starpu.texi 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Glossary::
  78. * Research Papers::
  79. @end menu
  80. From a programming point of view, StarPU is not a new language but a library
  81. that executes tasks explicitly submitted by the application. The data that a
  82. task manipulates are automatically transferred onto the accelerator so that the
  83. programmer does not have to take care of complex data movements. StarPU also
  84. takes particular care of scheduling those tasks efficiently and allows
  85. scheduling experts to implement custom scheduling policies in a portable
  86. fashion.
  87. @c explain the notion of codelet and task (i.e. g(A, B)
  88. @node Codelet and Tasks
  89. @subsection Codelet and Tasks
  90. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  91. computational kernel that can possibly be implemented on multiple architectures
  92. such as a CPU, a CUDA device or a Cell's SPU.
  93. @c TODO insert illustration f : f_spu, f_cpu, ...
  94. Another important data structure is the @b{task}. Executing a StarPU task
  95. consists in applying a codelet on a data set, on one of the architectures on
  96. which the codelet is implemented. A task thus describes the codelet that it
  97. uses, but also which data are accessed, and how they are
  98. accessed during the computation (read and/or write).
  99. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  100. operation. The task structure can also specify a @b{callback} function that is
  101. called once StarPU has properly executed the task. It also contains optional
  102. fields that the application may use to give hints to the scheduler (such as
  103. priority levels).
  104. By default, task dependencies are inferred from data dependency (sequential
  105. coherence) by StarPU. The application can however disable sequential coherency
  106. for some data, and dependencies be expressed by hand.
  107. A task may be identified by a unique 64-bit number chosen by the application
  108. which we refer as a @b{tag}.
  109. Task dependencies can be enforced by hand either by the means of callback functions, by
  110. submitting other tasks, or by expressing dependencies
  111. between tags (which can thus correspond to tasks that have not been submitted
  112. yet).
  113. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  114. @c DSM
  115. @node StarPU Data Management Library
  116. @subsection StarPU Data Management Library
  117. Because StarPU schedules tasks at runtime, data transfers have to be
  118. done automatically and ``just-in-time'' between processing units,
  119. relieving the application programmer from explicit data transfers.
  120. Moreover, to avoid unnecessary transfers, StarPU keeps data
  121. where it was last needed, even if was modified there, and it
  122. allows multiple copies of the same data to reside at the same time on
  123. several processing units as long as it is not modified.
  124. @node Glossary
  125. @subsection Glossary
  126. A @b{codelet} records pointers to various implementations of the same
  127. theoretical function.
  128. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  129. A @b{bus} is a link between memory nodes.
  130. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  131. application) over various memory nodes. The data management library manages
  132. keeping them coherent.
  133. The @b{home} memory node of a data handle is the memory node from which the data
  134. was registered (usually the main memory node).
  135. A @b{task} represents a scheduled execution of a codelet on some data handles.
  136. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  137. depend on other tags. The value is chosen by the application.
  138. A @b{worker} execute tasks. There is typically one per CPU computation core and
  139. one per accelerator (for which a whole CPU core is dedicated).
  140. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  141. OpenCL and Gordon drivers. They usually start several workers to actually drive
  142. them.
  143. A @b{performance model} is a (dynamic or static) model of the performance of a
  144. given codelet. Codelets can have execution time performance model as well as
  145. power consumption performance models.
  146. A data @b{interface} describes the layout of the data: for a vector, a pointer
  147. for the start, the number of elements and the size of elements ; for a matrix, a
  148. pointer for the start, the number of elements per row, the offset between rows,
  149. and the size of each element ; etc. To access their data, codelet functions are
  150. given interfaces for the local memory node replicates of the data handles of the
  151. scheduled task.
  152. @b{Partitioning} data means dividing the data of a given data handle (called
  153. @b{father}) into a series of @b{children} data handles which designate various
  154. portions of the former.
  155. A @b{filter} is the function which computes children data handles from a father
  156. data handle, and thus describes how the partitioning should be done (horizontal,
  157. vertical, etc.)
  158. @b{Acquiring} a data handle can be done from the main application, to safely
  159. access the data of a data handle from its home node, without having to
  160. unregister it.
  161. @node Research Papers
  162. @subsection Research Papers
  163. Research papers about StarPU can be found at
  164. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  165. Notably a good overview in the research report
  166. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  167. @c ---------------------------------------------------------------------
  168. @c Installing StarPU
  169. @c ---------------------------------------------------------------------
  170. @node Installing StarPU
  171. @chapter Installing StarPU
  172. @menu
  173. * Downloading StarPU::
  174. * Configuration of StarPU::
  175. * Building and Installing StarPU::
  176. @end menu
  177. StarPU can be built and installed by the standard means of the GNU
  178. autotools. The following chapter is intended to briefly remind how these tools
  179. can be used to install StarPU.
  180. @node Downloading StarPU
  181. @section Downloading StarPU
  182. @menu
  183. * Getting Sources::
  184. * Optional dependencies::
  185. @end menu
  186. @node Getting Sources
  187. @subsection Getting Sources
  188. The simplest way to get StarPU sources is to download the latest official
  189. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  190. or the latest nightly snapshot from
  191. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  192. how to get the very latest version from the subversion repository itself, it
  193. should be needed only if you need the very latest changes (i.e. less than a
  194. day!)
  195. The source code is managed by a Subversion server hosted by the
  196. InriaGforge. To get the source code, you need:
  197. @itemize
  198. @item
  199. To install the client side of the software Subversion if it is
  200. not already available on your system. The software can be obtained from
  201. @indicateurl{http://subversion.tigris.org} . If you are running
  202. on Windows, you will probably prefer to use TortoiseSVN from
  203. @indicateurl{http://tortoisesvn.tigris.org/} .
  204. @item
  205. You can check out the project's SVN repository through anonymous
  206. access. This will provide you with a read access to the
  207. repository.
  208. If you need to have write access on the StarPU project, you can also choose to
  209. become a member of the project @code{starpu}. For this, you first need to get
  210. an account to the gForge server. You can then send a request to join the project
  211. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  212. @item
  213. More information on how to get a gForge account, to become a member of
  214. a project, or on any other related task can be obtained from the
  215. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  216. thing is to upload your public SSH key on the gForge server (see the
  217. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  218. instructions).
  219. @end itemize
  220. You can now check out the latest version from the Subversion server:
  221. @itemize
  222. @item
  223. using the anonymous access via svn:
  224. @example
  225. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  226. @end example
  227. @item
  228. using the anonymous access via https:
  229. @example
  230. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  231. @end example
  232. The password is @code{anonsvn}.
  233. @item
  234. using your gForge account
  235. @example
  236. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  237. @end example
  238. @end itemize
  239. The following step requires the availability of @code{autoconf} and
  240. @code{automake} to generate the @code{./configure} script. This is
  241. done by calling @code{./autogen.sh}. The required version for
  242. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  243. @example
  244. % ./autogen.sh
  245. @end example
  246. If the autotools are not available on your machine or not recent
  247. enough, you can choose to download the latest nightly tarball, which
  248. is provided with a @code{configure} script.
  249. @example
  250. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  251. @end example
  252. @node Optional dependencies
  253. @subsection Optional dependencies
  254. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  255. but strongly recommended. It allows to increase performance, and to
  256. perform some topology aware scheduling.
  257. @code{hwloc} is available in major distributions and for most OSes and can be
  258. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  259. @node Configuration of StarPU
  260. @section Configuration of StarPU
  261. @menu
  262. * Generating Makefiles and configuration scripts::
  263. * Running the configuration::
  264. @end menu
  265. @node Generating Makefiles and configuration scripts
  266. @subsection Generating Makefiles and configuration scripts
  267. This step is not necessary when using the tarball releases of StarPU. If you
  268. are using the source code from the svn repository, you first need to generate
  269. the configure scripts and the Makefiles.
  270. @example
  271. % ./autogen.sh
  272. @end example
  273. @node Running the configuration
  274. @subsection Running the configuration
  275. @example
  276. % ./configure
  277. @end example
  278. Details about options that are useful to give to @code{./configure} are given in
  279. @ref{Compilation configuration}.
  280. @node Building and Installing StarPU
  281. @section Building and Installing StarPU
  282. @menu
  283. * Building::
  284. * Sanity Checks::
  285. * Installing::
  286. @end menu
  287. @node Building
  288. @subsection Building
  289. @example
  290. % make
  291. @end example
  292. @node Sanity Checks
  293. @subsection Sanity Checks
  294. In order to make sure that StarPU is working properly on the system, it is also
  295. possible to run a test suite.
  296. @example
  297. % make check
  298. @end example
  299. @node Installing
  300. @subsection Installing
  301. In order to install StarPU at the location that was specified during
  302. configuration:
  303. @example
  304. % make install
  305. @end example
  306. @c ---------------------------------------------------------------------
  307. @c Using StarPU
  308. @c ---------------------------------------------------------------------
  309. @node Using StarPU
  310. @chapter Using StarPU
  311. @menu
  312. * Setting flags for compiling and linking applications::
  313. * Running a basic StarPU application::
  314. * Kernel threads started by StarPU::
  315. * Using accelerators::
  316. @end menu
  317. @node Setting flags for compiling and linking applications
  318. @section Setting flags for compiling and linking applications
  319. Compiling and linking an application against StarPU may require to use
  320. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  321. To this end, it is possible to use the @code{pkg-config} tool.
  322. If StarPU was not installed at some standard location, the path of StarPU's
  323. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  324. that @code{pkg-config} can find it. For example if StarPU was installed in
  325. @code{$prefix_dir}:
  326. @example
  327. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  328. @end example
  329. The flags required to compile or link against StarPU are then
  330. accessible with the following commands:
  331. @example
  332. % pkg-config --cflags libstarpu # options for the compiler
  333. % pkg-config --libs libstarpu # options for the linker
  334. @end example
  335. @node Running a basic StarPU application
  336. @section Running a basic StarPU application
  337. Basic examples using StarPU have been built in the directory
  338. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  339. example @code{vector_scal}.
