| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | /* dlagv2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__2 = 2;static integer c__1 = 1;/* Subroutine */ int _starpu_dlagv2_(doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *	beta, doublereal *csl, doublereal *snl, doublereal *csr, doublereal *	snr){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset;    doublereal d__1, d__2, d__3, d__4, d__5, d__6;    /* Local variables */    doublereal r__, t, h1, h2, h3, wi, qq, rr, wr1, wr2, ulp;    extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dlag2_(	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *);    doublereal anorm, bnorm, scale1, scale2;    extern /* Subroutine */ int _starpu_dlasv2_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *);    extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);    doublereal ascale, bscale;    extern doublereal _starpu_dlamch_(char *);    doublereal safmin;    extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 *//*  matrix pencil (A,B) where B is upper triangular. This routine *//*  computes orthogonal (rotation) matrices given by CSL, SNL and CSR, *//*  SNR such that *//*  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 *//*     types), then *//*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ] *//*     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ] *//*     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ] *//*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ], *//*  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, *//*     then *//*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ] *//*     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ] *//*     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ] *//*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ] *//*     where b11 >= b22 > 0. *//*  Arguments *//*  ========= *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2) *//*          On entry, the 2 x 2 matrix A. *//*          On exit, A is overwritten by the ``A-part'' of the *//*          generalized Schur form. *//*  LDA     (input) INTEGER *//*          THe leading dimension of the array A.  LDA >= 2. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2) *//*          On entry, the upper triangular 2 x 2 matrix B. *//*          On exit, B is overwritten by the ``B-part'' of the *//*          generalized Schur form. *//*  LDB     (input) INTEGER *//*          THe leading dimension of the array B.  LDB >= 2. *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (2) *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (2) *//*  BETA    (output) DOUBLE PRECISION array, dimension (2) *//*          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the *//*          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may *//*          be zero. *//*  CSL     (output) DOUBLE PRECISION *//*          The cosine of the left rotation matrix. *//*  SNL     (output) DOUBLE PRECISION *//*          The sine of the left rotation matrix. *//*  CSR     (output) DOUBLE PRECISION *//*          The cosine of the right rotation matrix. *//*  SNR     (output) DOUBLE PRECISION *//*          The sine of the right rotation matrix. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    /* Function Body */    safmin = _starpu_dlamch_("S");    ulp = _starpu_dlamch_("P");/*     Scale A *//* Computing MAX */    d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(	    d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 = 	    a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);    anorm = max(d__5,safmin);    ascale = 1. / anorm;    a[a_dim1 + 1] = ascale * a[a_dim1 + 1];    a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1];    a[a_dim1 + 2] = ascale * a[a_dim1 + 2];    a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2];/*     Scale B *//* Computing MAX */    d__4 = (d__3 = b[b_dim1 + 1], abs(d__3)), d__5 = (d__1 = b[(b_dim1 << 1) 	    + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 2], abs(d__2)), d__4 	    = max(d__4,d__5);    bnorm = max(d__4,safmin);    bscale = 1. / bnorm;    b[b_dim1 + 1] = bscale * b[b_dim1 + 1];    b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1];    b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2];/*     Check if A can be deflated */    if ((d__1 = a[a_dim1 + 2], abs(d__1)) <= ulp) {	*csl = 1.;	*snl = 0.;	*csr = 1.;	*snr = 0.;	a[a_dim1 + 2] = 0.;	b[b_dim1 + 2] = 0.;/*     Check if B is singular */    } else if ((d__1 = b[b_dim1 + 1], abs(d__1)) <= ulp) {	_starpu_dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);	*csr = 1.;	*snr = 0.;	_starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);	_starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);	a[a_dim1 + 2] = 0.;	b[b_dim1 + 1] = 0.;	b[b_dim1 + 2] = 0.;    } else if ((d__1 = b[(b_dim1 << 1) + 2], abs(d__1)) <= ulp) {	_starpu_dlartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t);	*snr = -(*snr);	_starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, 		 snr);	_starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, 		 snr);	*csl = 1.;	*snl = 0.;	a[a_dim1 + 2] = 0.;	b[b_dim1 + 2] = 0.;	b[(b_dim1 << 1) + 2] = 0.;    } else {/*        B is nonsingular, first compute the eigenvalues of (A,B) */	_starpu_dlag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, &		scale2, &wr1, &wr2, &wi);	if (wi == 0.) {/*           two real eigenvalues, compute s*A-w*B */	    h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1];	    h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1];	    h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2];	    rr = _starpu_dlapy2_(&h1, &h2);	    d__1 = scale1 * a[a_dim1 + 2];	    qq = _starpu_dlapy2_(&d__1, &h3);	    if (rr > qq) {/*              find right rotation matrix to zero 1,1 element of *//*              (sA - wB) */		_starpu_dlartg_(&h2, &h1, csr, snr, &t);	    } else {/*              find right rotation matrix to zero 2,1 element of *//*              (sA - wB) */		d__1 = scale1 * a[a_dim1 + 2];		_starpu_dlartg_(&h3, &d__1, csr, snr, &t);	    }	    *snr = -(*snr);	    _starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, 		    csr, snr);	    _starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, 		    csr, snr);/*           compute inf norms of A and B *//* Computing MAX */	    d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[(a_dim1 << 1)		     + 1], abs(d__2)), d__6 = (d__3 = a[a_dim1 + 2], abs(d__3)		    ) + (d__4 = a[(a_dim1 << 1) + 2], abs(d__4));	    h1 = max(d__5,d__6);/* Computing MAX */	    d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1)		     + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], abs(d__3)		    ) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));	    h2 = max(d__5,d__6);	    if (scale1 * h1 >= abs(wr1) * h2) {/*              find left rotation matrix Q to zero out B(2,1) */		_starpu_dlartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__);	    } else {/*              find left rotation matrix Q to zero out A(2,1) */		_starpu_dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);	    }	    _starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);	    _starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);	    a[a_dim1 + 2] = 0.;	    b[b_dim1 + 2] = 0.;	} else {/*           a pair of complex conjugate eigenvalues *//*           first compute the SVD of the matrix B */	    _starpu_dlasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) + 		    2], &r__, &t, snr, csr, snl, csl);/*           Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and *//*           Z is right rotation matrix computed from DLASV2 */	    _starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);	    _starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);	    _starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, 		    csr, snr);	    _starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, 		    csr, snr);	    b[b_dim1 + 2] = 0.;	    b[(b_dim1 << 1) + 1] = 0.;	}    }/*     Unscaling */    a[a_dim1 + 1] = anorm * a[a_dim1 + 1];    a[a_dim1 + 2] = anorm * a[a_dim1 + 2];    a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1];    a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2];    b[b_dim1 + 1] = bnorm * b[b_dim1 + 1];    b[b_dim1 + 2] = bnorm * b[b_dim1 + 2];    b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1];    b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2];    if (wi == 0.) {	alphar[1] = a[a_dim1 + 1];	alphar[2] = a[(a_dim1 << 1) + 2];	alphai[1] = 0.;	alphai[2] = 0.;	beta[1] = b[b_dim1 + 1];	beta[2] = b[(b_dim1 << 1) + 2];    } else {	alphar[1] = anorm * wr1 / scale1 / bnorm;	alphai[1] = anorm * wi / scale1 / bnorm;	alphar[2] = alphar[1];	alphai[2] = -alphai[1];	beta[1] = 1.;	beta[2] = 1.;    }    return 0;/*     End of DLAGV2 */} /* _starpu_dlagv2_ */
 |