| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 | /* dgelsx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static doublereal c_b13 = 0.;static integer c__2 = 2;static integer c__1 = 1;static doublereal c_b36 = 1.;/* Subroutine */ int _starpu_dgelsx_(integer *m, integer *n, integer *nrhs, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *	info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer i__, j, k;    doublereal c1, c2, s1, s2, t1, t2;    integer mn;    doublereal anrm, bnrm, smin, smax;    integer iascl, ibscl, ismin, ismax;    extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlaic1_(	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dorm2r_(	    char *, char *, integer *, integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *), _starpu_dlabad_(doublereal *, doublereal *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), _starpu_dgeqpf_(integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, doublereal *, 	    integer *), _starpu_dlaset_(char *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, 	    integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dlatzm_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *);    doublereal sminpr, smaxpr, smlnum;    extern /* Subroutine */ int _starpu_dtzrqf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This routine is deprecated and has been replaced by routine DGELSY. *//*  DGELSX computes the minimum-norm solution to a real linear least *//*  squares problem: *//*      minimize || A * X - B || *//*  using a complete orthogonal factorization of A.  A is an M-by-N *//*  matrix which may be rank-deficient. *//*  Several right hand side vectors b and solution vectors x can be *//*  handled in a single call; they are stored as the columns of the *//*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution *//*  matrix X. *//*  The routine first computes a QR factorization with column pivoting: *//*      A * P = Q * [ R11 R12 ] *//*                  [  0  R22 ] *//*  with R11 defined as the largest leading submatrix whose estimated *//*  condition number is less than 1/RCOND.  The order of R11, RANK, *//*  is the effective rank of A. *//*  Then, R22 is considered to be negligible, and R12 is annihilated *//*  by orthogonal transformations from the right, arriving at the *//*  complete orthogonal factorization: *//*     A * P = Q * [ T11 0 ] * Z *//*                 [  0  0 ] *//*  The minimum-norm solution is then *//*     X = P * Z' [ inv(T11)*Q1'*B ] *//*                [        0       ] *//*  where Q1 consists of the first RANK columns of Q. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of *//*          columns of matrices B and X. NRHS >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, A has been overwritten by details of its *//*          complete orthogonal factorization. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the M-by-NRHS right hand side matrix B. *//*          On exit, the N-by-NRHS solution matrix X. *//*          If m >= n and RANK = n, the residual sum-of-squares for *//*          the solution in the i-th column is given by the sum of *//*          squares of elements N+1:M in that column. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,M,N). *//*  JPVT    (input/output) INTEGER array, dimension (N) *//*          On entry, if JPVT(i) .ne. 0, the i-th column of A is an *//*          initial column, otherwise it is a free column.  Before *//*          the QR factorization of A, all initial columns are *//*          permuted to the leading positions; only the remaining *//*          free columns are moved as a result of column pivoting *//*          during the factorization. *//*          On exit, if JPVT(i) = k, then the i-th column of A*P *//*          was the k-th column of A. *//*  RCOND   (input) DOUBLE PRECISION *//*          RCOND is used to determine the effective rank of A, which *//*          is defined as the order of the largest leading triangular *//*          submatrix R11 in the QR factorization with pivoting of A, *//*          whose estimated condition number < 1/RCOND. *//*  RANK    (output) INTEGER *//*          The effective rank of A, i.e., the order of the submatrix *//*          R11.  This is the same as the order of the submatrix T11 *//*          in the complete orthogonal factorization of A. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )), *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --jpvt;    --work;    /* Function Body */    mn = min(*m,*n);    ismin = mn + 1;    ismax = (mn << 1) + 1;/*     Test the input arguments. */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = max(1,*m);	if (*ldb < max(i__1,*n)) {	    *info = -7;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGELSX", &i__1);	return 0;    }/*     Quick return if possible *//* Computing MIN */    i__1 = min(*m,*n);    if (min(i__1,*nrhs) == 0) {	*rank = 0;	return 0;    }/*     Get machine parameters */    smlnum = _starpu_dlamch_("S") / _starpu_dlamch_("P");    bignum = 1. / smlnum;    _starpu_dlabad_(&smlnum, &bignum);/*     Scale A, B if max elements outside range [SMLNUM,BIGNUM] */    anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, &work[1]);    iascl = 0;    if (anrm > 0. && anrm < smlnum) {/*        Scale matrix norm up to SMLNUM */	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 		info);	iascl = 1;    } else if (anrm > bignum) {/*        Scale matrix norm down to BIGNUM */	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 		info);	iascl = 2;    } else if (anrm == 0.) {/*        Matrix all zero. Return zero solution. */	i__1 = max(*m,*n);	_starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);	*rank = 0;	goto L100;    }    bnrm = _starpu_dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);    ibscl = 0;    if (bnrm > 0. && bnrm < smlnum) {/*        Scale matrix norm up to SMLNUM */	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, 		 info);	ibscl = 1;    } else if (bnrm > bignum) {/*        Scale matrix norm down to BIGNUM */	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, 		 info);	ibscl = 2;    }/*     Compute QR factorization with column pivoting of A: *//*        A * P = Q * R */    _starpu_dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);/*     workspace 3*N. Details of Householder rotations stored *//*     in WORK(1:MN). *//*     Determine RANK using incremental condition estimation */    work[ismin] = 1.;    work[ismax] = 1.;    smax = (d__1 = a[a_dim1 + 1], abs(d__1));    smin = smax;    if ((d__1 = a[a_dim1 + 1], abs(d__1)) == 0.) {	*rank = 0;	i__1 = max(*m,*n);	_starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);	goto L100;    } else {	*rank = 1;    }L10:    if (*rank < mn) {	i__ = *rank + 1;	_starpu_dlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[		i__ + i__ * a_dim1], &sminpr, &s1, &c1);	_starpu_dlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[		i__ + i__ * a_dim1], &smaxpr, &s2, &c2);	if (smaxpr * *rcond <= sminpr) {	    i__1 = *rank;	    for (i__ = 1; i__ <= i__1; ++i__) {		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];/* L20: */	    }	    work[ismin + *rank] = c1;	    work[ismax + *rank] = c2;	    smin = sminpr;	    smax = smaxpr;	    ++(*rank);	    goto L10;	}    }/*     Logically partition R = [ R11 R12 ] *//*                             [  0  R22 ] *//*     where R11 = R(1:RANK,1:RANK) *//*     [R11,R12] = [ T11, 0 ] * Y */    if (*rank < *n) {	_starpu_dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);    }/*     Details of Householder rotations stored in WORK(MN+1:2*MN) *//*     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */    _starpu_dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &	    b[b_offset], ldb, &work[(mn << 1) + 1], info);/*     workspace NRHS *//*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */    _starpu_dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &	    a[a_offset], lda, &b[b_offset], ldb);    i__1 = *n;    for (i__ = *rank + 1; i__ <= i__1; ++i__) {	i__2 = *nrhs;	for (j = 1; j <= i__2; ++j) {	    b[i__ + j * b_dim1] = 0.;/* L30: */	}/* L40: */    }/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */    if (*rank < *n) {	i__1 = *rank;	for (i__ = 1; i__ <= i__1; ++i__) {	    i__2 = *n - *rank + 1;	    _starpu_dlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda, 		    &work[mn + i__], &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], 		     ldb, &work[(mn << 1) + 1]);/* L50: */	}    }/*     workspace NRHS *//*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    work[(mn << 1) + i__] = 1.;/* L60: */	}	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    if (work[(mn << 1) + i__] == 1.) {		if (jpvt[i__] != i__) {		    k = i__;		    t1 = b[k + j * b_dim1];		    t2 = b[jpvt[k] + j * b_dim1];L70:		    b[jpvt[k] + j * b_dim1] = t1;		    work[(mn << 1) + k] = 0.;		    t1 = t2;		    k = jpvt[k];		    t2 = b[jpvt[k] + j * b_dim1];		    if (jpvt[k] != i__) {			goto L70;		    }		    b[i__ + j * b_dim1] = t1;		    work[(mn << 1) + k] = 0.;		}	    }/* L80: */	}/* L90: */    }/*     Undo scaling */    if (iascl == 1) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, 		 info);	_starpu_dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 		lda, info);    } else if (iascl == 2) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, 		 info);	_starpu_dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 		lda, info);    }    if (ibscl == 1) {	_starpu_dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, 		 info);    } else if (ibscl == 2) {	_starpu_dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, 		 info);    }L100:    return 0;/*     End of DGELSX */} /* _starpu_dgelsx_ */
 |