  340. @example
  341. % $prefix_dir/lib/starpu/examples/vector_scal
  342. BEFORE : First element was 1.000000
  343. AFTER First element is 3.140000
  344. %
  345. @end example
  346. When StarPU is used for the first time, the directory
  347. @code{$HOME/.starpu/} is created, performance models will be stored in
  348. that directory.
  349. Please note that buses are benchmarked when StarPU is launched for the
  350. first time. This may take a few minutes, or less if @code{hwloc} is
  351. installed. This step is done only once per user and per machine.
  352. @node Kernel threads started by StarPU
  353. @section Kernel threads started by StarPU
  354. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  355. them per GPU. The application is not supposed to do computations in its own
  356. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  357. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  358. worker).
  359. @node Using accelerators
  360. @section Using accelerators
  361. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  362. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  363. This design choice was necessary as OpenCL and CUDA can not run at the
  364. same time on the same NVIDIA GPU, as there is currently no interoperability
  365. between them.
  366. Details on how to specify devices running OpenCL and the ones running
  367. CUDA are given in @ref{Enabling OpenCL}.
  368. @c ---------------------------------------------------------------------
  369. @c Basic Examples
  370. @c ---------------------------------------------------------------------
  371. @node Basic Examples
  372. @chapter Basic Examples
  373. @menu
  374. * Compiling and linking options::
  375. * Hello World:: Submitting Tasks
  376. * Scaling a Vector:: Manipulating Data
  377. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  378. * Task and Worker Profiling::
  379. * Partitioning Data:: Partitioning Data
  380. * Performance model example::
  381. * Theoretical lower bound on execution time::
  382. * Insert Task Utility::
  383. * More examples:: More examples shipped with StarPU
  384. * Debugging:: When things go wrong.
  385. @end menu
  386. @node Compiling and linking options
  387. @section Compiling and linking options
  388. Let's suppose StarPU has been installed in the directory
  389. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  390. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  391. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  392. libraries at runtime.
  393. @example
  394. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  395. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  396. @end example
  397. The Makefile could for instance contain the following lines to define which
  398. options must be given to the compiler and to the linker:
  399. @cartouche
  400. @example
  401. CFLAGS += $$(pkg-config --cflags libstarpu)
  402. LDFLAGS += $$(pkg-config --libs libstarpu)
  403. @end example
  404. @end cartouche
  405. @node Hello World
  406. @section Hello World
  407. @menu
  408. * Required Headers::
  409. * Defining a Codelet::
  410. * Submitting a Task::
  411. * Execution of Hello World::
  412. @end menu
  413. In this section, we show how to implement a simple program that submits a task to StarPU.
  414. @node Required Headers
  415. @subsection Required Headers
  416. The @code{starpu.h} header should be included in any code using StarPU.
  417. @cartouche
  418. @smallexample
  419. #include <starpu.h>
  420. @end smallexample
  421. @end cartouche
  422. @node Defining a Codelet
  423. @subsection Defining a Codelet
  424. @cartouche
  425. @smallexample
  426. struct params @{
  427. int i;
  428. float f;
  429. @};
  430. void cpu_func(void *buffers[], void *cl_arg)
  431. @{
  432. struct params *params = cl_arg;
  433. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  434. @}
  435. starpu_codelet cl =
  436. @{
  437. .where = STARPU_CPU,
  438. .cpu_func = cpu_func,
  439. .nbuffers = 0
  440. @};
  441. @end smallexample
  442. @end cartouche
  443. A codelet is a structure that represents a computational kernel. Such a codelet
  444. may contain an implementation of the same kernel on different architectures
  445. (e.g. CUDA, Cell's SPU, x86, ...).
  446. The @code{nbuffers} field specifies the number of data buffers that are
  447. manipulated by the codelet: here the codelet does not access or modify any data
  448. that is controlled by our data management library. Note that the argument
  449. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  450. structure) does not count as a buffer since it is not managed by our data
  451. management library, but just contain trivial parameters.
  452. @c TODO need a crossref to the proper description of "where" see bla for more ...
  453. We create a codelet which may only be executed on the CPUs. The @code{where}
  454. field is a bitmask that defines where the codelet may be executed. Here, the
  455. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  456. (@pxref{Codelets and Tasks} for more details on this field).
  457. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  458. which @emph{must} have the following prototype:
  459. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  460. In this example, we can ignore the first argument of this function which gives a
  461. description of the input and output buffers (e.g. the size and the location of
  462. the matrices) since there is none.
  463. The second argument is a pointer to a buffer passed as an
  464. argument to the codelet by the means of the @code{cl_arg} field of the
  465. @code{starpu_task} structure.
  466. @c TODO rewrite so that it is a little clearer ?
  467. Be aware that this may be a pointer to a
  468. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  469. if the codelet modifies this buffer, there is no guarantee that the initial
  470. buffer will be modified as well: this for instance implies that the buffer
  471. cannot be used as a synchronization medium. If synchronization is needed, data
  472. has to be registered to StarPU, see @ref{Scaling a Vector}.
  473. @node Submitting a Task
  474. @subsection Submitting a Task
  475. @cartouche
  476. @smallexample
  477. void callback_func(void *callback_arg)
  478. @{
  479. printf("Callback function (arg %x)\n", callback_arg);
  480. @}
  481. int main(int argc, char **argv)
  482. @{
  483. /* @b{initialize StarPU} */
  484. starpu_init(NULL);
  485. struct starpu_task *task = starpu_task_create();
  486. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  487. struct params params = @{ 1, 2.0f @};
  488. task->cl_arg = &params;
  489. task->cl_arg_size = sizeof(params);
  490. task->callback_func = callback_func;
  491. task->callback_arg = 0x42;
  492. /* @b{starpu_task_submit will be a blocking call} */
  493. task->synchronous = 1;
  494. /* @b{submit the task to StarPU} */
  495. starpu_task_submit(task);
  496. /* @b{terminate StarPU} */
  497. starpu_shutdown();
  498. return 0;
  499. @}
  500. @end smallexample
  501. @end cartouche
  502. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  503. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  504. be submitted after the termination of StarPU by a call to
  505. @code{starpu_shutdown}.
  506. In the example above, a task structure is allocated by a call to
  507. @code{starpu_task_create}. This function only allocates and fills the
  508. corresponding structure with the default settings (@pxref{Codelets and
  509. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  510. @c not really clear ;)
  511. The @code{cl} field is a pointer to the codelet which the task will
  512. execute: in other words, the codelet structure describes which computational
  513. kernel should be offloaded on the different architectures, and the task
  514. structure is a wrapper containing a codelet and the piece of data on which the
  515. codelet should operate.
  516. The optional @code{cl_arg} field is a pointer to a buffer (of size
  517. @code{cl_arg_size}) with some parameters for the kernel
  518. described by the codelet. For instance, if a codelet implements a computational
  519. kernel that multiplies its input vector by a constant, the constant could be
  520. specified by the means of this buffer, instead of registering it as a StarPU
  521. data. It must however be noted that StarPU avoids making copy whenever possible
  522. and rather passes the pointer as such, so the buffer which is pointed at must
  523. kept allocated until the task terminates, and if several tasks are submitted
  524. with various parameters, each of them must be given a pointer to their own
  525. buffer.
  526. Once a task has been executed, an optional callback function is be called.
  527. While the computational kernel could be offloaded on various architectures, the
  528. callback function is always executed on a CPU. The @code{callback_arg}
  529. pointer is passed as an argument of the callback. The prototype of a callback
  530. function must be:
  531. @code{void (*callback_function)(void *);}
  532. If the @code{synchronous} field is non-zero, task submission will be
  533. synchronous: the @code{starpu_task_submit} function will not return until the
  534. task was executed. Note that the @code{starpu_shutdown} method does not
  535. guarantee that asynchronous tasks have been executed before it returns,
  536. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  537. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  538. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  539. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  540. @code{starpu_data_set_sequential_consistency_flag}.
  541. @node Execution of Hello World
  542. @subsection Execution of Hello World
  543. @smallexample
  544. % make hello_world
  545. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  546. % ./hello_world
  547. Hello world (params = @{1, 2.000000@} )
  548. Callback function (arg 42)
  549. @end smallexample
  550. @node Scaling a Vector
  551. @section Manipulating Data: Scaling a Vector
  552. The previous example has shown how to submit tasks. In this section,
  553. we show how StarPU tasks can manipulate data. The full source code for
  554. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  555. @menu
  556. * Source code of Vector Scaling::
  557. * Execution of Vector Scaling::
  558. @end menu
  559. @node Source code of Vector Scaling
  560. @subsection Source code of Vector Scaling
  561. Programmers can describe the data layout of their application so that StarPU is
  562. responsible for enforcing data coherency and availability across the machine.
  563. Instead of handling complex (and non-portable) mechanisms to perform data
  564. movements, programmers only declare which piece of data is accessed and/or
  565. modified by a task, and StarPU makes sure that when a computational kernel
  566. starts somewhere (e.g. on a GPU), its data are available locally.
  567. Before submitting those tasks, the programmer first needs to declare the
  568. different pieces of data to StarPU using the @code{starpu_*_data_register}
  569. functions. To ease the development of applications for StarPU, it is possible
  570. to describe multiple types of data layout. A type of data layout is called an
  571. @b{interface}. There are different predefined interfaces available in StarPU:
  572. here we will consider the @b{vector interface}.
  573. The following lines show how to declare an array of @code{NX} elements of type
  574. @code{float} using the vector interface:
  575. @cartouche
  576. @smallexample
  577. float vector[NX];
  578. starpu_data_handle vector_handle;
  579. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  580. sizeof(vector[0]));
  581. @end smallexample
  582. @end cartouche
  583. The first argument, called the @b{data handle}, is an opaque pointer which
  584. designates the array in StarPU. This is also the structure which is used to
  585. describe which data is used by a task. The second argument is the node number
  586. where the data originally resides. Here it is 0 since the @code{vector} array is in
  587. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  588. the number of elements in the vector and the size of each element.
  589. The following shows how to construct a StarPU task that will manipulate the
  590. vector and a constant factor.
