| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 | /* dstein.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__2 = 2;static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dstein_(integer *n, doublereal *d__, doublereal *e, 	integer *m, doublereal *w, integer *iblock, integer *isplit, 	doublereal *z__, integer *ldz, doublereal *work, integer *iwork, 	integer *ifail, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1, i__2, i__3;    doublereal d__1, d__2, d__3, d__4, d__5;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, b1, j1, bn;    doublereal xj, scl, eps, sep, nrm, tol;    integer its;    doublereal xjm, ztr, eps1;    integer jblk, nblk;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    integer jmax;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    integer iseed[4], gpind, iinfo;    extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_daxpy_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *);    doublereal ortol;    integer indrv1, indrv2, indrv3, indrv4, indrv5;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_dlagtf_(integer *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dlagts_(	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *);    integer nrmchk;    extern /* Subroutine */ int _starpu_dlarnv_(integer *, integer *, integer *, 	    doublereal *);    integer blksiz;    doublereal onenrm, dtpcrt, pertol;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEIN computes the eigenvectors of a real symmetric tridiagonal *//*  matrix T corresponding to specified eigenvalues, using inverse *//*  iteration. *//*  The maximum number of iterations allowed for each eigenvector is *//*  specified by an internal parameter MAXITS (currently set to 5). *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the tridiagonal matrix T. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of the tridiagonal matrix *//*          T, in elements 1 to N-1. *//*  M       (input) INTEGER *//*          The number of eigenvectors to be found.  0 <= M <= N. *//*  W       (input) DOUBLE PRECISION array, dimension (N) *//*          The first M elements of W contain the eigenvalues for *//*          which eigenvectors are to be computed.  The eigenvalues *//*          should be grouped by split-off block and ordered from *//*          smallest to largest within the block.  ( The output array *//*          W from DSTEBZ with ORDER = 'B' is expected here. ) *//*  IBLOCK  (input) INTEGER array, dimension (N) *//*          The submatrix indices associated with the corresponding *//*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to *//*          the first submatrix from the top, =2 if W(i) belongs to *//*          the second submatrix, etc.  ( The output array IBLOCK *//*          from DSTEBZ is expected here. ) *//*  ISPLIT  (input) INTEGER array, dimension (N) *//*          The splitting points, at which T breaks up into submatrices. *//*          The first submatrix consists of rows/columns 1 to *//*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 *//*          through ISPLIT( 2 ), etc. *//*          ( The output array ISPLIT from DSTEBZ is expected here. ) *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, M) *//*          The computed eigenvectors.  The eigenvector associated *//*          with the eigenvalue W(i) is stored in the i-th column of *//*          Z.  Any vector which fails to converge is set to its current *//*          iterate after MAXITS iterations. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  IFAIL   (output) INTEGER array, dimension (M) *//*          On normal exit, all elements of IFAIL are zero. *//*          If one or more eigenvectors fail to converge after *//*          MAXITS iterations, then their indices are stored in *//*          array IFAIL. *//*  INFO    (output) INTEGER *//*          = 0: successful exit. *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, then i eigenvectors failed to converge *//*               in MAXITS iterations.  Their indices are stored in *//*               array IFAIL. *//*  Internal Parameters *//*  =================== *//*  MAXITS  INTEGER, default = 5 *//*          The maximum number of iterations performed. *//*  EXTRA   INTEGER, default = 2 *//*          The number of iterations performed after norm growth *//*          criterion is satisfied, should be at least 1. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    --w;    --iblock;    --isplit;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    --ifail;    /* Function Body */    *info = 0;    i__1 = *m;    for (i__ = 1; i__ <= i__1; ++i__) {	ifail[i__] = 0;/* L10: */    }    if (*n < 0) {	*info = -1;    } else if (*m < 0 || *m > *n) {	*info = -4;    } else if (*ldz < max(1,*n)) {	*info = -9;    } else {	i__1 = *m;	for (j = 2; j <= i__1; ++j) {	    if (iblock[j] < iblock[j - 1]) {		*info = -6;		goto L30;	    }	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {		*info = -5;		goto L30;	    }/* L20: */	}L30:	;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSTEIN", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *m == 0) {	return 0;    } else if (*n == 1) {	z__[z_dim1 + 1] = 1.;	return 0;    }/*     Get machine constants. */    eps = _starpu_dlamch_("Precision");/*     Initialize seed for random number generator DLARNV. */    for (i__ = 1; i__ <= 4; ++i__) {	iseed[i__ - 1] = 1;/* L40: */    }/*     Initialize pointers. */    indrv1 = 0;    indrv2 = indrv1 + *n;    indrv3 = indrv2 + *n;    indrv4 = indrv3 + *n;    indrv5 = indrv4 + *n;/*     Compute eigenvectors of matrix blocks. */    j1 = 1;    i__1 = iblock[*m];    for (nblk = 1; nblk <= i__1; ++nblk) {/*        Find starting and ending indices of block nblk. */	if (nblk == 1) {	    b1 = 1;	} else {	    b1 = isplit[nblk - 1] + 1;	}	bn = isplit[nblk];	blksiz = bn - b1 + 1;	if (blksiz == 1) {	    goto L60;	}	gpind = b1;/*        Compute reorthogonalization criterion and stopping criterion. */	onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));/* Computing MAX */	d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],		 abs(d__2));	onenrm = max(d__3,d__4);	i__2 = bn - 1;	for (i__ = b1 + 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[		    i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));	    onenrm = max(d__4,d__5);/* L50: */	}	ortol = onenrm * .001;	dtpcrt = sqrt(.1 / blksiz);/*        Loop through eigenvalues of block nblk. */L60:	jblk = 0;	i__2 = *m;	for (j = j1; j <= i__2; ++j) {	    if (iblock[j] != nblk) {		j1 = j;		goto L160;	    }	    ++jblk;	    xj = w[j];/*           Skip all the work if the block size is one. */	    if (blksiz == 1) {		work[indrv1 + 1] = 1.;		goto L120;	    }/*           If eigenvalues j and j-1 are too close, add a relatively *//*           small perturbation. */	    if (jblk > 1) {		eps1 = (d__1 = eps * xj, abs(d__1));		pertol = eps1 * 10.;		sep = xj - xjm;		if (sep < pertol) {		    xj = xjm + pertol;		}	    }	    its = 0;	    nrmchk = 0;/*           Get random starting vector. */	    _starpu_dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);/*           Copy the matrix T so it won't be destroyed in factorization. */	    _starpu_dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);	    i__3 = blksiz - 1;	    _starpu_dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);	    i__3 = blksiz - 1;	    _starpu_dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);/*           Compute LU factors with partial pivoting  ( PT = LU ) */	    tol = 0.;	    _starpu_dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);/*           Update iteration count. */L70:	    ++its;	    if (its > 5) {		goto L100;	    }/*           Normalize and scale the righthand side vector Pb. *//* Computing MAX */	    d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));	    scl = blksiz * onenrm * max(d__2,d__3) / _starpu_dasum_(&blksiz, &work[		    indrv1 + 1], &c__1);	    _starpu_dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);/*           Solve the system LU = Pb. */	    _starpu_dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[		    indrv1 + 1], &tol, &iinfo);/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are *//*           close enough. */	    if (jblk == 1) {		goto L90;	    }	    if ((d__1 = xj - xjm, abs(d__1)) > ortol) {		gpind = j;	    }	    if (gpind != j) {		i__3 = j - 1;		for (i__ = gpind; i__ <= i__3; ++i__) {		    ztr = -_starpu_ddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 + 			    i__ * z_dim1], &c__1);		    _starpu_daxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &			    work[indrv1 + 1], &c__1);/* L80: */		}	    }/*           Check the infinity norm of the iterate. */L90:	    jmax = _starpu_idamax_(&blksiz, &work[indrv1 + 1], &c__1);	    nrm = (d__1 = work[indrv1 + jmax], abs(d__1));/*           Continue for additional iterations after norm reaches *//*           stopping criterion. */	    if (nrm < dtpcrt) {		goto L70;	    }	    ++nrmchk;	    if (nrmchk < 3) {		goto L70;	    }	    goto L110;/*           If stopping criterion was not satisfied, update info and *//*           store eigenvector number in array ifail. */L100:	    ++(*info);	    ifail[*info] = j;/*           Accept iterate as jth eigenvector. */L110:	    scl = 1. / _starpu_dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);	    jmax = _starpu_idamax_(&blksiz, &work[indrv1 + 1], &c__1);	    if (work[indrv1 + jmax] < 0.) {		scl = -scl;	    }	    _starpu_dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);L120:	    i__3 = *n;	    for (i__ = 1; i__ <= i__3; ++i__) {		z__[i__ + j * z_dim1] = 0.;/* L130: */	    }	    i__3 = blksiz;	    for (i__ = 1; i__ <= i__3; ++i__) {		z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];/* L140: */	    }/*           Save the shift to check eigenvalue spacing at next *//*           iteration. */	    xjm = xj;/* L150: */	}L160:	;    }    return 0;/*     End of DSTEIN */} /* _starpu_dstein_ */
 |