| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 | /* dlansf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal _starpu_dlansf_(char *norm, char *transr, char *uplo, integer *n, 	doublereal *a, doublereal *work){    /* System generated locals */    integer i__1, i__2;    doublereal ret_val, d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k, l;    doublereal s;    integer n1;    doublereal aa;    integer lda, ifm, noe, ilu;    doublereal scale;    extern logical _starpu_lsame_(char *, char *);    doublereal value;    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLANSF returns the value of the one norm, or the Frobenius norm, or *//*  the infinity norm, or the element of largest absolute value of a *//*  real symmetric matrix A in RFP format. *//*  Description *//*  =========== *//*  DLANSF returns the value *//*     DLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm' *//*              ( *//*              ( norm1(A),         NORM = '1', 'O' or 'o' *//*              ( *//*              ( normI(A),         NORM = 'I' or 'i' *//*              ( *//*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' *//*  where  norm1  denotes the  one norm of a matrix (maximum column sum), *//*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and *//*  normF  denotes the  Frobenius norm of a matrix (square root of sum of *//*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER *//*          Specifies the value to be returned in DLANSF as described *//*          above. *//*  TRANSR  (input) CHARACTER *//*          Specifies whether the RFP format of A is normal or *//*          transposed format. *//*          = 'N':  RFP format is Normal; *//*          = 'T':  RFP format is Transpose. *//*  UPLO    (input) CHARACTER *//*           On entry, UPLO specifies whether the RFP matrix A came from *//*           an upper or lower triangular matrix as follows: *//*           = 'U': RFP A came from an upper triangular matrix; *//*           = 'L': RFP A came from a lower triangular matrix. *//*  N       (input) INTEGER *//*          The order of the matrix A. N >= 0. When N = 0, DLANSF is *//*          set to zero. *//*  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); *//*          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') *//*          part of the symmetric matrix A stored in RFP format. See the *//*          "Notes" below for more details. *//*          Unchanged on exit. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *//*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, *//*          WORK is not referenced. *//*  Notes *//*  ===== *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  even. We give an example where N = 6. *//*      AP is Upper             AP is Lower *//*   00 01 02 03 04 05       00 *//*      11 12 13 14 15       10 11 *//*         22 23 24 25       20 21 22 *//*            33 34 35       30 31 32 33 *//*               44 45       40 41 42 43 44 *//*                  55       50 51 52 53 54 55 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of *//*  the transpose of the first three columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of *//*  the transpose of the last three columns of AP lower. *//*  This covers the case N even and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        03 04 05                33 43 53 *//*        13 14 15                00 44 54 *//*        23 24 25                10 11 55 *//*        33 34 35                20 21 22 *//*        00 44 45                30 31 32 *//*        01 11 55                40 41 42 *//*        02 12 22                50 51 52 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 *//*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 *//*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 *//*  We first consider Rectangular Full Packed (RFP) Format when N is *//*  odd. We give an example where N = 5. *//*     AP is Upper                 AP is Lower *//*   00 01 02 03 04              00 *//*      11 12 13 14              10 11 *//*         22 23 24              20 21 22 *//*            33 34              30 31 32 33 *//*               44              40 41 42 43 44 *//*  Let TRANSR = 'N'. RFP holds AP as follows: *//*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last *//*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of *//*  the transpose of the first two columns of AP upper. *//*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first *//*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of *//*  the transpose of the last two columns of AP lower. *//*  This covers the case N odd and TRANSR = 'N'. *//*         RFP A                   RFP A *//*        02 03 04                00 33 43 *//*        12 13 14                10 11 44 *//*        22 23 24                20 21 22 *//*        00 33 34                30 31 32 *//*        01 11 44                40 41 42 *//*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the *//*  transpose of RFP A above. One therefore gets: *//*           RFP A                   RFP A *//*     02 12 22 00 01             00 10 20 30 40 50 *//*     03 13 23 33 11             33 11 21 31 41 51 *//*     04 14 24 34 44             43 44 22 32 42 52 *//*  Reference *//*  ========= *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    if (*n == 0) {	ret_val = 0.;	return ret_val;    }/*     set noe = 1 if n is odd. if n is even set noe=0 */    noe = 1;    if (*n % 2 == 0) {	noe = 0;    }/*     set ifm = 0 when form='T or 't' and 1 otherwise */    ifm = 1;    if (_starpu_lsame_(transr, "T")) {	ifm = 0;    }/*     set ilu = 0 when uplo='U or 'u' and 1 otherwise */    ilu = 1;    if (_starpu_lsame_(uplo, "U")) {	ilu = 0;    }/*     set lda = (n+1)/2 when ifm = 0 *//*     set lda = n when ifm = 1 and noe = 1 *//*     set lda = n+1 when ifm = 1 and noe = 0 */    if (ifm == 1) {	if (noe == 1) {	    lda = *n;	} else {/*           noe=0 */	    lda = *n + 1;	}    } else {/*        ifm=0 */	lda = (*n + 1) / 2;    }    if (_starpu_lsame_(norm, "M")) {/*       Find max(abs(A(i,j))). */	k = (*n + 1) / 2;	value = 0.;	if (noe == 1) {/*           n is odd */	    if (ifm == 1) {/*           A is n by k */		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    i__2 = *n - 1;		    for (i__ = 0; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(				d__1));			value = max(d__2,d__3);		    }		}	    } else {/*              xpose case; A is k by n */		i__1 = *n - 1;		for (j = 0; j <= i__1; ++j) {		    i__2 = k - 1;		    for (i__ = 0; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(				d__1));			value = max(d__2,d__3);		    }		}	    }	} else {/*           n is even */	    if (ifm == 1) {/*              A is n+1 by k */		i__1 = k - 1;		for (j = 0; j <= i__1; ++j) {		    i__2 = *n;		    for (i__ = 0; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(				d__1));			value = max(d__2,d__3);		    }		}	    } else {/*              xpose case; A is k by n+1 */		i__1 = *n;		for (j = 0; j <= i__1; ++j) {		    i__2 = k - 1;		    for (i__ = 0; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(				d__1));			value = max(d__2,d__3);		    }		}	    }	}    } else if (_starpu_lsame_(norm, "I") || _starpu_lsame_(norm, "O") || *(unsigned char *)norm == '1') {/*        Find normI(A) ( = norm1(A), since A is symmetric). */	if (ifm == 1) {	    k = *n / 2;	    if (noe == 1) {/*              n is odd */		if (ilu == 0) {		    i__1 = k - 1;		    for (i__ = 0; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    i__1 = k;		    for (j = 0; j <= i__1; ++j) {			s = 0.;			i__2 = k + j - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(i,j+k) */			    s += aa;			    work[i__] += aa;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j+k,j+k) */			work[j + k] = s + aa;			if (i__ == k + k) {			    goto L10;			}			++i__;			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j,j) */			work[j] += aa;			s = 0.;			i__2 = k - 1;			for (l = j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(l,j) */			    s += aa;			    work[l] += aa;			}			work[j] += s;		    }L10:		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		} else {/*                 ilu = 1 */		    ++k;/*                 k=(n+1)/2 for n odd and ilu=1 */		    i__1 = *n - 1;		    for (i__ = k; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    for (j = k - 1; j >= 0; --j) {			s = 0.;			i__1 = j - 2;			for (i__ = 0; i__ <= i__1; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(j+k,i+k) */			    s += aa;			    work[i__ + k] += aa;			}			if (j > 0) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(j+k,j+k) */			    s += aa;			    work[i__ + k] += s;/*                       i=j */			    ++i__;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j,j) */			work[j] = aa;			s = 0.;			i__1 = *n - 1;			for (l = j + 1; l <= i__1; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(l,j) */			    s += aa;			    work[l] += aa;			}			work[j] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		}	    } else {/*              n is even */		if (ilu == 0) {		    i__1 = k - 1;		    for (i__ = 0; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			s = 0.;			i__2 = k + j - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(i,j+k) */			    s += aa;			    work[i__] += aa;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j+k,j+k) */			work[j + k] = s + aa;			++i__;			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j,j) */			work[j] += aa;			s = 0.;			i__2 = k - 1;			for (l = j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(l,j) */			    s += aa;			    work[l] += aa;			}			work[j] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		} else {/*                 ilu = 1 */		    i__1 = *n - 1;		    for (i__ = k; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    for (j = k - 1; j >= 0; --j) {			s = 0.;			i__1 = j - 1;			for (i__ = 0; i__ <= i__1; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(j+k,i+k) */			    s += aa;			    work[i__ + k] += aa;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j+k,j+k) */			s += aa;			work[i__ + k] += s;/*                    i=j */			++i__;			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    -> A(j,j) */			work[j] = aa;			s = 0.;			i__1 = *n - 1;			for (l = j + 1; l <= i__1; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       -> A(l,j) */			    s += aa;			    work[l] += aa;			}			work[j] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		}	    }	} else {/*           ifm=0 */	    k = *n / 2;	    if (noe == 1) {/*              n is odd */		if (ilu == 0) {		    n1 = k;/*                 n/2 */		    ++k;/*                 k is the row size and lda */		    i__1 = *n - 1;		    for (i__ = n1; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    i__1 = n1 - 1;		    for (j = 0; j <= i__1; ++j) {			s = 0.;			i__2 = k - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,n1+i) */			    work[i__ + n1] += aa;			    s += aa;			}			work[j] = s;		    }/*                 j=n1=k-1 is special */		    s = (d__1 = a[j * lda], abs(d__1));/*                 A(k-1,k-1) */		    i__1 = k - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(k-1,i+n1) */			work[i__ + n1] += aa;			s += aa;		    }		    work[j] += s;		    i__1 = *n - 1;		    for (j = k; j <= i__1; ++j) {			s = 0.;			i__2 = j - k - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(i,j-k) */			    work[i__] += aa;			    