  591. @cartouche
  592. @smallexample
  593. float factor = 3.14;
  594. struct starpu_task *task = starpu_task_create();
  595. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  596. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  597. task->buffers[0].mode = STARPU_RW;
  598. task->cl_arg = &factor;
  599. task->cl_arg_size = sizeof(factor);
  600. task->synchronous = 1;
  601. starpu_task_submit(task);
  602. @end smallexample
  603. @end cartouche
  604. Since the factor is a mere constant float value parameter,
  605. it does not need a preliminary registration, and
  606. can just be passed through the @code{cl_arg} pointer like in the previous
  607. example. The vector parameter is described by its handle.
  608. There are two fields in each element of the @code{buffers} array.
  609. @code{handle} is the handle of the data, and @code{mode} specifies how the
  610. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  611. write-only and @code{STARPU_RW} for read and write access).
  612. The definition of the codelet can be written as follows:
  613. @cartouche
  614. @smallexample
  615. void scal_cpu_func(void *buffers[], void *cl_arg)
  616. @{
  617. unsigned i;
  618. float *factor = cl_arg;
  619. /* length of the vector */
  620. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  621. /* CPU copy of the vector pointer */
  622. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  623. for (i = 0; i < n; i++)
  624. val[i] *= *factor;
  625. @}
  626. starpu_codelet cl = @{
  627. .where = STARPU_CPU,
  628. .cpu_func = scal_cpu_func,
  629. .nbuffers = 1
  630. @};
  631. @end smallexample
  632. @end cartouche
  633. The first argument is an array that gives
  634. a description of all the buffers passed in the @code{task->buffers}@ array. The
  635. size of this array is given by the @code{nbuffers} field of the codelet
  636. structure. For the sake of genericity, this array contains pointers to the
  637. different interfaces describing each buffer. In the case of the @b{vector
  638. interface}, the location of the vector (resp. its length) is accessible in the
  639. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  640. read-write fashion, any modification will automatically affect future accesses
  641. to this vector made by other tasks.
  642. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  643. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  644. constant factor from this pointer.
  645. @node Execution of Vector Scaling
  646. @subsection Execution of Vector Scaling
  647. @smallexample
  648. % make vector_scal
  649. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  650. % ./vector_scal
  651. 0.000000 3.000000 6.000000 9.000000 12.000000
  652. @end smallexample
  653. @node Vector Scaling on an Hybrid CPU/GPU Machine
  654. @section Vector Scaling on an Hybrid CPU/GPU Machine
  655. Contrary to the previous examples, the task submitted in this example may not
  656. only be executed by the CPUs, but also by a CUDA device.
  657. @menu
  658. * Definition of the CUDA Kernel::
  659. * Definition of the OpenCL Kernel::
  660. * Definition of the Main Code::
  661. * Execution of Hybrid Vector Scaling::
  662. @end menu
  663. @node Definition of the CUDA Kernel
  664. @subsection Definition of the CUDA Kernel
  665. The CUDA implementation can be written as follows. It needs to be compiled with
  666. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  667. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  668. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  669. call.
  670. @cartouche
  671. @smallexample
  672. #include <starpu.h>
  673. static __global__ void vector_mult_cuda(float *val, unsigned n,
  674. float factor)
  675. @{
  676. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  677. if (i < n)
  678. val[i] *= factor;
  679. @}
  680. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  681. @{
  682. float *factor = (float *)_args;
  683. /* length of the vector */
  684. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  685. /* CUDA copy of the vector pointer */
  686. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  687. unsigned threads_per_block = 64;
  688. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  689. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  690. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  691. @}
  692. @end smallexample
  693. @end cartouche
  694. @node Definition of the OpenCL Kernel
  695. @subsection Definition of the OpenCL Kernel
  696. The OpenCL implementation can be written as follows. StarPU provides
  697. tools to compile a OpenCL kernel stored in a file.
  698. @cartouche
  699. @smallexample
  700. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  701. @{
  702. const int i = get_global_id(0);
  703. if (i < nx) @{
  704. val[i] *= factor;
  705. @}
  706. @}
  707. @end smallexample
  708. @end cartouche
  709. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  710. a device pointer, so that it is passed as such to the OpenCL kernel.
  711. @cartouche
  712. @smallexample
  713. #include <starpu.h>
  714. @i{#include <starpu_opencl.h>}
  715. @i{extern struct starpu_opencl_program programs;}
  716. void scal_opencl_func(void *buffers[], void *_args)
  717. @{
  718. float *factor = _args;
  719. @i{ int id, devid, err;}
  720. @i{ cl_kernel kernel;}
  721. @i{ cl_command_queue queue;}
  722. @i{ cl_event event;}
  723. /* length of the vector */
  724. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  725. /* OpenCL copy of the vector pointer */
  726. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  727. @i{ id = starpu_worker_get_id();}
  728. @i{ devid = starpu_worker_get_devid(id);}
  729. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  730. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  731. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  732. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  733. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  734. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  735. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  736. @i{ @{}
  737. @i{ size_t global=1;}
  738. @i{ size_t local=1;}
  739. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  740. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  741. @i{ @}}
  742. @i{ clFinish(queue);}
  743. @i{ starpu_opencl_collect_stats(event);}
  744. @i{ clReleaseEvent(event);}
  745. @i{ starpu_opencl_release_kernel(kernel);}
  746. @}
  747. @end smallexample
  748. @end cartouche
  749. @node Definition of the Main Code
  750. @subsection Definition of the Main Code
  751. The CPU implementation is the same as in the previous section.
  752. Here is the source of the main application. You can notice the value of the
  753. field @code{where} for the codelet. We specify
  754. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  755. can be executed either on a CPU or on a CUDA or an OpenCL device.
  756. @cartouche
  757. @smallexample
  758. #include <starpu.h>
  759. #define NX 2048
  760. extern void scal_cuda_func(void *buffers[], void *_args);
  761. extern void scal_cpu_func(void *buffers[], void *_args);
  762. extern void scal_opencl_func(void *buffers[], void *_args);
  763. /* @b{Definition of the codelet} */
  764. static starpu_codelet cl = @{
  765. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  766. /* @b{on a CUDA device, or on an OpenCL device} */
  767. .cuda_func = scal_cuda_func;
  768. .cpu_func = scal_cpu_func;
  769. .opencl_func = scal_opencl_func;
  770. .nbuffers = 1;
  771. @}
  772. #ifdef STARPU_USE_OPENCL
  773. /* @b{The compiled version of the OpenCL program} */
  774. struct starpu_opencl_program programs;
  775. #endif
  776. int main(int argc, char **argv)
  777. @{
  778. float *vector;
  779. int i, ret;
  780. float factor=3.0;
  781. struct starpu_task *task;
  782. starpu_data_handle vector_handle;
  783. starpu_init(NULL); /* @b{Initialising StarPU} */
  784. #ifdef STARPU_USE_OPENCL
  785. starpu_opencl_load_opencl_from_file(
  786. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  787. &programs, NULL);
  788. #endif
  789. vector = malloc(NX*sizeof(vector[0]));
  790. assert(vector);
  791. for(i=0 ; i<NX ; i++) vector[i] = i;
  792. @end smallexample
  793. @end cartouche
  794. @cartouche
  795. @smallexample
  796. /* @b{Registering data within StarPU} */
  797. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  798. NX, sizeof(vector[0]));
  799. /* @b{Definition of the task} */
  800. task = starpu_task_create();
  801. task->cl = &cl;
  802. task->buffers[0].handle = vector_handle;
  803. task->buffers[0].mode = STARPU_RW;
  804. task->cl_arg = &factor;
  805. task->cl_arg_size = sizeof(factor);
  806. @end smallexample
  807. @end cartouche
  808. @cartouche
  809. @smallexample
  810. /* @b{Submitting the task} */
  811. ret = starpu_task_submit(task);
  812. if (ret == -ENODEV) @{
  813. fprintf(stderr, "No worker may execute this task\n");
  814. return 1;
  815. @}
  816. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  817. /* @b{Waiting for its termination} */
  818. starpu_task_wait_for_all();
  819. /* @b{Update the vector in RAM} */
  820. starpu_data_acquire(vector_handle, STARPU_R);
  821. @end smallexample
  822. @end cartouche
  823. @cartouche
  824. @smallexample
  825. /* @b{Access the data} */
  826. for(i=0 ; i<NX; i++) @{
  827. fprintf(stderr, "%f ", vector[i]);
  828. @}
  829. fprintf(stderr, "\n");
  830. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  831. starpu_data_release(vector_handle);
  832. starpu_data_unregister(vector_handle);
  833. starpu_shutdown();
  834. return 0;
  835. @}
  836. @end smallexample
  837. @end cartouche
  838. @node Execution of Hybrid Vector Scaling
  839. @subsection Execution of Hybrid Vector Scaling
  840. The Makefile given at the beginning of the section must be extended to
  841. give the rules to compile the CUDA source code. Note that the source
  842. file of the OpenCL kernel does not need to be compiled now, it will
  843. be compiled at run-time when calling the function
  844. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  845. @cartouche
  846. @smallexample
  847. CFLAGS += $(shell pkg-config --cflags libstarpu)
  848. LDFLAGS += $(shell pkg-config --libs libstarpu)
  849. CC = gcc
  850. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  851. %.o: %.cu
  852. nvcc $(CFLAGS) $< -c $@
  853. clean:
  854. rm -f vector_scal *.o
  855. @end smallexample
  856. @end cartouche
  857. @smallexample
  858. % make
  859. @end smallexample
  860. and to execute it, with the default configuration:
  861. @smallexample
  862. % ./vector_scal
  863. 0.000000 3.000000 6.000000 9.000000 12.000000
  864. @end smallexample
  865. or for example, by disabling CPU devices:
  866. @smallexample
  867. % STARPU_NCPUS=0 ./vector_scal
  868. 0.000000 3.000000 6.000000 9.000000 12.000000
  869. @end smallexample
  870. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  871. see @ref{Using accelerators}):
  872. @smallexample
  873. % STARPU_NCUDA=0 ./vector_scal
  874. 0.000000 3.000000 6.000000 9.000000 12.000000
  875. @end smallexample
  876. @node Task and Worker Profiling
  877. @section Task and Worker Profiling
  878. A full example showing how to use the profiling API is available in
  879. the StarPU sources in the directory @code{examples/profiling/}.
