| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825 | /* dlatps.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b36 = .5;/* Subroutine */ int _starpu_dlatps_(char *uplo, char *trans, char *diag, char *	normin, integer *n, doublereal *ap, doublereal *x, doublereal *scale, 	doublereal *cnorm, integer *info){    /* System generated locals */    integer i__1, i__2, i__3;    doublereal d__1, d__2, d__3;    /* Local variables */    integer i__, j, ip;    doublereal xj, rec, tjj;    integer jinc, jlen;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal xbnd;    integer imax;    doublereal tmax, tjjs, xmax, grow, sumj;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical _starpu_lsame_(char *, char *);    doublereal tscal, uscal;    extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);    integer jlast;    extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int _starpu_dtpsv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    logical notran;    integer jfirst;    doublereal smlnum;    logical nounit;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLATPS solves one of the triangular systems *//*     A *x = s*b  or  A'*x = s*b *//*  with scaling to prevent overflow, where A is an upper or lower *//*  triangular matrix stored in packed form.  Here A' denotes the *//*  transpose of A, x and b are n-element vectors, and s is a scaling *//*  factor, usually less than or equal to 1, chosen so that the *//*  components of x will be less than the overflow threshold.  If the *//*  unscaled problem will not cause overflow, the Level 2 BLAS routine *//*  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j), *//*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the matrix A is upper or lower triangular. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the operation applied to A. *//*          = 'N':  Solve A * x = s*b  (No transpose) *//*          = 'T':  Solve A'* x = s*b  (Transpose) *//*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose) *//*  DIAG    (input) CHARACTER*1 *//*          Specifies whether or not the matrix A is unit triangular. *//*          = 'N':  Non-unit triangular *//*          = 'U':  Unit triangular *//*  NORMIN  (input) CHARACTER*1 *//*          Specifies whether CNORM has been set or not. *//*          = 'Y':  CNORM contains the column norms on entry *//*          = 'N':  CNORM is not set on entry.  On exit, the norms will *//*                  be computed and stored in CNORM. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The upper or lower triangular matrix A, packed columnwise in *//*          a linear array.  The j-th column of A is stored in the array *//*          AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*  X       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the right hand side b of the triangular system. *//*          On exit, X is overwritten by the solution vector x. *//*  SCALE   (output) DOUBLE PRECISION *//*          The scaling factor s for the triangular system *//*             A * x = s*b  or  A'* x = s*b. *//*          If SCALE = 0, the matrix A is singular or badly scaled, and *//*          the vector x is an exact or approximate solution to A*x = 0. *//*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N) *//*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) *//*          contains the norm of the off-diagonal part of the j-th column *//*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal *//*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) *//*          must be greater than or equal to the 1-norm. *//*          If NORMIN = 'N', CNORM is an output argument and CNORM(j) *//*          returns the 1-norm of the offdiagonal part of the j-th column *//*          of A. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -k, the k-th argument had an illegal value *//*  Further Details *//*  ======= ======= *//*  A rough bound on x is computed; if that is less than overflow, DTPSV *//*  is called, otherwise, specific code is used which checks for possible *//*  overflow or divide-by-zero at every operation. *//*  A columnwise scheme is used for solving A*x = b.  The basic algorithm *//*  if A is lower triangular is *//*       x[1:n] := b[1:n] *//*       for j = 1, ..., n *//*            x(j) := x(j) / A(j,j) *//*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] *//*       end *//*  Define bounds on the components of x after j iterations of the loop: *//*     M(j) = bound on x[1:j] *//*     G(j) = bound on x[j+1:n] *//*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. *//*  Then for iteration j+1 we have *//*     M(j+1) <= G(j) / | A(j+1,j+1) | *//*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | *//*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) *//*  where CNORM(j+1) is greater than or equal to the infinity-norm of *//*  column j+1 of A, not counting the diagonal.  