| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | /* dgbtrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b7 = -1.;static integer c__1 = 1;static doublereal c_b23 = 1.;/* Subroutine */ int _starpu_dgbtrs_(char *trans, integer *n, integer *kl, integer *	ku, integer *nrhs, doublereal *ab, integer *ldab, integer *ipiv, 	doublereal *b, integer *ldb, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, l, kd, lm;    extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dswap_(integer *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_dtbsv_(char *, 	    char *, char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical lnoti;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    logical notran;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGBTRS solves a system of linear equations *//*     A * X = B  or  A' * X = B *//*  with a general band matrix A using the LU factorization computed *//*  by DGBTRF. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form of the system of equations. *//*          = 'N':  A * X = B  (No transpose) *//*          = 'T':  A'* X = B  (Transpose) *//*          = 'C':  A'* X = B  (Conjugate transpose = Transpose) *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KL      (input) INTEGER *//*          The number of subdiagonals within the band of A.  KL >= 0. *//*  KU      (input) INTEGER *//*          The number of superdiagonals within the band of A.  KU >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*          Details of the LU factorization of the band matrix A, as *//*          computed by DGBTRF.  U is stored as an upper triangular band *//*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and *//*          the multipliers used during the factorization are stored in *//*          rows KL+KU+2 to 2*KL+KU+1. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= N, row i of the matrix was *//*          interchanged with row IPIV(i). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side matrix B. *//*          On exit, the solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    notran = _starpu_lsame_(trans, "N");    if (! notran && ! _starpu_lsame_(trans, "T") && ! _starpu_lsame_(	    trans, "C")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kl < 0) {	*info = -3;    } else if (*ku < 0) {	*info = -4;    } else if (*nrhs < 0) {	*info = -5;    } else if (*ldab < (*kl << 1) + *ku + 1) {	*info = -7;    } else if (*ldb < max(1,*n)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGBTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *nrhs == 0) {	return 0;    }    kd = *ku + *kl + 1;    lnoti = *kl > 0;    if (notran) {/*        Solve  A*X = B. *//*        Solve L*X = B, overwriting B with X. *//*        L is represented as a product of permutations and unit lower *//*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1), *//*        where each transformation L(i) is a rank-one modification of *//*        the identity matrix. */	if (lnoti) {	    i__1 = *n - 1;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		i__2 = *kl, i__3 = *n - j;		lm = min(i__2,i__3);		l = ipiv[j];		if (l != j) {		    _starpu_dswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);		}		_starpu_dger_(&lm, nrhs, &c_b7, &ab[kd + 1 + j * ab_dim1], &c__1, &b[			j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);/* L10: */	    }	}	i__1 = *nrhs;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Solve U*X = B, overwriting B with X. */	    i__2 = *kl + *ku;	    _starpu_dtbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[		    ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);/* L20: */	}    } else {/*        Solve A'*X = B. */	i__1 = *nrhs;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Solve U'*X = B, overwriting B with X. */	    i__2 = *kl + *ku;	    _starpu_dtbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset], 		     ldab, &b[i__ * b_dim1 + 1], &c__1);/* L30: */	}/*        Solve L'*X = B, overwriting B with X. */	if (lnoti) {	    for (j = *n - 1; j >= 1; --j) {/* Computing MIN */		i__1 = *kl, i__2 = *n - j;		lm = min(i__1,i__2);		_starpu_dgemv_("Transpose", &lm, nrhs, &c_b7, &b[j + 1 + b_dim1], ldb, 			 &ab[kd + 1 + j * ab_dim1], &c__1, &c_b23, &b[j + 			b_dim1], ldb);		l = ipiv[j];		if (l != j) {		    _starpu_dswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);		}/* L40: */	    }	}    }    return 0;/*     End of DGBTRS */} /* _starpu_dgbtrs_ */
 |