s += aa;			}/*                    i=j-k */			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(j-k,j-k) */			s += aa;			work[j - k] += s;			++i__;			s = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(j,j) */			i__2 = *n - 1;			for (l = j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,l) */			    work[l] += aa;			    s += aa;			}			work[j] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		} else {/*                 ilu=1 */		    ++k;/*                 k=(n+1)/2 for n odd and ilu=1 */		    i__1 = *n - 1;		    for (i__ = k; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {/*                    process */			s = 0.;			i__2 = j - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,i) */			    work[i__] += aa;			    s += aa;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    i=j so process of A(j,j) */			s += aa;			work[j] = s;/*                    is initialised here */			++i__;/*                    i=j process A(j+k,j+k) */			aa = (d__1 = a[i__ + j * lda], abs(d__1));			s = aa;			i__2 = *n - 1;			for (l = k + j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(l,k+j) */			    s += aa;			    work[l] += aa;			}			work[k + j] += s;		    }/*                 j=k-1 is special :process col A(k-1,0:k-1) */		    s = 0.;		    i__1 = k - 2;		    for (i__ = 0; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(k,i) */			work[i__] += aa;			s += aa;		    }/*                 i=k-1 */		    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                 A(k-1,k-1) */		    s += aa;		    work[i__] = s;/*                 done with col j=k+1 */		    i__1 = *n - 1;		    for (j = k; j <= i__1; ++j) {/*                    process col j of A = A(j,0:k-1) */			s = 0.;			i__2 = k - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,i) */			    work[i__] += aa;			    s += aa;			}			work[j] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		}	    } else {/*              n is even */		if (ilu == 0) {		    i__1 = *n - 1;		    for (i__ = k; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			s = 0.;			i__2 = k - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,i+k) */			    work[i__ + k] += aa;			    s += aa;			}			work[j] = s;		    }/*                 j=k */		    aa = (d__1 = a[j * lda], abs(d__1));/*                 A(k,k) */		    s = aa;		    i__1 = k - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(k,k+i) */			work[i__ + k] += aa;			s += aa;		    }		    work[j] += s;		    i__1 = *n - 1;		    for (j = k + 1; j <= i__1; ++j) {			s = 0.;			i__2 = j - 2 - k;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(i,j-k-1) */			    work[i__] += aa;			    s += aa;			}/*                     i=j-1-k */			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(j-k-1,j-k-1) */			s += aa;			work[j - k - 1] += s;			++i__;			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(j,j) */			s = aa;			i__2 = *n - 1;			for (l = j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j,l) */			    work[l] += aa;			    s += aa;			}			work[j] += s;		    }/*                 j=n */		    s = 0.;		    i__1 = k - 2;		    for (i__ = 0; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(i,k-1) */			work[i__] += aa;			s += aa;		    }/*                 i=k-1 */		    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                 A(k-1,k-1) */		    s += aa;		    work[i__] += s;		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		} else {/*                 ilu=1 */		    i__1 = *n - 1;		    for (i__ = k; i__ <= i__1; ++i__) {			work[i__] = 0.;		    }/*                 j=0 is special :process col A(k:n-1,k) */		    s = abs(a[0]);/*                 A(k,k) */		    i__1 = k - 1;		    for (i__ = 1; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__], abs(d__1));/*                    A(k+i,k) */			work[i__ + k] += aa;			s += aa;		    }		    work[k] += s;		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {/*                    process */			s = 0.;			i__2 = j - 2;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j-1,i) */			    work[i__] += aa;			    s += aa;			}			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    i=j-1 so process of A(j-1,j-1) */			s += aa;			work[j - 1] = s;/*                    is initialised here */			++i__;/*                    i=j process A(j+k,j+k) */			aa = (d__1 = a[i__ + j * lda], abs(d__1));			s = aa;			i__2 = *n - 1;			for (l = k + j + 1; l <= i__2; ++l) {			    ++i__;			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(l,k+j) */			    s += aa;			    work[l] += aa;			}			work[k + j] += s;		    }/*                 j=k is special :process col A(k,0:k-1) */		    s = 0.;		    i__1 = k - 2;		    for (i__ = 0; i__ <= i__1; ++i__) {			aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                    A(k,i) */			work[i__] += aa;			s += aa;		    }/*                 i=k-1 */		    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                 A(k-1,k-1) */		    s += aa;		    work[i__] = s;/*                 done with col j=k+1 */		    i__1 = *n;		    for (j = k + 1; j <= i__1; ++j) {/*                    process col j-1 of A = A(j-1,0:k-1) */			s = 0.;			i__2 = k - 1;			for (i__ = 0; i__ <= i__2; ++i__) {			    aa = (d__1 = a[i__ + j * lda], abs(d__1));/*                       A(j-1,i) */			    work[i__] += aa;			    s += aa;			}			work[j - 1] += s;		    }		    i__ = _starpu_idamax_(n, work, &c__1);		    value = work[i__ - 1];		}	    }	}    } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {/*       Find normF(A). */	k = (*n + 1) / 2;	scale = 0.;	s = 1.;	if (noe == 1) {/*           n is odd */	    if (ifm == 1) {/*              A is normal */		if (ilu == 0) {/*                 A is upper */		    i__1 = k - 