  880. @cartouche
  881. @smallexample
  882. struct starpu_task *task = starpu_task_create();
  883. task->cl = &cl;
  884. task->synchronous = 1;
  885. /* We will destroy the task structure by hand so that we can
  886. * query the profiling info before the task is destroyed. */
  887. task->destroy = 0;
  888. /* Submit and wait for completion (since synchronous was set to 1) */
  889. starpu_task_submit(task);
  890. /* The task is finished, get profiling information */
  891. struct starpu_task_profiling_info *info = task->profiling_info;
  892. /* How much time did it take before the task started ? */
  893. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  894. /* How long was the task execution ? */
  895. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  896. /* We don't need the task structure anymore */
  897. starpu_task_destroy(task);
  898. @end smallexample
  899. @end cartouche
  900. @cartouche
  901. @smallexample
  902. /* Display the occupancy of all workers during the test */
  903. int worker;
  904. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  905. @{
  906. struct starpu_worker_profiling_info worker_info;
  907. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  908. STARPU_ASSERT(!ret);
  909. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  910. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  911. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  912. float executing_ratio = 100.0*executing_time/total_time;
  913. float sleeping_ratio = 100.0*sleeping_time/total_time;
  914. char workername[128];
  915. starpu_worker_get_name(worker, workername, 128);
  916. fprintf(stderr, "Worker %s:\n", workername);
  917. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  918. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  919. executing_ratio);
  920. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  921. sleeping_ratio);
  922. @}
  923. @end smallexample
  924. @end cartouche
  925. @node Partitioning Data
  926. @section Partitioning Data
  927. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  928. @cartouche
  929. @smallexample
  930. int vector[NX];
  931. starpu_data_handle handle;
  932. /* Declare data to StarPU */
  933. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  934. /* Partition the vector in PARTS sub-vectors */
  935. starpu_filter f =
  936. @{
  937. .filter_func = starpu_block_filter_func_vector,
  938. .nchildren = PARTS,
  939. .get_nchildren = NULL,
  940. .get_child_ops = NULL
  941. @};
  942. starpu_data_partition(handle, &f);
  943. @end smallexample
  944. @end cartouche
  945. @cartouche
  946. @smallexample
  947. /* Submit a task on each sub-vector */
  948. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  949. /* Get subdata number i (there is only 1 dimension) */
  950. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  951. struct starpu_task *task = starpu_task_create();
  952. task->buffers[0].handle = sub_handle;
  953. task->buffers[0].mode = STARPU_RW;
  954. task->cl = &cl;
  955. task->synchronous = 1;
  956. task->cl_arg = &factor;
  957. task->cl_arg_size = sizeof(factor);
  958. starpu_task_submit(task);
  959. @}
  960. @end smallexample
  961. @end cartouche
  962. Partitioning can be applied several times, see
  963. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  964. @node Performance model example
  965. @section Performance model example
  966. To achieve good scheduling, StarPU scheduling policies need to be able to
  967. estimate in advance the duration of a task. This is done by giving to codelets a
  968. performance model. There are several kinds of performance models.
  969. @itemize
  970. @item
  971. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  972. see for instance
  973. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  974. @item
  975. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  976. given set of data input/output sizes, the performance will always be about the
  977. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  978. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  979. few different sets of data input/output sizes. StarPU will then keep record of
  980. the average time of previous executions on the various processing units, and use
  981. it as an estimation. History is done per task size, by using a hash of the input
  982. and ouput sizes as an index.
  983. It will also save it in @code{~/.starpu/sampling/codelets}
  984. for further executions, and can be observed by using the
  985. @code{starpu_perfmodel_display} command. The following is a small code example.
  986. @cartouche
  987. @smallexample
  988. static struct starpu_perfmodel_t mult_perf_model = @{
  989. .type = STARPU_HISTORY_BASED,
  990. .symbol = "mult_perf_model"
  991. @};
  992. starpu_codelet cl = @{
  993. .where = STARPU_CPU,
  994. .cpu_func = cpu_mult,
  995. .nbuffers = 3,
  996. /* for the scheduling policy to be able to use performance models */
  997. .model = &mult_perf_model
  998. @};
  999. @end smallexample
  1000. @end cartouche
  1001. @item
  1002. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1003. model type). This still assumes performance regularity, but can work
  1004. with various data input sizes, by applying regression over observed
  1005. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1006. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1007. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  1008. @item
  1009. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1010. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1011. functions which return the expected duration of the task in micro-seconds, one
  1012. per architecture.
  1013. @end itemize
  1014. How to use schedulers which can benefit from such performance model is explained
  1015. in @ref{Task scheduling policy}.
  1016. The same can be done for task power consumption estimation, by setting the
  1017. @code{power_model} field the same way as the @code{model} field. Note: for
  1018. now, the application has to give to the power consumption performance model
  1019. a name which is different from the execution time performance model.
  1020. @node Theoretical lower bound on execution time
  1021. @section Theoretical lower bound on execution time
  1022. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1023. bound for the execution time of a whole set of tasks. See for
  1024. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1025. call @code{starpu_bound_start}, and after complete execution, call
  1026. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1027. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1028. problem corresponding to the schedule of your tasks. Run it through
  1029. @code{lp_solve} or any other linear programming solver, and that will give you a
  1030. lower bound for the total execution time of your tasks. If StarPU was compiled
  1031. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1032. solve it immediately and get the optimized minimum. Its @code{integer}
  1033. parameter allows to decide whether integer resolution should be computed
  1034. and returned.
  1035. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1036. dependencies into account. It must be understood that the linear programming
  1037. problem size is quadratic with the number of tasks and thus the time to solve it
  1038. will be very long, it could be minutes for just a few dozen tasks. You should
  1039. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1040. problem to MPS format and then use a better solver, @code{glpsol} might be
  1041. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1042. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1043. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1044. of @code{lp_solve}. For instance, we often just use
  1045. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1046. the @code{-gr} option can also be quite useful.
  1047. Setting @code{deps} to 0 will only take into account the actual computations
  1048. on processing units. It however still properly takes into account the varying
  1049. performances of kernels and processing units, which is quite more accurate than
  1050. just comparing StarPU performances with the fastest of the kernels being used.
  1051. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1052. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1053. tasks before less prioritized tasks, to check to which extend this results
  1054. to a less optimal solution. This increases even more computation time.
  1055. Note that for simplicity, all this however doesn't take into account data
  1056. transfers, which are assumed to be completely overlapped.
  1057. @node Insert Task Utility
  1058. @section Insert Task Utility
  1059. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1060. the creation and submission of tasks.
  1061. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1062. Create and submit a task corresponding to @var{cl} with the following
  1063. arguments. The argument list must be zero-terminated.
  1064. The arguments following the codelets can be of the following types:
  1065. @itemize
  1066. @item
  1067. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1068. @item
  1069. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1070. the size of the constant;
  1071. @item
  1072. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1073. @item
  1074. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1075. argument to the callback function;
  1076. @item
  1077. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1078. @end itemize
  1079. Parameters to be passed to the codelet implementation are defined
  1080. through the type @code{STARPU_VALUE}. The function
  1081. @code{starpu_unpack_cl_args} must be called within the codelet
  1082. implementation to retrieve them.
  1083. @end deftypefun
  1084. Here the implementation of the codelet:
  1085. @smallexample
  1086. void func_cpu(void *descr[], void *_args)
  1087. @{
  1088. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1089. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1090. int ifactor;
  1091. float ffactor;
  1092. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1093. *x0 = *x0 * ifactor;
  1094. *x1 = *x1 * ffactor;
  1095. @}
  1096. starpu_codelet mycodelet = @{
  1097. .where = STARPU_CPU,
  1098. .cpu_func = func_cpu,
  1099. .nbuffers = 2
  1100. @};
  1101. @end smallexample
  1102. And the call to the @code{starpu_insert_task} wrapper:
  1103. @smallexample
  1104. starpu_insert_task(&mycodelet,
  1105. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1106. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1107. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1108. 0);
  1109. @end smallexample
  1110. The call to @code{starpu_insert_task} is equivalent to the following
  1111. code:
  1112. @smallexample
  1113. struct starpu_task *task = starpu_task_create();
  1114. task->cl = &mycodelet;
  1115. task->buffers[0].handle = data_handles[0];
  1116. task->buffers[0].mode = STARPU_RW;
  1117. task->buffers[1].handle = data_handles[1];
  1118. task->buffers[1].mode = STARPU_RW;
  1119. char *arg_buffer;
  1120. size_t arg_buffer_size;
  1121. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1122. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1123. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1124. 0);
  1125. task->cl_arg = arg_buffer;
  1126. task->cl_arg_size = arg_buffer_size;
  1127. int ret = starpu_task_submit(task);
  1128. @end smallexample
  1129. @node Debugging
  1130. @section Debugging
  1131. StarPU provides several tools to help debugging aplications. Execution traces
  1132. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1133. gdb helpers are also provided to show the whole StarPU state:
  1134. @smallexample
  1135. (gdb) source tools/gdbinit
  1136. (gdb) help starpu
  1137. @end smallexample
  1138. @node More examples
  1139. @section More examples
  1140. More examples are available in the StarPU sources in the @code{examples/}
  1141. directory. Simple examples include:
  1142. @table @asis
  1143. @item @code{incrementer/}:
  1144. Trivial incrementation test.
  1145. @item @code{basic_examples/}:
  1146. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1147. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1148. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1149. interface, and an example using the variable data interface.
