| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 | /* dlaed5.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlaed5_(integer *i__, doublereal *d__, doublereal *z__, 	doublereal *delta, doublereal *rho, doublereal *dlam){    /* System generated locals */    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal b, c__, w, del, tau, temp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This subroutine computes the I-th eigenvalue of a symmetric rank-one *//*  modification of a 2-by-2 diagonal matrix *//*             diag( D )  +  RHO *  Z * transpose(Z) . *//*  The diagonal elements in the array D are assumed to satisfy *//*             D(i) < D(j)  for  i < j . *//*  We also assume RHO > 0 and that the Euclidean norm of the vector *//*  Z is one. *//*  Arguments *//*  ========= *//*  I      (input) INTEGER *//*         The index of the eigenvalue to be computed.  I = 1 or I = 2. *//*  D      (input) DOUBLE PRECISION array, dimension (2) *//*         The original eigenvalues.  We assume D(1) < D(2). *//*  Z      (input) DOUBLE PRECISION array, dimension (2) *//*         The components of the updating vector. *//*  DELTA  (output) DOUBLE PRECISION array, dimension (2) *//*         The vector DELTA contains the information necessary *//*         to construct the eigenvectors. *//*  RHO    (input) DOUBLE PRECISION *//*         The scalar in the symmetric updating formula. *//*  DLAM   (output) DOUBLE PRECISION *//*         The computed lambda_I, the I-th updated eigenvalue. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ren-Cang Li, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --delta;    --z__;    --d__;    /* Function Body */    del = d__[2] - d__[1];    if (*i__ == 1) {	w = *rho * 2. * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.;	if (w > 0.) {	    b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	    c__ = *rho * z__[1] * z__[1] * del;/*           B > ZERO, always */	    tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));	    *dlam = d__[1] + tau;	    delta[1] = -z__[1] / tau;	    delta[2] = z__[2] / (del - tau);	} else {	    b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	    c__ = *rho * z__[2] * z__[2] * del;	    if (b > 0.) {		tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));	    } else {		tau = (b - sqrt(b * b + c__ * 4.)) / 2.;	    }	    *dlam = d__[2] + tau;	    delta[1] = -z__[1] / (del + tau);	    delta[2] = -z__[2] / tau;	}	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);	delta[1] /= temp;	delta[2] /= temp;    } else {/*     Now I=2 */	b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);	c__ = *rho * z__[2] * z__[2] * del;	if (b > 0.) {	    tau = (b + sqrt(b * b + c__ * 4.)) / 2.;	} else {	    tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));	}	*dlam = d__[2] + tau;	delta[1] = -z__[1] / (del + tau);	delta[2] = -z__[2] / tau;	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);	delta[1] /= temp;	delta[2] /= temp;    }    return 0;/*     End OF DLAED5 */} /* _starpu_dlaed5_ */
 |