;	}    }/*     Initialize indices into workspaces.  Note: These indices are used only *//*     if DSTERF or DSTEMR fail. *//*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and *//*     stores the block indices of each of the M<=N eigenvalues. */    indibl = 1;/*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and *//*     stores the starting and finishing indices of each block. */    indisp = indibl + *n;/*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors *//*     that corresponding to eigenvectors that fail to converge in *//*     DSTEIN.  This information is discarded; if any fail, the driver *//*     returns INFO > 0. */    indifl = indisp + *n;/*     INDIWO is the offset of the remaining integer workspace. */    indiwo = indisp + *n;/*     If all eigenvalues are desired, then *//*     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then *//*     try DSTEBZ. */    test = FALSE_;    if (indeig) {	if (*il == 1 && *iu == *n) {	    test = TRUE_;	}    }    if ((alleig || test) && ieeeok == 1) {	i__1 = *n - 1;	_starpu_dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1);	if (! wantz) {	    _starpu_dcopy_(n, &d__[1], &c__1, &w[1], &c__1);	    _starpu_dsterf_(n, &w[1], &work[1], info);	} else {	    _starpu_dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1);	    if (*abstol <= *n * 2. * eps) {		tryrac = TRUE_;	    } else {		tryrac = FALSE_;	    }	    i__1 = *lwork - (*n << 1);	    _starpu_dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, 		    &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[		    (*n << 1) + 1], &i__1, &iwork[1], liwork, info);	}	if (*info == 0) {	    *m = *n;	    goto L10;	}	*info = 0;    }/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */    if (wantz) {	*(unsigned char *)order = 'B';    } else {	*(unsigned char *)order = 'E';    }    _starpu_dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &	    nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[	    indiwo], info);    if (wantz) {	_starpu_dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &		z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], 		info);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */L10:    if (iscale == 1) {	if (*info == 0) {	    imax = *m;	} else {	    imax = *info - 1;	}	d__1 = 1. / sigma;	_starpu_dscal_(&imax, &d__1, &w[1], &c__1);    }/*     If eigenvalues are not in order, then sort them, along with *//*     eigenvectors. */    if (wantz) {	i__1 = *m - 1;	for (j = 1; j <= i__1; ++j) {	    i__ = 0;	    tmp1 = w[j];	    i__2 = *m;	    for (jj = j + 1; jj <= i__2; ++jj) {		if (w[jj] < tmp1) {		    i__ = jj;		    tmp1 = w[jj];		}/* L20: */	    }	    if (i__ != 0) {		itmp1 = iwork[i__];		w[i__] = w[j];		iwork[i__] = iwork[j];		w[j] = tmp1;		iwork[j] = itmp1;		_starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 			 &c__1);	    }/* L30: */	}    }/*      Causes problems with tests 19 & 20: *//*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DSTEVR */} /* _starpu_dstevr_ */
 |