  1150. @item @code{matvecmult/}:
  1151. OpenCL example from NVidia, adapted to StarPU.
  1152. @item @code{axpy/}:
  1153. AXPY CUBLAS operation adapted to StarPU.
  1154. @item @code{fortran/}:
  1155. Example of Fortran bindings.
  1156. @end table
  1157. More advanced examples include:
  1158. @table @asis
  1159. @item @code{filters/}:
  1160. Examples using filters, as shown in @ref{Partitioning Data}.
  1161. @item @code{lu/}:
  1162. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1163. @item @code{cholesky/}:
  1164. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1165. @end table
  1166. @c ---------------------------------------------------------------------
  1167. @c Performance options
  1168. @c ---------------------------------------------------------------------
  1169. @node Performance optimization
  1170. @chapter How to optimize performance with StarPU
  1171. TODO: improve!
  1172. @menu
  1173. * Data management::
  1174. * Task submission::
  1175. * Task priorities::
  1176. * Task scheduling policy::
  1177. * Performance model calibration::
  1178. * Task distribution vs Data transfer::
  1179. * Data prefetch::
  1180. * Power-based scheduling::
  1181. * Profiling::
  1182. * CUDA-specific optimizations::
  1183. @end menu
  1184. Simply encapsulating application kernels into tasks already permits to
  1185. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1186. few additional changes are needed.
  1187. @node Data management
  1188. @section Data management
  1189. When the application allocates data, whenever possible it should use the
  1190. @code{starpu_malloc} function, which will ask CUDA or
  1191. OpenCL to make the allocation itself and pin the corresponding allocated
  1192. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1193. transfer to overlap with computations.
  1194. By default, StarPU leaves replicates of data wherever they were used, in case they
  1195. will be re-used by other tasks, thus saving the data transfer time. When some
  1196. task modifies some data, all the other replicates are invalidated, and only the
  1197. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1198. that this data will not be re-used by further tasks, it should advise StarPU to
  1199. immediately replicate it to a desired list of memory nodes (given through a
  1200. bitmask). This can be understood like the write-through mode of CPU caches.
  1201. @example
  1202. starpu_data_set_wt_mask(img_handle, 1<<0);
  1203. @end example
  1204. will for instance request to always transfer a replicate into the main memory (node
  1205. 0), as bit 0 of the write-through bitmask is being set.
  1206. @node Task submission
  1207. @section Task submission
  1208. To let StarPU make online optimizations, tasks should be submitted
  1209. asynchronously as much as possible. Ideally, all the tasks should be
  1210. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1211. @code{starpu_data_unregister} be done to wait for
  1212. termination. StarPU will then be able to rework the whole schedule, overlap
  1213. computation with communication, manage accelerator local memory usage, etc.
  1214. @node Task priorities
  1215. @section Task priorities
  1216. By default, StarPU will consider the tasks in the order they are submitted by
  1217. the application. If the application programmer knows that some tasks should
  1218. be performed in priority (for instance because their output is needed by many
  1219. other tasks and may thus be a bottleneck if not executed early enough), the
  1220. @code{priority} field of the task structure should be set to transmit the
  1221. priority information to StarPU.
  1222. @node Task scheduling policy
  1223. @section Task scheduling policy
  1224. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1225. because it provides correct load balance even if the application codelets do not
  1226. have performance models. If your application codelets have performance models
  1227. (@pxref{Performance model example} for examples showing how to do it),
  1228. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1229. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1230. the list of available schedulers.
  1231. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1232. to work on. This however does not permit to prefetch data since the scheduling
  1233. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1234. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1235. priority (between -5 and 5).
  1236. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1237. overall performance.
  1238. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1239. default. When a worker becomes idle, it steals a task from the most loaded
  1240. worker.
  1241. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1242. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1243. termination time will be minimal.
  1244. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1245. into account data transfer time.
  1246. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1247. it also sorts tasks on per-worker queues by number of already-available data
  1248. buffers.
  1249. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1250. also supports arbitrary priority values.
  1251. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1252. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1253. parallel tasks (still experimental).
  1254. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1255. supports parallel tasks (still experimental).
  1256. @node Performance model calibration
  1257. @section Performance model calibration
  1258. Most schedulers are based on an estimation of codelet duration on each kind
  1259. of processing unit. For this to be possible, the application programmer needs
  1260. to configure a performance model for the codelets of the application (see
  1261. @ref{Performance model example} for instance). History-based performance models
  1262. use on-line calibration. StarPU will automatically calibrate codelets
  1263. which have never been calibrated yet. To force continuing calibration, use
  1264. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1265. has not-so-stable performance. Details on the current performance model status
  1266. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1267. option lists the available performance models, and the @code{-s} option permits
  1268. to choose the performance model to be displayed. The result looks like:
  1269. @example
  1270. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1271. performance model for cpu
  1272. # hash size mean dev n
  1273. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1274. @end example
  1275. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1276. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1277. 1240 samples. It is a good idea to check this before doing actual performance
  1278. measurements.
  1279. If a kernel source code was modified (e.g. performance improvement), the
  1280. calibration information is stale and should be dropped, to re-calibrate from
  1281. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1282. Note: due to CUDA limitations, to be able to measure kernel duration,
  1283. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1284. disables data transfer / computation overlapping, and should thus not be used
  1285. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1286. only if a performance-model-based scheduler is chosen.
  1287. @node Task distribution vs Data transfer
  1288. @section Task distribution vs Data transfer
  1289. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1290. thus needs to find a balance between both. The target function that the
  1291. @code{dmda} scheduler of StarPU
  1292. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1293. @code{T_execution} is the estimated execution time of the codelet (usually
  1294. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1295. latter is estimated based on bus calibration before execution start,
  1296. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1297. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1298. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1299. since during real application execution, contention makes transfer times bigger.
  1300. This is of course imprecise, but in practice, a rough estimation already gives
  1301. the good results that a precise estimation would give.
  1302. @node Data prefetch
  1303. @section Data prefetch
  1304. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1305. as soon as a scheduling decision is taken for a task, requests are issued to
  1306. transfer its required data to the target processing unit, if needeed, so that
  1307. when the processing unit actually starts the task, its data will hopefully be
  1308. already available and it will not have to wait for the transfer to finish.
  1309. The application may want to perform some manual prefetching, for several reasons
  1310. such as excluding initial data transfers from performance measurements, or
  1311. setting up an initial statically-computed data distribution on the machine
  1312. before submitting tasks, which will thus guide StarPU toward an initial task
  1313. distribution (since StarPU will try to avoid further transfers).
  1314. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1315. the handle and the desired target memory node.
  1316. @node Power-based scheduling
  1317. @section Power-based scheduling
  1318. If the application can provide some power performance model (through
  1319. the @code{power_model} field of the codelet structure), StarPU will
  1320. take it into account when distributing tasks. The target function that
  1321. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1322. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1323. is the estimated task consumption in Joules. To tune this parameter, use
  1324. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1325. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1326. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1327. This is however not sufficient to correctly optimize power: the scheduler would
  1328. simply tend to run all computations on the most energy-conservative processing
  1329. unit. To account for the consumption of the whole machine (including idle
  1330. processing units), the idle power of the machine should be given by setting
  1331. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1332. be obtained from the machine power supplier.
  1333. The power actually consumed by the total execution can be displayed by setting
  1334. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1335. @node Profiling
  1336. @section Profiling
  1337. A quick view of how many tasks each worker has executed can be obtained by setting
  1338. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1339. execution did happen on accelerators without penalizing performance with
  1340. the profiling overhead.
  1341. A quick view of how much data transfers have been issued can be obtained by setting
  1342. @code{export STARPU_BUS_STATS=1} .
  1343. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1344. calling @code{starpu_profiling_status_set} from the source code.
  1345. Statistics on the execution can then be obtained by using @code{export
  1346. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1347. More details on performance feedback are provided by the next chapter.
  1348. @node CUDA-specific optimizations
  1349. @section CUDA-specific optimizations
  1350. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1351. communications and the codelet computations if the application does not use a
  1352. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1353. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1354. operations. For instance:
  1355. @example
  1356. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1357. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1358. @end example
  1359. Unfortunately, some CUDA libraries do not have stream variants of
  1360. kernels. That will lower the potential for overlapping.
  1361. @c ---------------------------------------------------------------------
  1362. @c Performance feedback
  1363. @c ---------------------------------------------------------------------
  1364. @node Performance feedback
  1365. @chapter Performance feedback
  1366. @menu
  1367. * On-line:: On-line performance feedback
  1368. * Off-line:: Off-line performance feedback
  1369. * Codelet performance:: Performance of codelets
  1370. @end menu
  1371. @node On-line
  1372. @section On-line performance feedback
  1373. @menu
  1374. * Enabling monitoring:: Enabling on-line performance monitoring
  1375. * Task feedback:: Per-task feedback
  1376. * Codelet feedback:: Per-codelet feedback
  1377. * Worker feedback:: Per-worker feedback
  1378. * Bus feedback:: Bus-related feedback
  1379. @end menu
  1380. @node Enabling monitoring
  1381. @subsection Enabling on-line performance monitoring
  1382. In order to enable online performance monitoring, the application can call
  1383. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1384. detect whether monitoring is already enabled or not by calling
  1385. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1386. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1387. can also be set to 1 to achieve the same effect.
  1388. Likewise, performance monitoring is stopped by calling
  1389. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1390. does not reset the performance counters so that the application may consult
  1391. them later on.
  1392. More details about the performance monitoring API are available in section
  1393. @ref{Profiling API}.
  1394. @node Task feedback
  1395. @subsection Per-task feedback
  1396. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1397. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1398. structure when a task terminates.
  1399. This structure is automatically destroyed when the task structure is destroyed,
  1400. either automatically or by calling @code{starpu_task_destroy}.
  1401. The @code{starpu_task_profiling_info} structure indicates the date when the
  1402. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1403. terminated (@code{end_time}), relative to the initialization of
  1404. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1405. that has executed the task (@code{workerid}).
  1406. These date are stored as @code{timespec} structures which the user may convert
  1407. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1408. function.
  1409. It it worth noting that the application may directly access this structure from
  1410. the callback executed at the end of the task. The @code{starpu_task} structure
  1411. associated to the callback currently being executed is indeed accessible with
  1412. the @code{starpu_get_current_task()} function.
