| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 | /* dgbbrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b8 = 0.;static doublereal c_b9 = 1.;static integer c__1 = 1;/* Subroutine */ int _starpu_dgbbrd_(char *vect, integer *m, integer *n, integer *ncc, 	 integer *kl, integer *ku, doublereal *ab, integer *ldab, doublereal *	d__, doublereal *e, doublereal *q, integer *ldq, doublereal *pt, 	integer *ldpt, doublereal *c__, integer *ldc, doublereal *work, 	integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1, 	    q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;    /* Local variables */    integer i__, j, l, j1, j2, kb;    doublereal ra, rb, rc;    integer kk, ml, mn, nr, mu;    doublereal rs;    integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca;    extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    extern logical _starpu_lsame_(char *, char *);    logical wantb, wantc;    integer minmn;    logical wantq;    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *), _starpu_xerbla_(char *, integer *), _starpu_dlargv_(	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlartv_(integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *);    logical wantpt;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGBBRD reduces a real general m-by-n band matrix A to upper *//*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B. *//*  The routine computes B, and optionally forms Q or P', or computes *//*  Q'*C for a given matrix C. *//*  Arguments *//*  ========= *//*  VECT    (input) CHARACTER*1 *//*          Specifies whether or not the matrices Q and P' are to be *//*          formed. *//*          = 'N': do not form Q or P'; *//*          = 'Q': form Q only; *//*          = 'P': form P' only; *//*          = 'B': form both. *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  NCC     (input) INTEGER *//*          The number of columns of the matrix C.  NCC >= 0. *//*  KL      (input) INTEGER *//*          The number of subdiagonals of the matrix A. KL >= 0. *//*  KU      (input) INTEGER *//*          The number of superdiagonals of the matrix A. KU >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the m-by-n band matrix A, stored in rows 1 to *//*          KL+KU+1. The j-th column of A is stored in the j-th column of *//*          the array AB as follows: *//*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). *//*          On exit, A is overwritten by values generated during the *//*          reduction. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array A. LDAB >= KL+KU+1. *//*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The diagonal elements of the bidiagonal matrix B. *//*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) *//*          The superdiagonal elements of the bidiagonal matrix B. *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,M) *//*          If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q. *//*          If VECT = 'N' or 'P', the array Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. *//*          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. *//*  PT      (output) DOUBLE PRECISION array, dimension (LDPT,N) *//*          If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'. *//*          If VECT = 'N' or 'Q', the array PT is not referenced. *//*  LDPT    (input) INTEGER *//*          The leading dimension of the array PT. *//*          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,NCC) *//*          On entry, an m-by-ncc matrix C. *//*          On exit, C is overwritten by Q'*C. *//*          C is not referenced if NCC = 0. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. *//*          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*max(M,N)) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --d__;    --e;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    pt_dim1 = *ldpt;    pt_offset = 1 + pt_dim1;    pt -= pt_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    wantb = _starpu_lsame_(vect, "B");    wantq = _starpu_lsame_(vect, "Q") || wantb;    wantpt = _starpu_lsame_(vect, "P") || wantb;    wantc = *ncc > 0;    klu1 = *kl + *ku + 1;    *info = 0;    if (! wantq && ! wantpt && ! _starpu_lsame_(vect, "N")) {	*info = -1;    } else if (*m < 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ncc < 0) {	*info = -4;    } else if (*kl < 0) {	*info = -5;    } else if (*ku < 0) {	*info = -6;    } else if (*ldab < klu1) {	*info = -8;    } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) {	*info = -12;    } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) {	*info = -14;    } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) {	*info = -16;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGBBRD", &i__1);	return 0;    }/*     Initialize Q and P' to the unit matrix, if needed */    if (wantq) {	_starpu_dlaset_("Full", m, m, &c_b8, &c_b9, &q[q_offset], ldq);    }    if (wantpt) {	_starpu_dlaset_("Full", n, n, &c_b8, &c_b9, &pt[pt_offset], ldpt);    }/*     Quick return if possible. */    if (*m == 0 || *n == 0) {	return 0;    }    minmn = min(*m,*n);    if (*kl + *ku > 1) {/*        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce *//*        first to lower bidiagonal form and then transform to upper *//*        bidiagonal */	if (*ku > 0) {	    ml0 = 1;	    mu0 = 2;	} else {	    ml0 = 2;	    mu0 = 1;	}/*        Wherever possible, plane rotations are generated and applied in *//*        vector operations of length NR over the index set J1:J2:KLU1. *//*        The sines of the plane rotations are stored in WORK(1:max(m,n)) *//*        and the cosines in WORK(max(m,n)+1:2*max(m,n)). */	mn = max(*m,*n);/* Computing MIN */	i__1 = *m - 1;	klm = min(i__1,*kl);/* Computing MIN */	i__1 = *n - 1;	kun = min(i__1,*ku);	kb = klm + kun;	kb1 = kb + 1;	inca = kb1 * *ldab;	nr = 0;	j1 = klm + 2;	j2 = 1 - kun;	i__1 = minmn;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Reduce i-th column and i-th row of matrix to bidiagonal form */	    ml = klm + 1;	    mu = kun + 1;	    i__2 = kb;	    for (kk = 1; kk <= i__2; ++kk) {		j1 += kb;		j2 += kb;/*              generate plane rotations to annihilate nonzero elements *//*              which have been created below the band */		if (nr > 0) {		    _starpu_dlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca, 			    &work[j1], &kb1, &work[mn + j1], &kb1);		}/*              apply plane rotations from the left */		i__3 = kb;		for (l = 1; l <= i__3; ++l) {		    if (j2 - klm + l - 1 > *n) {			nrt = nr - 1;		    } else {			nrt = nr;		    }		    if (nrt > 0) {			_starpu_dlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) * 				ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm 				+ l - 1) * ab_dim1], &inca, &work[mn + j1], &				work[j1], &kb1);		    }/* L10: */		}		if (ml > ml0) {		    if (ml <= *m - i__ + 1) {/*                    generate plane rotation to annihilate a(i+ml-1,i) *//*                    within the band, and apply rotation from the left */			_starpu_dlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku + 				ml + i__ * ab_dim1], &work[mn + i__ + ml - 1], 				 &work[i__ + ml - 1], &ra);			ab[*ku + ml - 1 + i__ * ab_dim1] = ra;			if (i__ < *n) {/* Computing MIN */			    i__4 = *ku + ml - 2, i__5 = *n - i__;			    i__3 = min(i__4,i__5);			    i__6 = *ldab - 1;			    i__7 = *ldab - 1;			    _starpu_drot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) * 				    ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__ 				    + 1) * ab_dim1], &i__7, &work[mn + i__ + 				    ml - 1], &work[i__ + ml - 1]);			}		    }		    ++nr;		    j1 -= kb1;		}		if (wantq) {/*                 accumulate product of plane rotations in Q */		    i__3 = j2;		    i__4 = kb1;		    for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) 			    {			_starpu_drot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j * 				q_dim1 + 1], &c__1, &work[mn + j], &work[j]);/* L20: */		    }		}		if (wantc) {/*                 apply plane rotations to C */		    i__4 = j2;		    i__3 = kb1;		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 			    {			_starpu_drot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1], ldc, &work[mn + j], &work[j]);/* L30: */		    }		}		if (j2 + kun > *n) {/*                 adjust J2 to keep within the bounds of the matrix */		    --nr;		    j2 -= kb1;		}		i__3 = j2;		i__4 = kb1;		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {/*                 create nonzero element a(j-1,j+ku) above the band *//*                 and store it in WORK(n+1:2*n) */		    work[j + kun] = work[j] * ab[(j + kun) * ab_dim1 + 1];		    ab[(j + kun) * ab_dim1 + 1] = work[mn + j] * ab[(j + kun) 			    * ab_dim1 + 1];/* L40: */		}/*              generate plane rotations to annihilate nonzero elements *//*              which have been generated above the band */		if (nr > 0) {		    _starpu_dlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &			    