Hence *//*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) *//*                  1<=i<=j *//*  and *//*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) *//*                                   1<=i< j *//*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the *//*  reciprocal of the largest M(j), j=1,..,n, is larger than *//*  max(underflow, 1/overflow). *//*  The bound on x(j) is also used to determine when a step in the *//*  columnwise method can be performed without fear of overflow.  If *//*  the computed bound is greater than a large constant, x is scaled to *//*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to *//*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found. *//*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic *//*  algorithm for A upper triangular is *//*       for j = 1, ..., n *//*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) *//*       end *//*  We simultaneously compute two bounds *//*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j *//*       M(j) = bound on x(i), 1<=i<=j *//*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we *//*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. *//*  Then the bound on x(j) is *//*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | *//*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) *//*                      1<=i<=j *//*  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater *//*  than max(underflow, 1/overflow). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --cnorm;    --x;    --ap;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    notran = _starpu_lsame_(trans, "N");    nounit = _starpu_lsame_(diag, "N");/*     Test the input parameters. */    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (! notran && ! _starpu_lsame_(trans, "T") && ! 	    _starpu_lsame_(trans, "C")) {	*info = -2;    } else if (! nounit && ! _starpu_lsame_(diag, "U")) {	*info = -3;    } else if (! _starpu_lsame_(normin, "Y") && ! _starpu_lsame_(normin, 	     "N")) {	*info = -4;    } else if (*n < 0) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLATPS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Determine machine dependent parameters to control overflow. */    smlnum = _starpu_dlamch_("Safe minimum") / _starpu_dlamch_("Precision");    bignum = 1. / smlnum;    *scale = 1.;    if (_starpu_lsame_(normin, "N")) {/*        Compute the 1-norm of each column, not including the diagonal. */	if (upper) {/*           A is upper triangular. */	    ip = 1;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = j - 1;		cnorm[j] = _starpu_dasum_(&i__2, &ap[ip], &c__1);		ip += j;/* L10: */	    }	} else {/*           A is lower triangular. */	    ip = 1;	    i__1 = *n - 1;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n - j;		cnorm[j] = _starpu_dasum_(&i__2, &ap[ip + 1], &c__1);		ip = ip + *n - j + 1;/* L20: */	    }	    cnorm[*n] = 0.;	}    }/*     Scale the column norms by TSCAL if the maximum element in CNORM is *//*     greater than BIGNUM. */    imax = _starpu_idamax_(n, &cnorm[1], &c__1);    tmax = cnorm[imax];    if (tmax <= bignum) {	tscal = 1.;    } else {	tscal = 1. / (smlnum * tmax);	_starpu_dscal_(n, &tscal, &cnorm[1], &c__1);    }/*     Compute a bound on the computed solution vector to see if the *//*     Level 2 BLAS routine DTPSV can be used. */    j = _starpu_idamax_(n, &x[1], &c__1);    xmax = (d__1 = x[j], abs(d__1));    xbnd = xmax;    if (notran) {/*        Compute the growth in A * x = b. */	if (upper) {	    jfirst = *n;	    jlast = 1;	    jinc = -1;	} else {	    jfirst = 1;	    jlast = *n;	    jinc = 1;	}	if (tscal != 1.) {	    grow = 0.;	    goto L50;	}	if (nounit) {/*           A is non-unit triangular. *//*           Compute GROW = 1/G(j) and XBND = 1/M(j). *//*           Initially, G(0) = max{x(i), i=1,...,n}. */	    grow = 1. / max(xbnd,smlnum);	    xbnd = grow;	    ip = jfirst * (jfirst + 1) / 2;	    jlen = *n;	    i__1 = jlast;	    i__2 = jinc;	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/*              Exit the loop if the growth factor is too small. */		if (grow <= smlnum) {		    goto L50;		}/*              M(j) = G(j-1) / abs(A(j,j)) */		tjj = (d__1 = ap[ip], abs(d__1));/* Computing MIN */		d__1 = xbnd, d__2 = min(1.,tjj) * grow;		xbnd = min(d__1,d__2);		if (tjj + cnorm[j] >= smlnum) {/*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */		    grow *= tjj / (tjj + cnorm[j]);		} else {/*                 G(j) could overflow, set GROW to 0. */		    grow = 0.;		}		ip += jinc * jlen;		--jlen;/* L30: */	    }	    grow = xbnd;	} else {/*           A is unit triangular. *//*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. *//* Computing MIN */	    d__1 = 1., d__2 = 1. / max(xbnd,smlnum);	    grow = min(d__1,d__2);	    i__2 = jlast;	    i__1 = jinc;	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {/*              Exit the loop if the growth factor is too small. */		if (grow <= smlnum) {		    goto L50;		}/*              G(j) = G(j-1)*( 1 + CNORM(j) ) */		grow *= 1. / (cnorm[j] + 1.);/* L40: */	    }	}L50:	;    } else {/*        Compute the growth in A' * x = b. */	if (upper) {	    jfirst = 1;	    jlast = *n;	    jinc = 1;	} else {	    jfirst = *n;	    jlast = 1;	    jinc = -1;	}	if (tscal != 1.) {	    grow = 0.;	    goto L80;	}	if (nounit) {/*           A is non-unit triangular. *//*           Compute GROW = 1/G(j) and XBND = 1/M(j). *//*           Initially, M(0) = max{x(i), i=1,...,n}. */	    grow = 1. / max(xbnd,smlnum);	    xbnd = grow;	    ip = jfirst * (jfirst + 1) / 2;	    jlen = 1;	    i__1 = jlast;	    i__2 = jinc;	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/*              Exit the loop if the growth factor is too small. */		if (grow <= smlnum) {		    goto L80;		}/*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */		xj = cnorm[j] + 1.;/* Computing MIN */		d__1 = grow, d__2 = xbnd / xj;		grow = min(d__1,d__2);/*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */		tjj = (d__1 = ap[ip], abs(d__1));		if (xj > tjj) {		    xbnd *= tjj / xj;		}		++jlen;		ip += jinc * jlen;/* L60: */	    }	    grow = min(grow,xbnd);	} else {/*           A is unit triangular. *//*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. *//* Computing MIN */	    d__1 = 1., d__2 = 1. / max(xbnd,smlnum);	    grow = min(d__1,d__2);	    i__2 = jlast;	    i__1 = jinc;	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {/*              Exit the loop if the growth factor is too small. */		if (grow <= smlnum) {		    goto L80;		}/*              G(j) = ( 1 + CNORM(j) )*G(j-1) */		xj = cnorm[j] + 1.;		grow /= xj;/* L70: */	    }	}L80:	;    }    if (grow * tscal > smlnum) {/*        Use the Level 2 BLAS solve if the reciprocal of the bound on *//*        elements of X is not too small. */	_starpu_dtpsv_(uplo, trans, diag, n, &ap[1], &x[1], &c__1);    } else {/*        Use a Level 1 BLAS solve, scaling intermediate results. */	if (xmax > bignum) {/*           Scale X so that its components are less than or equal to *//*           BIGNUM in absolute value. */	    *scale = bignum / xmax;	    _starpu_dscal_(n, scale, &x[1], &c__1);	    xmax = bignum;	}	if (notran) {/*           Solve A * x = b */	    ip = jfirst * (jfirst + 1) / 2;	    i__1 = jlast;	    i__2 = jinc;	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/*              Compute x(j) = b(j) / A(j,j), scaling x if necessary. */		xj = (d__1 = x[j], abs(d__1));		if (nounit) {		    tjjs = ap[ip] * tscal;		} else {		    tjjs = tscal;		    if (tscal == 1.) {			goto L100;		    }		}		tjj = abs(tjjs);		if (tjj > smlnum) {/*                    abs(A(j,j)) > SMLNUM: */		    if (tjj < 1.) {			if (xj > tjj * bignum) {/*                          Scale x by 1/b(j). */			    rec = 1. / xj;			    _starpu_dscal_(n, &rec, &x[1], &c__1);			    *scale *= rec;			    xmax *= rec;			}		    }		    x[j] /= tjjs;		    xj = (d__1 = x[j], abs(d__1));		} else if (tjj > 0.) {/*                    0 < abs(A(j,j)) <= SMLNUM: */		    if (xj > tjj * bignum) {/*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM *//*                       to avoid overflow when dividing by A(j,j). */			rec = tjj * bignum / xj;			if (cnorm[j] > 1.) {/*                          Scale by 1/CNORM(j) to avoid overflow when *//*                          multiplying x(j) times column j. */			    rec /= cnorm[j];			}			_starpu_dscal_(n, &rec, &x[1], &c__1);			*scale *= rec;			xmax *= rec;		    }		    x[j] /= tjjs;		    xj = (d__1 = x[j], abs(d__1));		} else {/*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and *//*                    scale = 0, and compute a solution to A*x = 0. */		    i__3 = *n;		    for (i__ = 1; i__ <= i__3; ++i__) {			x[i__] = 0.;/* L90: */		    }		    x[j] = 1.;		    xj = 1.;		    *scale = 0.;		    xmax = 0.;		}L100:/*              Scale x if necessary to avoid overflow when adding a *//*              multiple of column j of A. */		if (xj > 1.) {		    rec = 