  1413. @node Codelet feedback
  1414. @subsection Per-codelet feedback
  1415. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1416. an array of counters. The i-th entry of the array is incremented every time a
  1417. task implementing the codelet is executed on the i-th worker.
  1418. This array is not reinitialized when profiling is enabled or disabled.
  1419. @node Worker feedback
  1420. @subsection Per-worker feedback
  1421. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1422. function is a @code{starpu_worker_profiling_info} structure that gives
  1423. statistics about the specified worker. This structure specifies when StarPU
  1424. started collecting profiling information for that worker (@code{start_time}),
  1425. the duration of the profiling measurement interval (@code{total_time}), the
  1426. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1427. because there is no task to execute at all (@code{sleeping_time}), and the
  1428. number of tasks that were executed while profiling was enabled.
  1429. These values give an estimation of the proportion of time spent do real work,
  1430. and the time spent either sleeping because there are not enough executable
  1431. tasks or simply wasted in pure StarPU overhead.
  1432. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1433. information associated to a worker.
  1434. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1435. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1436. generate a graphic showing the evolution of these values during the time, for
  1437. the different workers.
  1438. @node Bus feedback
  1439. @subsection Bus-related feedback
  1440. TODO
  1441. @c how to enable/disable performance monitoring
  1442. @c what kind of information do we get ?
  1443. @node Off-line
  1444. @section Off-line performance feedback
  1445. @menu
  1446. * Generating traces:: Generating traces with FxT
  1447. * Gantt diagram:: Creating a Gantt Diagram
  1448. * DAG:: Creating a DAG with graphviz
  1449. * starpu-top:: Monitoring activity
  1450. @end menu
  1451. @node Generating traces
  1452. @subsection Generating traces with FxT
  1453. StarPU can use the FxT library (see
  1454. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1455. with a limited runtime overhead.
  1456. You can either get a tarball:
  1457. @example
  1458. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1459. @end example
  1460. or use the FxT library from CVS (autotools are required):
  1461. @example
  1462. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1463. % ./bootstrap
  1464. @end example
  1465. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1466. done following the standard procedure:
  1467. @example
  1468. % ./configure --prefix=$FXTDIR
  1469. % make
  1470. % make install
  1471. @end example
  1472. In order to have StarPU to generate traces, StarPU should be configured with
  1473. the @code{--with-fxt} option:
  1474. @example
  1475. $ ./configure --with-fxt=$FXTDIR
  1476. @end example
  1477. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1478. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1479. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1480. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1481. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1482. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1483. @code{/tmp/} directory by default, or by the directory specified by
  1484. the @code{STARPU_FXT_PREFIX} environment variable.
  1485. @node Gantt diagram
  1486. @subsection Creating a Gantt Diagram
  1487. When the FxT trace file @code{filename} has been generated, it is possible to
  1488. generate a trace in the Paje format by calling:
  1489. @example
  1490. % starpu_fxt_tool -i filename
  1491. @end example
  1492. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1493. to 1 before application execution will make StarPU do it automatically at
  1494. application shutdown.
  1495. This will create a @code{paje.trace} file in the current directory that can be
  1496. inspected with the ViTE trace visualizing open-source tool. More information
  1497. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1498. possible to open the @code{paje.trace} file with ViTE by using the following
  1499. command:
  1500. @example
  1501. % vite paje.trace
  1502. @end example
  1503. @node DAG
  1504. @subsection Creating a DAG with graphviz
  1505. When the FxT trace file @code{filename} has been generated, it is possible to
  1506. generate a task graph in the DOT format by calling:
  1507. @example
  1508. $ starpu_fxt_tool -i filename
  1509. @end example
  1510. This will create a @code{dag.dot} file in the current directory. This file is a
  1511. task graph described using the DOT language. It is possible to get a
  1512. graphical output of the graph by using the graphviz library:
  1513. @example
  1514. $ dot -Tpdf dag.dot -o output.pdf
  1515. @end example
  1516. @node starpu-top
  1517. @subsection Monitoring activity
  1518. When the FxT trace file @code{filename} has been generated, it is possible to
  1519. generate a activity trace by calling:
  1520. @example
  1521. $ starpu_fxt_tool -i filename
  1522. @end example
  1523. This will create an @code{activity.data} file in the current
  1524. directory. A profile of the application showing the activity of StarPU
  1525. during the execution of the program can be generated:
  1526. @example
  1527. $ starpu_top.sh activity.data
  1528. @end example
  1529. This will create a file named @code{activity.eps} in the current directory.
  1530. This picture is composed of two parts.
  1531. The first part shows the activity of the different workers. The green sections
  1532. indicate which proportion of the time was spent executed kernels on the
  1533. processing unit. The red sections indicate the proportion of time spent in
  1534. StartPU: an important overhead may indicate that the granularity may be too
  1535. low, and that bigger tasks may be appropriate to use the processing unit more
  1536. efficiently. The black sections indicate that the processing unit was blocked
  1537. because there was no task to process: this may indicate a lack of parallelism
  1538. which may be alleviated by creating more tasks when it is possible.
  1539. The second part of the @code{activity.eps} picture is a graph showing the
  1540. evolution of the number of tasks available in the system during the execution.
  1541. Ready tasks are shown in black, and tasks that are submitted but not
  1542. schedulable yet are shown in grey.
  1543. @node Codelet performance
  1544. @section Performance of codelets
  1545. The performance model of codelets can be examined by using the
  1546. @code{starpu_perfmodel_display} tool:
  1547. @example
  1548. $ starpu_perfmodel_display -l
  1549. file: <malloc_pinned.hannibal>
  1550. file: <starpu_slu_lu_model_21.hannibal>
  1551. file: <starpu_slu_lu_model_11.hannibal>
  1552. file: <starpu_slu_lu_model_22.hannibal>
  1553. file: <starpu_slu_lu_model_12.hannibal>
  1554. @end example
  1555. Here, the codelets of the lu example are available. We can examine the
  1556. performance of the 22 kernel:
  1557. @example
  1558. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1559. performance model for cpu
  1560. # hash size mean dev n
  1561. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1562. performance model for cuda_0
  1563. # hash size mean dev n
  1564. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1565. performance model for cuda_1
  1566. # hash size mean dev n
  1567. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1568. performance model for cuda_2
  1569. # hash size mean dev n
  1570. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1571. @end example
  1572. We can see that for the given size, over a sample of a few hundreds of
  1573. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1574. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1575. CPUs.
  1576. @c ---------------------------------------------------------------------
  1577. @c MPI support
  1578. @c ---------------------------------------------------------------------
  1579. @node StarPU MPI support
  1580. @chapter StarPU MPI support
  1581. The integration of MPI transfers within task parallelism is done in a
  1582. very natural way by the means of asynchronous interactions between the
  1583. application and StarPU. This is implemented in a separate libstarpumpi library
  1584. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1585. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1586. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1587. @menu
  1588. * The API::
  1589. * Simple Example::
  1590. * MPI Insert Task Utility::
  1591. @end menu
  1592. @node The API
  1593. @section The API
  1594. @subsection Initialisation
  1595. @deftypefun int starpu_mpi_initialize (void)
  1596. Initializes the starpumpi library. This must be called between calling
  1597. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1598. function does not call @code{MPI_Init}, it should be called beforehand.
  1599. @end deftypefun
  1600. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1601. Initializes the starpumpi library. This must be called between calling
  1602. @code{starpu_init} and other @code{starpu_mpi} functions.
  1603. This function calls @code{MPI_Init}, and therefore should be prefered
  1604. to the previous one for MPI implementations which are not thread-safe.
  1605. Returns the current MPI node rank and world size.
  1606. @end deftypefun
  1607. @deftypefun int starpu_mpi_shutdown (void)
  1608. Cleans the starpumpi library. This must be called between calling
  1609. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1610. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1611. by calling @code{starpu_mpi_initialize_extended}.
  1612. @end deftypefun
  1613. @subsection Communication
  1614. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1615. @end deftypefun
  1616. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1617. @end deftypefun
  1618. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1619. @end deftypefun
  1620. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1621. @end deftypefun
  1622. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1623. @end deftypefun
  1624. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1625. @end deftypefun
  1626. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1627. @end deftypefun
  1628. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1629. @end deftypefun
  1630. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1631. @end deftypefun
  1632. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1633. When the transfer is completed, the tag is unlocked
  1634. @end deftypefun
  1635. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1636. @end deftypefun
  1637. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1638. Asynchronously send an array of buffers, and unlocks the tag once all
  1639. of them are transmitted.
  1640. @end deftypefun
  1641. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1642. @end deftypefun
  1643. @page
  1644. @node Simple Example
  1645. @section Simple Example
  1646. @cartouche
  1647. @smallexample
  1648. void increment_token(void)
  1649. @{
  1650. struct starpu_task *task = starpu_task_create();
  1651. task->cl = &increment_cl;
  1652. task->buffers[0].handle = token_handle;
  1653. task->buffers[0].mode = STARPU_RW;
  1654. starpu_task_submit(task);
  1655. @}
  1656. @end smallexample
  1657. @end cartouche
  1658. @cartouche
  1659. @smallexample
  1660. int main(int argc, char **argv)
  1661. @{
  1662. int rank, size;
  1663. starpu_init(NULL);
  1664. starpu_mpi_initialize_extended(&rank, &size);
  1665. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1666. unsigned nloops = NITER;
  1667. unsigned loop;
  1668. unsigned last_loop = nloops - 1;
  1669. unsigned last_rank = size - 1;
  1670. @end smallexample
  1671. @end cartouche
  1672. @cartouche
  1673. @smallexample
  1674. for (loop = 0; loop < nloops; loop++) @{
  1675. int tag = loop*size + rank;
  1676. if (loop == 0 && rank == 0)
  1677. @{
  1678. token = 0;
  1679. fprintf(stdout, "Start with token value %d\n", token);
  1680. @}
  1681. else
  1682. @{
  1683. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1684. MPI_COMM_WORLD, NULL, NULL);
  1685. @}
  1686. increment_token();
  1687. if (loop == last_loop && rank == last_rank)
  1688. @{
  1689. starpu_data_acquire(token_handle, STARPU_R);
  1690. fprintf(stdout, "Finished : token value %d\n", token);
  1691. starpu_data_release(token_handle);
  1692. @}
  1693. else
  1694. @{
  1695. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1696. MPI_COMM_WORLD, NULL, NULL);
  1697. @}
  1698. @}
  1699. starpu_task_wait_for_all();
  1700. @end smallexample
  1701. @end cartouche
  1702. @cartouche
  1703. @smallexample
  1704. starpu_mpi_shutdown();
  1705. starpu_shutdown();
  1706. if (rank == last_rank)
  1707. @{
  1708. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1709. STARPU_ASSERT(token == nloops*size);
  1710. @}
  1711. @end smallexample
  1712. @end cartouche
  1713. @page
  1714. @node MPI Insert Task Utility
  1715. @section MPI Insert Task Utility
  1716. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1717. Create and submit a task corresponding to @var{cl} with the following
  1718. arguments. The argument list must be zero-terminated.
