| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 | /* dbdsdc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__9 = 9;static integer c__0 = 0;static doublereal c_b15 = 1.;static integer c__1 = 1;static doublereal c_b29 = 0.;/* Subroutine */ int _starpu_dbdsdc_(char *uplo, char *compq, integer *n, doublereal *	d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt, 	integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double d_sign(doublereal *, doublereal *), log(doublereal);    /* Local variables */    integer i__, j, k;    doublereal p, r__;    integer z__, ic, ii, kk;    doublereal cs;    integer is, iu;    doublereal sn;    integer nm1;    doublereal eps;    integer ivt, difl, difr, ierr, perm, mlvl, sqre;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, 	    integer *, doublereal *, integer *);    integer poles, iuplo, nsize, start;    extern /* Subroutine */ int _starpu_dlasd0_(integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    integer *, integer *, doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_dlasda_(integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *), _starpu_dlasdq_(char *, integer *, integer *, integer 	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlaset_(char *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dlartg_(doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    integer givcol;    extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);    integer icompq;    doublereal orgnrm;    integer givnum, givptr, qstart, smlsiz, wstart, smlszp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DBDSDC computes the singular value decomposition (SVD) of a real *//*  N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT, *//*  using a divide and conquer method, where S is a diagonal matrix *//*  with non-negative diagonal elements (the singular values of B), and *//*  U and VT are orthogonal matrices of left and right singular vectors, *//*  respectively. DBDSDC can be used to compute all singular values, *//*  and optionally, singular vectors or singular vectors in compact form. *//*  This code makes very mild assumptions about floating point *//*  arithmetic. It will work on machines with a guard digit in *//*  add/subtract, or on those binary machines without guard digits *//*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. *//*  It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none.  See DLASD3 for details. *//*  The code currently calls DLASDQ if singular values only are desired. *//*  However, it can be slightly modified to compute singular values *//*  using the divide and conquer method. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  B is upper bidiagonal. *//*          = 'L':  B is lower bidiagonal. *//*  COMPQ   (input) CHARACTER*1 *//*          Specifies whether singular vectors are to be computed *//*          as follows: *//*          = 'N':  Compute singular values only; *//*          = 'P':  Compute singular values and compute singular *//*                  vectors in compact form; *//*          = 'I':  Compute singular values and singular vectors. *//*  N       (input) INTEGER *//*          The order of the matrix B.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the bidiagonal matrix B. *//*          On exit, if INFO=0, the singular values of B. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the elements of E contain the offdiagonal *//*          elements of the bidiagonal matrix whose SVD is desired. *//*          On exit, E has been destroyed. *//*  U       (output) DOUBLE PRECISION array, dimension (LDU,N) *//*          If  COMPQ = 'I', then: *//*             On exit, if INFO = 0, U contains the left singular vectors *//*             of the bidiagonal matrix. *//*          For other values of COMPQ, U is not referenced. *//*  LDU     (input) INTEGER *//*          The leading dimension of the array U.  LDU >= 1. *//*          If singular vectors are desired, then LDU >= max( 1, N ). *//*  VT      (output) DOUBLE PRECISION array, dimension (LDVT,N) *//*          If  COMPQ = 'I', then: *//*             On exit, if INFO = 0, VT' contains the right singular *//*             vectors of the bidiagonal matrix. *//*          For other values of COMPQ, VT is not referenced. *//*  LDVT    (input) INTEGER *//*          The leading dimension of the array VT.  LDVT >= 1. *//*          If singular vectors are desired, then LDVT >= max( 1, N ). *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ) *//*          If  COMPQ = 'P', then: *//*             On exit, if INFO = 0, Q and IQ contain the left *//*             and right singular vectors in a compact form, *//*             requiring O(N log N) space instead of 2*N**2. *//*             In particular, Q contains all the DOUBLE PRECISION data in *//*             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) *//*             words of memory, where SMLSIZ is returned by ILAENV and *//*             is equal to the maximum size of the subproblems at the *//*             bottom of the computation tree (usually about 25). *//*          For other values of COMPQ, Q is not referenced. *//*  IQ      (output) INTEGER array, dimension (LDIQ) *//*          If  COMPQ = 'P', then: *//*             On exit, if INFO = 0, Q and IQ contain the left *//*             and right singular vectors in a compact form, *//*             requiring O(N log N) space instead of 2*N**2. *//*             In particular, IQ contains all INTEGER data in *//*             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) *//*             words of memory, where SMLSIZ is returned by ILAENV and *//*             is equal to the maximum size of the subproblems at the *//*             bottom of the computation tree (usually about 25). *//*          For other values of COMPQ, IQ is not referenced. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          If COMPQ = 'N' then LWORK >= (4 * N). *//*          If COMPQ = 'P' then LWORK >= (6 * N). *//*          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). *//*  IWORK   (workspace) INTEGER array, dimension (8*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  The algorithm failed to compute an singular value. *//*                The update process of divide and conquer failed. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*  Changed dimension statement in comment describing E from (N) to *//*  (N-1).  Sven, 17 Feb 05. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    --q;    --iq;    --work;    --iwork;    /* Function Body */    *info = 0;    iuplo = 0;    if (_starpu_lsame_(uplo, "U")) {	iuplo = 1;    }    if (_starpu_lsame_(uplo, "L")) {	iuplo = 2;    }    if (_starpu_lsame_(compq, "N")) {	icompq = 0;    } else if (_starpu_lsame_(compq, "P")) {	icompq = 1;    } else if (_starpu_lsame_(compq, "I")) {	icompq = 2;    } else {	icompq = -1;    }    if (iuplo == 0) {	*info = -1;    } else if (icompq < 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {	*info = -7;    } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DBDSDC", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    smlsiz = _starpu_ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0);    if (*n == 1) {	if (icompq == 1) {	    q[1] = d_sign(&c_b15, &d__[1]);	    q[smlsiz * *n + 1] = 1.;	} else if (icompq == 2) {	    u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);	    vt[vt_dim1 + 1] = 1.;	}	d__[1] = abs(d__[1]);	return 0;    }    nm1 = *n - 1;/*     If matrix lower bidiagonal, rotate to be upper bidiagonal *//*     by applying Givens rotations on the left */    wstart = 1;    qstart = 3;    if (icompq == 1) {	_starpu_dcopy_(n, &d__[1], &c__1, &q[1], &c__1);	i__1 = *n - 1;	_starpu_dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);    }    if (iuplo == 2) {	qstart = 5;	wstart = (*n << 1) - 1;	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);	    d__[i__] = r__;	    e[i__] = sn * d__[i__ + 1];	    d__[i__ + 1] = cs * d__[i__ + 1];	    if (icompq == 1) {		q[i__ + (*n << 1)] = cs;		q[i__ + *n * 3] = sn;	    } else if (icompq == 2) {		work[i__] = cs;		work[nm1 + i__] = -sn;	    }/* L10: */	}    }/*     If ICOMPQ = 0, use DLASDQ to compute the singular values. */    if (icompq == 0) {	_starpu_dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[		vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[		wstart], info);	goto L40;    }/*     If N is smaller than the minimum divide size SMLSIZ, then solve *//*     the problem with another solver. */    if (*n <= smlsiz) {	if (icompq == 2) {	    _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);	    _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);	    _starpu_dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[		    wstart], info);	} else if (icompq == 1) {	    iu = 1;	    ivt = iu + *n;	    _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);	    _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);	    _starpu_dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (		    qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[		    iu + (qstart - 1) * *n], n, &work[wstart], info);	}	goto L40;    }    if (icompq == 2) {	_starpu_dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);	_starpu_dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);    }/*     Scale. */    orgnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);    if (orgnrm == 0.) {	return 0;    }    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &	    ierr);    eps = _starpu_dlamch_("Epsilon");    mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) / 	    log(2.)) + 1;    smlszp = smlsiz + 1;    if (icompq == 1) {	iu = 1;	ivt = smlsiz + 1;	difl = ivt + smlszp;	difr = difl + mlvl;	z__ = difr + (mlvl << 1);	ic = z__ + mlvl;	is = ic + 1;	poles = is + 1;	givnum = poles + (mlvl << 1);	k = 1;	givptr = 2;	perm = 3;	givcol = perm + mlvl;    }    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = d__[i__], abs(d__1)) < eps) {	    d__[i__] = d_sign(&eps, &d__[i__]);	}/* L20: */    }    start = 1;    sqre = 0;    i__1 = nm1;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {/*        Subproblem found. First determine its size and then *//*        apply divide and conquer on it. */	    if (i__ < nm1) {/*        A subproblem with E(I) small for I < NM1. */		nsize = i__ - start + 1;	    } else if ((d__1 = e[i__], abs(d__1)) >= eps) {/*        A subproblem with E(NM1) not too small but I = NM1. */		nsize = *n - start + 1;	    } else {/*        A subproblem with E(NM1) small. This implies an *//*        1-by-1 subproblem at D(N). Solve this 1-by-1 problem *//*        first. */		nsize = i__ - start + 1;		if (icompq == 2) {		    u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);		    vt[*n + *n * vt_dim1] = 1.;		} else if (icompq == 1) {		    q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);		    q[*n + (smlsiz + qstart - 1) * *n] = 1.;		}		d__[*n] = (d__1 = d__[*n], abs(d__1));	    }	    if (icompq == 2) {		_starpu_dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start + 			start * u_dim1], ldu, &vt[start + start * vt_dim1], 			ldvt, &smlsiz, &iwork[1], &work[wstart], info);	    } else {		_starpu_dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[			start], &q[start + (iu + qstart - 2) * *n], n, &q[			start + (ivt + qstart - 2) * *n], &iq[start + k * *n], 			 &q[start + (difl + qstart - 2) * *n], &q[start + (			difr + qstart - 2) * *n], &q[start + (z__ + qstart - 			2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[			start + givptr * *n], &iq[start + givcol * *n], n, &			iq[start + perm * *n], &q[start + (givnum + qstart - 			2) * *n], &q[start + (ic + qstart - 2) * *n], &q[			start + (is + qstart - 2) * *n], &work[wstart], &			iwork[1], info);		if (*info != 0) {		    return 0;		}	    }	    start = i__ + 1;	}/* L30: */    }/*     Unscale */    _starpu_dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);L40:/*     Use Selection Sort to minimize swaps of singular vectors */    i__1 = *n;    for (ii = 2; ii <= i__1; ++ii) {	i__ = ii - 1;	kk = i__;	p = d__[i__];	i__2 = *n;	for (j = ii; j <= i__2; ++j) {	    if (d__[j] > p) {		kk = j;		p = d__[j];	    }/* L50: */	}	if (kk != i__) {	    d__[kk] = d__[i__];	    d__[i__] = p;	    if (icompq == 1) {		iq[i__] = kk;	    } else if (icompq == 2) {		_starpu_dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &			c__1);		_starpu_dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);	    }	} else if (icompq == 1) {	    iq[i__] = i__;	}/* L60: */    }/*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */    if (icompq == 1) {	if (iuplo == 1) {	    iq[*n] = 1;	} else {	    iq[*n] = 0;	}    }/*     If B is lower bidiagonal, update U by those Givens rotations *//*     which rotated B to be upper bidiagonal */    if (iuplo == 2 && icompq == 2) {	_starpu_dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);    }    return 0;/*     End of DBDSDC */} /* _starpu_dbdsdc_ */
 |