work[j1 + kun], &kb1, &work[mn + j1 + kun], &kb1);		}/*              apply plane rotations from the right */		i__4 = kb;		for (l = 1; l <= i__4; ++l) {		    if (j2 + l - 1 > *m) {			nrt = nr - 1;		    } else {			nrt = nr;		    }		    if (nrt > 0) {			_starpu_dlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &				inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &				work[mn + j1 + kun], &work[j1 + kun], &kb1);		    }/* L50: */		}		if (ml == ml0 && mu > mu0) {		    if (mu <= *n - i__ + 1) {/*                    generate plane rotation to annihilate a(i,i+mu-1) *//*                    within the band, and apply rotation from the right */			_starpu_dlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1], 				&ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1], 				&work[mn + i__ + mu - 1], &work[i__ + mu - 1], 				 &ra);			ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1] = ra;/* Computing MIN */			i__3 = *kl + mu - 2, i__5 = *m - i__;			i__4 = min(i__3,i__5);			_starpu_drot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) * 				ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu 				- 1) * ab_dim1], &c__1, &work[mn + i__ + mu - 				1], &work[i__ + mu - 1]);		    }		    ++nr;		    j1 -= kb1;		}		if (wantpt) {/*                 accumulate product of plane rotations in P' */		    i__4 = j2;		    i__3 = kb1;		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 			    {			_starpu_drot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j + 				kun + pt_dim1], ldpt, &work[mn + j + kun], &				work[j + kun]);/* L60: */		    }		}		if (j2 + kb > *m) {/*                 adjust J2 to keep within the bounds of the matrix */		    --nr;		    j2 -= kb1;		}		i__3 = j2;		i__4 = kb1;		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {/*                 create nonzero element a(j+kl+ku,j+ku-1) below the *//*                 band and store it in WORK(1:n) */		    work[j + kb] = work[j + kun] * ab[klu1 + (j + kun) * 			    ab_dim1];		    ab[klu1 + (j + kun) * ab_dim1] = work[mn + j + kun] * ab[			    klu1 + (j + kun) * ab_dim1];/* L70: */		}		if (ml > ml0) {		    --ml;		} else {		    --mu;		}/* L80: */	    }/* L90: */	}    }    if (*ku == 0 && *kl > 0) {/*        A has been reduced to lower bidiagonal form *//*        Transform lower bidiagonal form to upper bidiagonal by applying *//*        plane rotations from the left, storing diagonal elements in D *//*        and off-diagonal elements in E *//* Computing MIN */	i__2 = *m - 1;	i__1 = min(i__2,*n);	for (i__ = 1; i__ <= i__1; ++i__) {	    _starpu_dlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs, 		    &ra);	    d__[i__] = ra;	    if (i__ < *n) {		e[i__] = rs * ab[(i__ + 1) * ab_dim1 + 1];		ab[(i__ + 1) * ab_dim1 + 1] = rc * ab[(i__ + 1) * ab_dim1 + 1]			;	    }	    if (wantq) {		_starpu_drot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 + 			1], &c__1, &rc, &rs);	    }	    if (wantc) {		_starpu_drot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1], 			ldc, &rc, &rs);	    }/* L100: */	}	if (*m <= *n) {	    d__[*m] = ab[*m * ab_dim1 + 1];	}    } else if (*ku > 0) {/*        A has been reduced to upper bidiagonal form */	if (*m < *n) {/*           Annihilate a(m,m+1) by applying plane rotations from the *//*           right, storing diagonal elements in D and off-diagonal *//*           elements in E */	    rb = ab[*ku + (*m + 1) * ab_dim1];	    for (i__ = *m; i__ >= 1; --i__) {		_starpu_dlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);		d__[i__] = ra;		if (i__ > 1) {		    rb = -rs * ab[*ku + i__ * ab_dim1];		    e[i__ - 1] = rc * ab[*ku + i__ * ab_dim1];		}		if (wantpt) {		    _starpu_drot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1], 			    ldpt, &rc, &rs);		}/* L110: */	    }	} else {/*           Copy off-diagonal elements to E and diagonal elements to D */	    i__1 = minmn - 1;	    for (i__ = 1; i__ <= i__1; ++i__) {		e[i__] = ab[*ku + (i__ + 1) * ab_dim1];/* L120: */	    }	    i__1 = minmn;	    for (i__ = 1; i__ <= i__1; ++i__) {		d__[i__] = ab[*ku + 1 + i__ * ab_dim1];/* L130: */	    }	}    } else {/*        A is diagonal. Set elements of E to zero and copy diagonal *//*        elements to D. */	i__1 = minmn - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    e[i__] = 0.;/* L140: */	}	i__1 = minmn;	for (i__ = 1; i__ <= i__1; ++i__) {	    d__[i__] = ab[i__ * ab_dim1 + 1];/* L150: */	}    }    return 0;/*     End of DGBBRD */} /* _starpu_dgbbrd_ */
 |