  1719. The arguments following the codelets are the same types as for the
  1720. function @code{starpu_insert_task} defined in @ref{Insert Task
  1721. Utility}. The extra argument @code{STARPU_EXECUTE} followed by an
  1722. integer allows to specify the node to execute the codelet.
  1723. The algorithm is as follows:
  1724. @enumerate
  1725. @item Find out whether we are to execute the codelet because we own the
  1726. data to be written to. If different tasks own data to be written to,
  1727. the argument @code{STARPU_EXECUTE} should be used to specify the
  1728. executing task @code{ET}.
  1729. @item Send and receive data as requested. Tasks owning data which need
  1730. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1731. @item Execute the codelet. This is done by the task selected in the
  1732. 1st step of the algorithm.
  1733. @item In the case when different tasks own data to be written to, send
  1734. W data back to their owners.
  1735. @end enumerate
  1736. The algorithm also includes a cache mechanism that allows not to send
  1737. data twice to the same task, unless the data has been modified.
  1738. @end deftypefun
  1739. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1740. @end deftypefun
  1741. @page
  1742. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1743. first needs to define a distribution function which specifies the
  1744. locality of the data. Note that that distribution information needs to
  1745. be given to StarPU by calling @code{starpu_data_set_rank}.
  1746. @cartouche
  1747. @smallexample
  1748. /* Returns the MPI node number where data is */
  1749. int my_distrib(int x, int y, int nb_nodes) @{
  1750. /* Cyclic distrib */
  1751. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1752. // /* Linear distrib */
  1753. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1754. @}
  1755. @end smallexample
  1756. @end cartouche
  1757. Now the data can be registered within StarPU. Data which are not
  1758. owned but will be needed for computations can be registered through
  1759. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1760. StarPU will automatically allocate the memory when it is used for the
  1761. first time.
  1762. @cartouche
  1763. @smallexample
  1764. unsigned matrix[X][Y];
  1765. starpu_data_handle data_handles[X][Y];
  1766. for(x = 0; x < X; x++) @{
  1767. for (y = 0; y < Y; y++) @{
  1768. int mpi_rank = my_distrib(x, y, size);
  1769. if (mpi_rank == rank)
  1770. /* Owning data */
  1771. starpu_variable_data_register(&data_handles[x][y], 0,
  1772. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1773. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1774. /* I don't own that index, but will need it for my computations */
  1775. starpu_variable_data_register(&data_handles[x][y], -1,
  1776. (uintptr_t)NULL, sizeof(unsigned));
  1777. else
  1778. /* I know it's useless to allocate anything for this */
  1779. data_handles[x][y] = NULL;
  1780. if (data_handles[x][y])
  1781. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1782. @}
  1783. @}
  1784. @end smallexample
  1785. @end cartouche
  1786. Now @code{starpu_mpi_insert_task()} can be called for the different
  1787. steps of the application.
  1788. @cartouche
  1789. @smallexample
  1790. for(loop=0 ; loop<niter; loop++)
  1791. for (x = 1; x < X-1; x++)
  1792. for (y = 1; y < Y-1; y++)
  1793. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1794. STARPU_RW, data_handles[x][y],
  1795. STARPU_R, data_handles[x-1][y],
  1796. STARPU_R, data_handles[x+1][y],
  1797. STARPU_R, data_handles[x][y-1],
  1798. STARPU_R, data_handles[x][y+1],
  1799. 0);
  1800. starpu_task_wait_for_all();
  1801. @end smallexample
  1802. @end cartouche
  1803. @c ---------------------------------------------------------------------
  1804. @c Configuration options
  1805. @c ---------------------------------------------------------------------
  1806. @node Configuring StarPU
  1807. @chapter Configuring StarPU
  1808. @menu
  1809. * Compilation configuration::
  1810. * Execution configuration through environment variables::
  1811. @end menu
  1812. @node Compilation configuration
  1813. @section Compilation configuration
  1814. The following arguments can be given to the @code{configure} script.
  1815. @menu
  1816. * Common configuration::
  1817. * Configuring workers::
  1818. * Advanced configuration::
  1819. @end menu
  1820. @node Common configuration
  1821. @subsection Common configuration
  1822. @menu
  1823. * --enable-debug::
  1824. * --enable-fast::
  1825. * --enable-verbose::
  1826. * --enable-coverage::
  1827. @end menu
  1828. @node --enable-debug
  1829. @subsubsection @code{--enable-debug}
  1830. @table @asis
  1831. @item @emph{Description}:
  1832. Enable debugging messages.
  1833. @end table
  1834. @node --enable-fast
  1835. @subsubsection @code{--enable-fast}
  1836. @table @asis
  1837. @item @emph{Description}:
  1838. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1839. @end table
  1840. @node --enable-verbose
  1841. @subsubsection @code{--enable-verbose}
  1842. @table @asis
  1843. @item @emph{Description}:
  1844. Augment the verbosity of the debugging messages. This can be disabled
  1845. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1846. any value.
  1847. @smallexample
  1848. % STARPU_SILENT=1 ./vector_scal
  1849. @end smallexample
  1850. @end table
  1851. @node --enable-coverage
  1852. @subsubsection @code{--enable-coverage}
  1853. @table @asis
  1854. @item @emph{Description}:
  1855. Enable flags for the @code{gcov} coverage tool.
  1856. @end table
  1857. @node Configuring workers
  1858. @subsection Configuring workers
  1859. @menu
  1860. * --enable-nmaxcpus::
  1861. * --disable-cpu::
  1862. * --enable-maxcudadev::
  1863. * --disable-cuda::
  1864. * --with-cuda-dir::
  1865. * --with-cuda-include-dir::
  1866. * --with-cuda-lib-dir::
  1867. * --enable-maxopencldev::
  1868. * --disable-opencl::
  1869. * --with-opencl-dir::
  1870. * --with-opencl-include-dir::
  1871. * --with-opencl-lib-dir::
  1872. * --enable-gordon::
  1873. * --with-gordon-dir::
  1874. @end menu
  1875. @node --enable-nmaxcpus
  1876. @subsubsection @code{--enable-nmaxcpus=<number>}
  1877. @table @asis
  1878. @item @emph{Description}:
  1879. Defines the maximum number of CPU cores that StarPU will support, then
  1880. available as the @code{STARPU_NMAXCPUS} macro.
  1881. @end table
  1882. @node --disable-cpu
  1883. @subsubsection @code{--disable-cpu}
  1884. @table @asis
  1885. @item @emph{Description}:
  1886. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1887. @end table
  1888. @node --enable-maxcudadev
  1889. @subsubsection @code{--enable-maxcudadev=<number>}
  1890. @table @asis
  1891. @item @emph{Description}:
  1892. Defines the maximum number of CUDA devices that StarPU will support, then
  1893. available as the @code{STARPU_MAXCUDADEVS} macro.
  1894. @end table
  1895. @node --disable-cuda
  1896. @subsubsection @code{--disable-cuda}
  1897. @table @asis
  1898. @item @emph{Description}:
  1899. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1900. @end table
  1901. @node --with-cuda-dir
  1902. @subsubsection @code{--with-cuda-dir=<path>}
  1903. @table @asis
  1904. @item @emph{Description}:
  1905. Specify the directory where CUDA is installed. This directory should notably contain
  1906. @code{include/cuda.h}.
  1907. @end table
  1908. @node --with-cuda-include-dir
  1909. @subsubsection @code{--with-cuda-include-dir=<path>}
  1910. @table @asis
  1911. @item @emph{Description}:
  1912. Specify the directory where CUDA headers are installed. This directory should
  1913. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1914. value given to @code{--with-cuda-dir}.
