| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 | /* dlag2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlag2_(doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *safmin, doublereal *scale1, doublereal *	scale2, doublereal *wr1, doublereal *wr2, doublereal *wi){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset;    doublereal d__1, d__2, d__3, d__4, d__5, d__6;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    doublereal r__, c1, c2, c3, c4, c5, s1, s2, a11, a12, a21, a22, b11, b12, 	    b22, pp, qq, ss, as11, as12, as22, sum, abi22, diff, bmin, wbig, 	    wabs, wdet, binv11, binv22, discr, anorm, bnorm, bsize, shift, 	    rtmin, rtmax, wsize, ascale, bscale, wscale, safmax, wsmall;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue *//*  problem  A - w B, with scaling as necessary to avoid over-/underflow. *//*  The scaling factor "s" results in a modified eigenvalue equation *//*      s A - w B *//*  where  s  is a non-negative scaling factor chosen so that  w,  w B, *//*  and  s A  do not overflow and, if possible, do not underflow, either. *//*  Arguments *//*  ========= *//*  A       (input) DOUBLE PRECISION array, dimension (LDA, 2) *//*          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm *//*          is less than 1/SAFMIN.  Entries less than *//*          sqrt(SAFMIN)*norm(A) are subject to being treated as zero. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= 2. *//*  B       (input) DOUBLE PRECISION array, dimension (LDB, 2) *//*          On entry, the 2 x 2 upper triangular matrix B.  It is *//*          assumed that the one-norm of B is less than 1/SAFMIN.  The *//*          diagonals should be at least sqrt(SAFMIN) times the largest *//*          element of B (in absolute value); if a diagonal is smaller *//*          than that, then  +/- sqrt(SAFMIN) will be used instead of *//*          that diagonal. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= 2. *//*  SAFMIN  (input) DOUBLE PRECISION *//*          The smallest positive number s.t. 1/SAFMIN does not *//*          overflow.  (This should always be DLAMCH('S') -- it is an *//*          argument in order to avoid having to call DLAMCH frequently.) *//*  SCALE1  (output) DOUBLE PRECISION *//*          A scaling factor used to avoid over-/underflow in the *//*          eigenvalue equation which defines the first eigenvalue.  If *//*          the eigenvalues are complex, then the eigenvalues are *//*          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the *//*          exponent range of the machine), SCALE1=SCALE2, and SCALE1 *//*          will always be positive.  If the eigenvalues are real, then *//*          the first (real) eigenvalue is  WR1 / SCALE1 , but this may *//*          overflow or underflow, and in fact, SCALE1 may be zero or *//*          less than the underflow threshhold if the exact eigenvalue *//*          is sufficiently large. *//*  SCALE2  (output) DOUBLE PRECISION *//*          A scaling factor used to avoid over-/underflow in the *//*          eigenvalue equation which defines the second eigenvalue.  If *//*          the eigenvalues are complex, then SCALE2=SCALE1.  If the *//*          eigenvalues are real, then the second (real) eigenvalue is *//*          WR2 / SCALE2 , but this may overflow or underflow, and in *//*          fact, SCALE2 may be zero or less than the underflow *//*          threshhold if the exact eigenvalue is sufficiently large. *//*  WR1     (output) DOUBLE PRECISION *//*          If the eigenvalue is real, then WR1 is SCALE1 times the *//*          eigenvalue closest to the (2,2) element of A B**(-1).  If the *//*          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real *//*          part of the eigenvalues. *//*  WR2     (output) DOUBLE PRECISION *//*          If the eigenvalue is real, then WR2 is SCALE2 times the *//*          other eigenvalue.  If the eigenvalue is complex, then *//*          WR1=WR2 is SCALE1 times the real part of the eigenvalues. *//*  WI      (output) DOUBLE PRECISION *//*          If the eigenvalue is real, then WI is zero.  If the *//*          eigenvalue is complex, then WI is SCALE1 times the imaginary *//*          part of the eigenvalues.  WI will always be non-negative. