| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 | /* dspev.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dspev_(char *jobz, char *uplo, integer *n, doublereal *	ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 	integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal eps;    integer inde;    doublereal anrm;    integer imax;    doublereal rmin, rmax;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    logical wantz;    extern doublereal _starpu_dlamch_(char *);    integer iscale;    doublereal safmin;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    extern doublereal _starpu_dlansp_(char *, char *, integer *, doublereal *, 	    doublereal *);    integer indtau;    extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 	     integer *);    integer indwrk;    extern /* Subroutine */ int _starpu_dopgtr_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *), _starpu_dsptrd_(char *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *), _starpu_dsteqr_(char *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    doublereal smlnum;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPEV computes all the eigenvalues and, optionally, eigenvectors of a *//*  real symmetric matrix A in packed storage. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *//*          On exit, AP is overwritten by values generated during the *//*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal *//*          and first superdiagonal of the tridiagonal matrix T overwrite *//*          the corresponding elements of A, and if UPLO = 'L', the *//*          diagonal and first subdiagonal of T overwrite the *//*          corresponding elements of A. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal *//*          eigenvectors of the matrix A, with the i-th column of Z *//*          holding the eigenvector associated with W(i). *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = i, the algorithm failed to converge; i *//*                off-diagonal elements of an intermediate tridiagonal *//*                form did not converge to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    wantz = _starpu_lsame_(jobz, "V");    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (_starpu_lsame_(uplo, "U") || _starpu_lsame_(uplo, 	    "L"))) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSPEV ", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	w[1] = ap[1];	if (wantz) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);    rmax = sqrt(bignum);/*     Scale matrix to allowable range, if necessary. */    anrm = _starpu_dlansp_("M", uplo, n, &ap[1], &work[1]);    iscale = 0;    if (anrm > 0. && anrm < rmin) {	iscale = 1;	sigma = rmin / anrm;    } else if (anrm > rmax) {	iscale = 1;	sigma = rmax / anrm;    }    if (iscale == 1) {	i__1 = *n * (*n + 1) / 2;	_starpu_dscal_(&i__1, &sigma, &ap[1], &c__1);    }/*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */    inde = 1;    indtau = inde + *n;    _starpu_dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call *//*     DOPGTR to generate the orthogonal matrix, then call DSTEQR. */    if (! wantz) {	_starpu_dsterf_(n, &w[1], &work[inde], info);    } else {	indwrk = indtau + *n;	_starpu_dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[		indwrk], &iinfo);	_starpu_dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[		indtau], info);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */    if (iscale == 1) {	if (*info == 0) {	    imax = *n;	} else {	    imax = *info - 1;	}	d__1 = 1. / sigma;	_starpu_dscal_(&imax, &d__1, &w[1], &c__1);    }    return 0;/*     End of DSPEV */} /* _starpu_dspev_ */
 |