1. / xj;		    if (cnorm[j] > (bignum - xmax) * rec) {/*                    Scale x by 1/(2*abs(x(j))). */			rec *= .5;			_starpu_dscal_(n, &rec, &x[1], &c__1);			*scale *= rec;		    }		} else if (xj * cnorm[j] > bignum - xmax) {/*                 Scale x by 1/2. */		    _starpu_dscal_(n, &c_b36, &x[1], &c__1);		    *scale *= .5;		}		if (upper) {		    if (j > 1) {/*                    Compute the update *//*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */			i__3 = j - 1;			d__1 = -x[j] * tscal;			_starpu_daxpy_(&i__3, &d__1, &ap[ip - j + 1], &c__1, &x[1], &				c__1);			i__3 = j - 1;			i__ = _starpu_idamax_(&i__3, &x[1], &c__1);			xmax = (d__1 = x[i__], abs(d__1));		    }		    ip -= j;		} else {		    if (j < *n) {/*                    Compute the update *//*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */			i__3 = *n - j;			d__1 = -x[j] * tscal;			_starpu_daxpy_(&i__3, &d__1, &ap[ip + 1], &c__1, &x[j + 1], &				c__1);			i__3 = *n - j;			i__ = j + _starpu_idamax_(&i__3, &x[j + 1], &c__1);			xmax = (d__1 = x[i__], abs(d__1));		    }		    ip = ip + *n - j + 1;		}/* L110: */	    }	} else {/*           Solve A' * x = b */	    ip = jfirst * (jfirst + 1) / 2;	    jlen = 1;	    i__2 = jlast;	    i__1 = jinc;	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {/*              Compute x(j) = b(j) - sum A(k,j)*x(k). *//*                                    k<>j */		xj = (d__1 = x[j], abs(d__1));		uscal = tscal;		rec = 1. / max(xmax,1.);		if (cnorm[j] > (bignum - xj) * rec) {/*                 If x(j) could overflow, scale x by 1/(2*XMAX). */		    rec *= .5;		    if (nounit) {			tjjs = ap[ip] * tscal;		    } else {			tjjs = tscal;		    }		    tjj = abs(tjjs);		    if (tjj > 1.) {/*                       Divide by A(j,j) when scaling x if A(j,j) > 1. *//* Computing MIN */			d__1 = 1., d__2 = rec * tjj;			rec = min(d__1,d__2);			uscal /= tjjs;		    }		    if (rec < 1.) {			_starpu_dscal_(n, &rec, &x[1], &c__1);			*scale *= rec;			xmax *= rec;		    }		}		sumj = 0.;		if (uscal == 1.) {/*                 If the scaling needed for A in the dot product is 1, *//*                 call DDOT to perform the dot product. */		    if (upper) {			i__3 = j - 1;			sumj = _starpu_ddot_(&i__3, &ap[ip - j + 1], &c__1, &x[1], &				c__1);		    } else if (j < *n) {			i__3 = *n - j;			sumj = _starpu_ddot_(&i__3, &ap[ip + 1], &c__1, &x[j + 1], &				c__1);		    }		} else {/*                 Otherwise, use in-line code for the dot product. */		    if (upper) {			i__3 = j - 1;			for (i__ = 1; i__ <= i__3; ++i__) {			    sumj += ap[ip - j + i__] * uscal * x[i__];/* L120: */			}		    } else if (j < *n) {			i__3 = *n - j;			for (i__ = 1; i__ <= i__3; ++i__) {			    sumj += ap[ip + i__] * uscal * x[j + i__];/* L130: */			}		    }		}		if (uscal == tscal) {/*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) *//*                 was not used to scale the dotproduct. */		    x[j] -= sumj;		    xj = (d__1 = x[j], abs(d__1));		    if (nounit) {/*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */			tjjs = ap[ip] * tscal;		    } else {			tjjs = tscal;			if (tscal == 1.) {			    goto L150;			}		    }		    tjj = abs(tjjs);		    if (tjj > smlnum) {/*                       abs(A(j,j)) > SMLNUM: */			if (tjj < 1.) {			    if (xj > tjj * bignum) {/*                             Scale X by 1/abs(x(j)). */				rec = 1. / xj;				_starpu_dscal_(n, &rec, &x[1], &c__1);				*scale *= rec;				xmax *= rec;			    }			}			x[j] /= tjjs;		    } else if (tjj > 0.) {/*                       0 < abs(A(j,j)) <= SMLNUM: */			if (xj > tjj * bignum) {/*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */			    rec = tjj * bignum / xj;			    _starpu_dscal_(n, &rec, &x[1], &c__1);			    *scale *= rec;			    xmax *= rec;			}			x[j] /= tjjs;		    } else {/*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and *//*                       scale = 0, and compute a solution to A'*x = 0. */			i__3 = *n;			for (i__ = 1; i__ <= i__3; ++i__) {			    x[i__] = 0.;/* L140: */			}			x[j] = 1.;			*scale = 0.;			xmax = 0.;		    }L150:		    ;		} else {/*                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot *//*                 product has already been divided by 1/A(j,j). */		    x[j] = x[j] / tjjs - sumj;		}/* Computing MAX */		d__2 = xmax, d__3 = (d__1 = x[j], abs(d__1));		xmax = max(d__2,d__3);		++jlen;		ip += jinc * jlen;/* L160: */	    }	}	*scale /= tscal;    }/*     Scale the column norms by 1/TSCAL for return. */    if (tscal != 1.) {	d__1 = 1. / tscal;	_starpu_dscal_(n, &d__1, &cnorm[1], &c__1);    }    return 0;/*     End of DLATPS */} /* _starpu_dlatps_ */
 |