| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | /* dlaed3.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b22 = 1.;static doublereal c_b23 = 0.;/* Subroutine */ int _starpu_dlaed3_(integer *k, integer *n, integer *n1, doublereal *	d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda, 	 doublereal *q2, integer *indx, integer *ctot, doublereal *w, 	doublereal *s, integer *info){    /* System generated locals */    integer q_dim1, q_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, j, n2, n12, ii, n23, iq2;    doublereal temp;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *),	     _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, integer 	    *), _starpu_dlaed4_(integer *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED3 finds the roots of the secular equation, as defined by the *//*  values in D, W, and RHO, between 1 and K.  It makes the *//*  appropriate calls to DLAED4 and then updates the eigenvectors by *//*  multiplying the matrix of eigenvectors of the pair of eigensystems *//*  being combined by the matrix of eigenvectors of the K-by-K system *//*  which is solved here. *//*  This code makes very mild assumptions about floating point *//*  arithmetic. It will work on machines with a guard digit in *//*  add/subtract, or on those binary machines without guard digits *//*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. *//*  It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  Arguments *//*  ========= *//*  K       (input) INTEGER *//*          The number of terms in the rational function to be solved by *//*          DLAED4.  K >= 0. *//*  N       (input) INTEGER *//*          The number of rows and columns in the Q matrix. *//*          N >= K (deflation may result in N>K). *//*  N1      (input) INTEGER *//*          The location of the last eigenvalue in the leading submatrix. *//*          min(1,N) <= N1 <= N/2. *//*  D       (output) DOUBLE PRECISION array, dimension (N) *//*          D(I) contains the updated eigenvalues for *//*          1 <= I <= K. *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          Initially the first K columns are used as workspace. *//*          On output the columns 1 to K contain *//*          the updated eigenvectors. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q.  LDQ >= max(1,N). *//*  RHO     (input) DOUBLE PRECISION *//*          The value of the parameter in the rank one update equation. *//*          RHO >= 0 required. *//*  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K) *//*          The first K elements of this array contain the old roots *//*          of the deflated updating problem.  These are the poles *//*          of the secular equation. May be changed on output by *//*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP, *//*          Cray-2, or Cray C-90, as described above. *//*  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N) *//*          The first K columns of this matrix contain the non-deflated *//*          eigenvectors for the split problem. *//*  INDX    (input) INTEGER array, dimension (N) *//*          The permutation used to arrange the columns of the deflated *//*          Q matrix into three groups (see DLAED2). *//*          The rows of the eigenvectors found by DLAED4 must be likewise *//*          permuted before the matrix multiply can take place. *//*  CTOT    (input) INTEGER array, dimension (4) *//*          A count of the total number of the various types of columns *//*          in Q, as described in INDX.  The fourth column type is any *//*          column which has been deflated. *//*  W       (input/output) DOUBLE PRECISION array, dimension (K) *//*          The first K elements of this array contain the components *//*          of the deflation-adjusted updating vector. Destroyed on *//*          output. *//*  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K *//*          Will contain the eigenvectors of the repaired matrix which *//*          will be multiplied by the previously accumulated eigenvectors *//*          to update the system. *//*  LDS     (input) INTEGER *//*          The leading dimension of S.  LDS >= max(1,K). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an eigenvalue did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  Modified by Francoise Tisseur, University of Tennessee. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --dlamda;    --q2;    --indx;    --ctot;    --w;    --s;    /* Function Body */    *info = 0;    if (*k < 0) {	*info = -1;    } else if (*n < *k) {	*info = -2;    } else if (*ldq < max(1,*n)) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAED3", &i__1);	return 0;    }/*     Quick return if possible */    if (*k == 0) {	return 0;    }/*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can *//*     be computed with high relative accuracy (barring over/underflow). *//*     This is a problem on machines without a guard digit in *//*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). *//*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), *//*     which on any of these machines zeros out the bottommost *//*     bit of DLAMDA(I) if it is 1; this makes the subsequent *//*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation *//*     occurs. On binary machines with a guard digit (almost all *//*     machines) it does not change DLAMDA(I) at all. On hexadecimal *//*     and decimal machines with a guard digit, it slightly *//*     changes the bottommost bits of DLAMDA(I). It does not account *//*     for hexadecimal or decimal machines without guard digits *//*     (we know of none). We use a subroutine call to compute *//*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating *//*     this code. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	dlamda[i__] = _starpu_dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];/* L10: */    }    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	_starpu_dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 		info);/*        If the zero finder fails, the computation is terminated. */	if (*info != 0) {	    goto L120;	}/* L20: */    }    if (*k == 1) {	goto L110;    }    if (*k == 2) {	i__1 = *k;	for (j = 1; j <= i__1; ++j) {	    w[1] = q[j * q_dim1 + 1];	    w[2] = q[j * q_dim1 + 2];	    ii = indx[1];	    q[j * q_dim1 + 1] = w[ii];	    ii = indx[2];	    q[j * q_dim1 + 2] = w[ii];/* L30: */	}	goto L110;    }/*     Compute updated W. */    _starpu_dcopy_(k, &w[1], &c__1, &s[1], &c__1);/*     Initialize W(I) = Q(I,I) */    i__1 = *ldq + 1;    _starpu_dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);/* L40: */	}	i__2 = *k;	for (i__ = j + 1; i__ <= i__2; ++i__) {	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);/* L50: */	}/* L60: */    }    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	d__1 = sqrt(-w[i__]);	w[i__] = d_sign(&d__1, &s[i__]);/* L70: */    }/*     Compute eigenvectors of the modified rank-1 modification. */    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	i__2 = *k;	for (i__ = 1; i__ <= i__2; ++i__) {	    s[i__] = w[i__] / q[i__ + j * q_dim1];/* L80: */	}	temp = _starpu_dnrm2_(k, &s[1], &c__1);	i__2 = *k;	for (i__ = 1; i__ <= i__2; ++i__) {	    ii = indx[i__];	    q[i__ + j * q_dim1] = s[ii] / temp;/* L90: */	}/* L100: */    }/*     Compute the updated eigenvectors. */L110:    n2 = *n - *n1;    n12 = ctot[1] + ctot[2];    n23 = ctot[2] + ctot[3];    _starpu_dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);    iq2 = *n1 * n12 + 1;    if (n23 != 0) {	_starpu_dgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, &		c_b23, &q[*n1 + 1 + q_dim1], ldq);    } else {	_starpu_dlaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq);    }    _starpu_dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);    if (n12 != 0) {	_starpu_dgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, 		 &q[q_offset], ldq);    } else {	_starpu_dlaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq);    }L120:    return 0;/*     End of DLAED3 */} /* _starpu_dlaed3_ */
 |