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    rtmin = sqrt(*safmin);    rtmax = 1. / rtmin;    safmax = 1. / *safmin;/*     Scale A *//* Computing MAX */    d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(	    d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 = 	    a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);    anorm = max(d__5,*safmin);    ascale = 1. / anorm;    a11 = ascale * a[a_dim1 + 1];    a21 = ascale * a[a_dim1 + 2];    a12 = ascale * a[(a_dim1 << 1) + 1];    a22 = ascale * a[(a_dim1 << 1) + 2];/*     Perturb B if necessary to insure non-singularity */    b11 = b[b_dim1 + 1];    b12 = b[(b_dim1 << 1) + 1];    b22 = b[(b_dim1 << 1) + 2];/* Computing MAX */    d__1 = abs(b11), d__2 = abs(b12), d__1 = max(d__1,d__2), d__2 = abs(b22), 	    d__1 = max(d__1,d__2);    bmin = rtmin * max(d__1,rtmin);    if (abs(b11) < bmin) {	b11 = d_sign(&bmin, &b11);    }    if (abs(b22) < bmin) {	b22 = d_sign(&bmin, &b22);    }/*     Scale B *//* Computing MAX */    d__1 = abs(b11), d__2 = abs(b12) + abs(b22), d__1 = max(d__1,d__2);    bnorm = max(d__1,*safmin);/* Computing MAX */    d__1 = abs(b11), d__2 = abs(b22);    bsize = max(d__1,d__2);    bscale = 1. / bsize;    b11 *= bscale;    b12 *= bscale;    b22 *= bscale;/*     Compute larger eigenvalue by method described by C. van Loan *//*     ( AS is A shifted by -SHIFT*B ) */    binv11 = 1. / b11;    binv22 = 1. / b22;    s1 = a11 * binv11;    s2 = a22 * binv22;    if (abs(s1) <= abs(s2)) {	as12 = a12 - s1 * b12;	as22 = a22 - s1 * b22;	ss = a21 * (binv11 * binv22);	abi22 = as22 * binv22 - ss * b12;	pp = abi22 * .5;	shift = s1;    } else {	as12 = a12 - s2 * b12;	as11 = a11 - s2 * b11;	ss = a21 * (binv11 * binv22);	abi22 = -ss * b12;	pp = (as11 * binv11 + abi22) * .5;	shift = s2;    }    qq = ss * as12;    if ((d__1 = pp * rtmin, abs(d__1)) >= 1.) {/* Computing 2nd power */	d__1 = rtmin * pp;	discr = d__1 * d__1 + qq * *safmin;	r__ = sqrt((abs(discr))) * rtmax;    } else {/* Computing 2nd power */	d__1 = pp;	if (d__1 * d__1 + abs(qq) <= *safmin) {/* Computing 2nd power */	    d__1 = rtmax * pp;	    discr = d__1 * d__1 + qq * safmax;	    r__ = sqrt((abs(discr))) * rtmin;	} else {/* Computing 2nd power */	    d__1 = pp;	    discr = d__1 * d__1 + qq;	    r__ = sqrt((abs(discr)));	}    }/*     Note: the test of R in the following IF is to cover the case when *//*           DISCR is small and negative and is flushed to zero during *//*           the calculation of R.  On machines which have a consistent *//*           flush-to-zero threshhold and handle numbers above that *//*           threshhold correctly, it would not be necessary. */    if (discr >= 0. || r__ == 0.) {	sum = pp + d_sign(&r__, &pp);	diff = pp - d_sign(&r__, &pp);	wbig = shift + sum;/*        Compute smaller eigenvalue */	wsmall = shift + diff;/* Computing MAX */	d__1 = abs(wsmall);	if (abs(wbig) * .5 > max(d__1,*safmin)) {	    wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);	    wsmall = wdet / wbig;	}/*        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) *//*        for WR1. */	if (pp > abi22) {	    *wr1 = min(wbig,wsmall);	    *wr2 = max(wbig,wsmall);	} else {	    *wr1 = max(wbig,wsmall);	    *wr2 = min(wbig,wsmall);	}	*wi = 0.;    } else {/*        Complex eigenvalues */	*wr1 = shift + pp;	*wr2 = *wr1;	*wi = r__;    }/*     Further scaling to avoid underflow and overflow in computing *//*     SCALE1 and overflow in computing w*B. *//*     This scale factor (WSCALE) is bounded from above using C1 and C2, *//*     and from below using C3 and C4. *//*        C1 implements the condition  s A  must never overflow. *//*        C2 implements the condition  w B  must never overflow. *//*        C3, with C2, *//*           implement the condition that s A - w B must never overflow. *//*        C4 implements the condition  s    should not underflow. *//*        C5 implements the condition  max(s,|w|) should be at least 2. */    c1 = bsize * (*safmin * max(1.,ascale));    c2 = *safmin * max(1.,bnorm);    c3 = bsize * *safmin;    if (ascale <= 1. && bsize <= 1.) {/* Computing MIN */	d__1 = 1., d__2 = ascale / *safmin * bsize;	c4 = min(d__1,d__2);    } else {	c4 = 1.;    }    if (ascale <= 1. || bsize <= 1.) {/* Computing MIN */	d__1 = 1., d__2 = ascale * bsize;	c5 = min(d__1,d__2);    } else {	c5 = 1.;    }/*     Scale first eigenvalue */    wabs = abs(*wr1) + abs(*wi);/* Computing MAX *//* Computing MIN */    d__3 = c4, d__4 = max(wabs,c5) * .5;    d__1 = max(*safmin,c1), d__2 = (wabs * c2 + c3) * 1.0000100000000001, 	    d__1 = max(d__1,d__2), d__2 = min(d__3,d__4);    wsize = max(d__1,d__2);    if (wsize != 1.) {	wscale = 1. / wsize;	if (wsize > 1.) {	    *scale1 = max(ascale,bsize) * wscale * min(ascale,bsize);	} else {	    *scale1 = min(ascale,bsize) * wscale * max(ascale,bsize);	}	*wr1 *= wscale;	if (*wi != 0.) {	    *wi *= wscale;	    *wr2 = *wr1;	    *scale2 = *scale1;	}    } else {	*scale1 = ascale * bsize;	*scale2 = *scale1;    }/*     Scale second eigenvalue (if real) */    if (*wi == 0.) {/* Computing MAX *//* Computing MIN *//* Computing MAX */	d__5 = abs(*wr2);	d__3 = c4, d__4 = max(d__5,c5) * .5;	d__1 = max(*safmin,c1), d__2 = (abs(*wr2) * c2 + c3) * 		1.0000100000000001, d__1 = max(d__1,d__2), d__2 = min(d__3,		d__4);	wsize = max(d__1,d__2);	if (wsize != 1.) {	    wscale = 1. / wsize;	    if (wsize > 1.) {		*scale2 = max(ascale,bsize) * wscale * min(ascale,bsize);	    } else {		*scale2 = min(ascale,bsize) * wscale * max(ascale,bsize);	    }	    *wr2 *= wscale;	} else {	    *scale2 = ascale * bsize;	}    }/*     End of DLAG2 */    return 0;} /* _starpu_dlag2_ */
 |