3;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 2;			_starpu_dlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale, 				 &s);/*                    L at A(k,0) */		    }		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			i__2 = k + j - 1;			_starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);/*                    trap U at A(0,0) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = k - 1;		    i__2 = lda + 1;		    _starpu_dlassq_(&i__1, &a[k], &i__2, &scale, &s);/*                 tri L at A(k,0) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[k - 1], &i__1, &scale, &s);/*                 tri U at A(k-1,0) */		} else {/*                 ilu=1 & A is lower */		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			i__2 = *n - j - 1;			_starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)				;/*                    trap L at A(0,0) */		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);/*                    U at A(0,1) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);/*                 tri L at A(0,0) */		    i__1 = k - 1;		    i__2 = lda + 1;		    _starpu_dlassq_(&i__1, &a[lda], &i__2, &scale, &s);/*                 tri U at A(0,1) */		}	    } else {/*              A is xpose */		if (ilu == 0) {/*                 A' is upper */		    i__1 = k - 2;		    for (j = 1; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);/*                    U at A(0,k) */		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);/*                    k by k-1 rect. at A(0,0) */		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 1;			_starpu_dlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &				scale, &s);/*                    L at A(0,k-1) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = k - 1;		    i__2 = lda + 1;		    _starpu_dlassq_(&i__1, &a[k * lda], &i__2, &scale, &s);/*                 tri U at A(0,k) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);/*                 tri L at A(0,k-1) */		} else {/*                 A' is lower */		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);/*                    U at A(0,0) */		    }		    i__1 = *n - 1;		    for (j = k; j <= i__1; ++j) {			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);/*                    k by k-1 rect. at A(0,k) */		    }		    i__1 = k - 3;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 2;			_starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)				;/*                    L at A(1,0) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);/*                 tri U at A(0,0) */		    i__1 = k - 1;		    i__2 = lda + 1;		    _starpu_dlassq_(&i__1, &a[1], &i__2, &scale, &s);/*                 tri L at A(1,0) */		}	    }	} else {/*           n is even */	    if (ifm == 1) {/*              A is normal */		if (ilu == 0) {/*                 A is upper */		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 1;			_starpu_dlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale, 				 &s);/*                    L at A(k+1,0) */		    }		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			i__2 = k + j;			_starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);/*                    trap U at A(0,0) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[k + 1], &i__1, &scale, &s);/*                 tri L at A(k+1,0) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[k], &i__1, &scale, &s);/*                 tri U at A(k,0) */		} else {/*                 ilu=1 & A is lower */		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			i__2 = *n - j - 1;			_starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)				;/*                    trap L at A(1,0) */		    }		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);/*                    U at A(0,0) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[1], &i__1, &scale, &s);/*                 tri L at A(1,0) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);/*                 tri U at A(0,0) */		}	    } else {/*              A is xpose */		if (ilu == 0) {/*                 A' is upper */		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);/*                    U at A(0,k+1) */		    }		    i__1 = k - 1;		    for (j = 0; j <= i__1; ++j) {			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);/*                    k by k rect. at A(0,0) */		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 1;			_starpu_dlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &				scale, &s);/*                    L at A(0,k) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);/*                 tri U at A(0,k+1) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[k * lda], &i__1, &scale, &s);/*                 tri L at A(0,k) */		} else {/*                 A' is lower */		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {			_starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);/*                    U at A(0,1) */		    }		    i__1 = *n;		    for (j = k + 1; j <= i__1; ++j) {			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);/*                    k by k rect. at A(0,k+1) */		    }		    i__1 = k - 2;		    for (j = 0; j <= i__1; ++j) {			i__2 = k - j - 1;			_starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)				;/*                    L at A(0,0) */		    }		    s += s;/*                 double s for the off diagonal elements */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, &a[lda], &i__1, &scale, &s);/*                 tri L at A(0,1) */		    i__1 = lda + 1;		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);/*                 tri U at A(0,0) */		}	    }	}	value = scale * sqrt(s);    }    ret_val = value;    return ret_val;/*     End of DLANSF */} /* _starpu_dlansf_ */
 |