  1915. @end table
  1916. @node --with-cuda-lib-dir
  1917. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1918. @table @asis
  1919. @item @emph{Description}:
  1920. Specify the directory where the CUDA library is installed. This directory should
  1921. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1922. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1923. @end table
  1924. @node --enable-maxopencldev
  1925. @subsubsection @code{--enable-maxopencldev=<number>}
  1926. @table @asis
  1927. @item @emph{Description}:
  1928. Defines the maximum number of OpenCL devices that StarPU will support, then
  1929. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1930. @end table
  1931. @node --disable-opencl
  1932. @subsubsection @code{--disable-opencl}
  1933. @table @asis
  1934. @item @emph{Description}:
  1935. Disable the use of OpenCL, even if the SDK is detected.
  1936. @end table
  1937. @node --with-opencl-dir
  1938. @subsubsection @code{--with-opencl-dir=<path>}
  1939. @table @asis
  1940. @item @emph{Description}:
  1941. Specify the location of the OpenCL SDK. This directory should notably contain
  1942. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1943. @end table
  1944. @node --with-opencl-include-dir
  1945. @subsubsection @code{--with-opencl-include-dir=<path>}
  1946. @table @asis
  1947. @item @emph{Description}:
  1948. Specify the location of OpenCL headers. This directory should notably contain
  1949. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1950. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1951. @end table
  1952. @node --with-opencl-lib-dir
  1953. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1954. @table @asis
  1955. @item @emph{Description}:
  1956. Specify the location of the OpenCL library. This directory should notably
  1957. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1958. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1959. @end table
  1960. @node --enable-gordon
  1961. @subsubsection @code{--enable-gordon}
  1962. @table @asis
  1963. @item @emph{Description}:
  1964. Enable the use of the Gordon runtime for Cell SPUs.
  1965. @c TODO: rather default to enabled when detected
  1966. @end table
  1967. @node --with-gordon-dir
  1968. @subsubsection @code{--with-gordon-dir=<path>}
  1969. @table @asis
  1970. @item @emph{Description}:
  1971. Specify the location of the Gordon SDK.
  1972. @end table
  1973. @node Advanced configuration
  1974. @subsection Advanced configuration
  1975. @menu
  1976. * --enable-perf-debug::
  1977. * --enable-model-debug::
  1978. * --enable-stats::
  1979. * --enable-maxbuffers::
  1980. * --enable-allocation-cache::
  1981. * --enable-opengl-render::
  1982. * --enable-blas-lib::
  1983. * --with-magma::
  1984. * --with-fxt::
  1985. * --with-perf-model-dir::
  1986. * --with-mpicc::
  1987. * --with-goto-dir::
  1988. * --with-atlas-dir::
  1989. * --with-mkl-cflags::
  1990. * --with-mkl-ldflags::
  1991. @end menu
  1992. @node --enable-perf-debug
  1993. @subsubsection @code{--enable-perf-debug}
  1994. @table @asis
  1995. @item @emph{Description}:
  1996. Enable performance debugging.
  1997. @end table
  1998. @node --enable-model-debug
  1999. @subsubsection @code{--enable-model-debug}
  2000. @table @asis
  2001. @item @emph{Description}:
  2002. Enable performance model debugging.
  2003. @end table
  2004. @node --enable-stats
  2005. @subsubsection @code{--enable-stats}
  2006. @table @asis
  2007. @item @emph{Description}:
  2008. Enable statistics.
  2009. @end table
  2010. @node --enable-maxbuffers
  2011. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2012. @table @asis
  2013. @item @emph{Description}:
  2014. Define the maximum number of buffers that tasks will be able to take
  2015. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2016. @end table
  2017. @node --enable-allocation-cache
  2018. @subsubsection @code{--enable-allocation-cache}
  2019. @table @asis
  2020. @item @emph{Description}:
  2021. Enable the use of a data allocation cache to avoid the cost of it with
  2022. CUDA. Still experimental.
  2023. @end table
  2024. @node --enable-opengl-render
  2025. @subsubsection @code{--enable-opengl-render}
  2026. @table @asis
  2027. @item @emph{Description}:
  2028. Enable the use of OpenGL for the rendering of some examples.
  2029. @c TODO: rather default to enabled when detected
  2030. @end table
  2031. @node --enable-blas-lib
  2032. @subsubsection @code{--enable-blas-lib=<name>}
  2033. @table @asis
  2034. @item @emph{Description}:
  2035. Specify the blas library to be used by some of the examples. The
  2036. library has to be 'atlas' or 'goto'.
  2037. @end table
  2038. @node --with-magma
  2039. @subsubsection @code{--with-magma=<path>}
  2040. @table @asis
  2041. @item @emph{Description}:
  2042. Specify where magma is installed. This directory should notably contain
  2043. @code{include/magmablas.h}.
  2044. @end table
  2045. @node --with-fxt
  2046. @subsubsection @code{--with-fxt=<path>}
  2047. @table @asis
  2048. @item @emph{Description}:
  2049. Specify the location of FxT (for generating traces and rendering them
  2050. using ViTE). This directory should notably contain
  2051. @code{include/fxt/fxt.h}.
  2052. @c TODO add ref to other section
  2053. @end table
  2054. @node --with-perf-model-dir
  2055. @subsubsection @code{--with-perf-model-dir=<dir>}
  2056. @table @asis
  2057. @item @emph{Description}:
  2058. Specify where performance models should be stored (instead of defaulting to the
  2059. current user's home).
  2060. @end table
  2061. @node --with-mpicc
  2062. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2063. @table @asis
  2064. @item @emph{Description}:
  2065. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2066. @end table
  2067. @node --with-goto-dir
  2068. @subsubsection @code{--with-goto-dir=<dir>}
  2069. @table @asis
  2070. @item @emph{Description}:
  2071. Specify the location of GotoBLAS.
  2072. @end table
  2073. @node --with-atlas-dir
  2074. @subsubsection @code{--with-atlas-dir=<dir>}
  2075. @table @asis
  2076. @item @emph{Description}:
  2077. Specify the location of ATLAS. This directory should notably contain
  2078. @code{include/cblas.h}.
  2079. @end table
  2080. @node --with-mkl-cflags
  2081. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2082. @table @asis
  2083. @item @emph{Description}:
  2084. Specify the compilation flags for the MKL Library.
  2085. @end table
  2086. @node --with-mkl-ldflags
  2087. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2088. @table @asis
  2089. @item @emph{Description}:
  2090. Specify the linking flags for the MKL Library. Note that the
  2091. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2092. website provides a script to determine the linking flags.
  2093. @end table
  2094. @c ---------------------------------------------------------------------
  2095. @c Environment variables
  2096. @c ---------------------------------------------------------------------
  2097. @node Execution configuration through environment variables
  2098. @section Execution configuration through environment variables
  2099. @menu
  2100. * Workers:: Configuring workers
  2101. * Scheduling:: Configuring the Scheduling engine
  2102. * Misc:: Miscellaneous and debug
  2103. @end menu
  2104. Note: the values given in @code{starpu_conf} structure passed when
  2105. calling @code{starpu_init} will override the values of the environment
  2106. variables.
  2107. @node Workers
  2108. @subsection Configuring workers
  2109. @menu
  2110. * STARPU_NCPUS:: Number of CPU workers
  2111. * STARPU_NCUDA:: Number of CUDA workers
  2112. * STARPU_NOPENCL:: Number of OpenCL workers
  2113. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2114. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2115. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2116. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2117. @end menu
  2118. @node STARPU_NCPUS
  2119. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2120. @table @asis
  2121. @item @emph{Description}:
  2122. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2123. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2124. the accelerators.
  2125. @end table
  2126. @node STARPU_NCUDA
  2127. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2128. @table @asis
  2129. @item @emph{Description}:
  2130. Specify the number of CUDA devices that StarPU can use. If
  2131. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2132. possible to select which CUDA devices should be used by the means of the
  2133. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2134. create as many CUDA workers as there are CUDA devices.
  2135. @end table
  2136. @node STARPU_NOPENCL
  2137. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2138. @table @asis
  2139. @item @emph{Description}:
  2140. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2141. @end table
  2142. @node STARPU_NGORDON
  2143. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2144. @table @asis
  2145. @item @emph{Description}:
  2146. Specify the number of SPUs that StarPU can use.
  2147. @end table
  2148. @node STARPU_WORKERS_CPUID
  2149. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2153. specifies on which logical CPU the different workers should be
  2154. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2155. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2156. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2157. determined by the OS, or provided by the @code{hwloc} library in case it is
  2158. available.
  2159. Note that the first workers correspond to the CUDA workers, then come the
  2160. OpenCL and the SPU, and finally the CPU workers. For example if
  2161. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2162. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2163. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2164. the logical CPUs #1 and #3 will be used by the CPU workers.
  2165. If the number of workers is larger than the array given in
  2166. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2167. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2168. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2169. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2170. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2171. @end table
  2172. @node STARPU_WORKERS_CUDAID
  2173. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2174. @table @asis
  2175. @item @emph{Description}:
  2176. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2177. possible to select which CUDA devices should be used by StarPU. On a machine
  2178. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2179. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2180. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2181. the one reported by CUDA).
  2182. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2183. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2184. @end table
  2185. @node STARPU_WORKERS_OPENCLID
  2186. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2187. @table @asis
  2188. @item @emph{Description}:
  2189. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2190. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2191. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2192. @end table
  2193. @node Scheduling
  2194. @subsection Configuring the Scheduling engine
  2195. @menu
  2196. * STARPU_SCHED:: Scheduling policy
  2197. * STARPU_CALIBRATE:: Calibrate performance models
  2198. * STARPU_PREFETCH:: Use data prefetch
  2199. * STARPU_SCHED_ALPHA:: Computation factor
  2200. * STARPU_SCHED_BETA:: Communication factor
  2201. @end menu
  2202. @node STARPU_SCHED
  2203. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2204. @table @asis
  2205. @item @emph{Description}:
  2206. This chooses between the different scheduling policies proposed by StarPU: work
  2207. random, stealing, greedy, with performance models, etc.
  2208. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2209. @end table
  2210. @node STARPU_CALIBRATE
  2211. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2212. @table @asis
  2213. @item @emph{Description}:
  2214. If this variable is set to 1, the performance models are calibrated during
  2215. the execution. If it is set to 2, the previous values are dropped to restart
  2216. calibration from scratch. Setting this variable to 0 disable calibration, this
  2217. is the default behaviour.
  2218. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2219. @end table
  2220. @node STARPU_PREFETCH
  2221. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2222. @table @asis
  2223. @item @emph{Description}:
  2224. This variable indicates whether data prefetching should be enabled (0 means
  2225. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2226. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2227. advance, so that data is already present on the GPU when the task starts. As a
  2228. result, computation and data transfers are overlapped.
  2229. Note that prefetching is enabled by default in StarPU.
  2230. @end table
  2231. @node STARPU_SCHED_ALPHA
  2232. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2233. @table @asis
  2234. @item @emph{Description}:
  2235. To estimate the cost of a task StarPU takes into account the estimated
  2236. computation time (obtained thanks to performance models). The alpha factor is
  2237. the coefficient to be applied to it before adding it to the communication part.
  2238. @end table
  2239. @node STARPU_SCHED_BETA
  2240. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2241. @table @asis
  2242. @item @emph{Description}:
  2243. To estimate the cost of a task StarPU takes into account the estimated
  2244. data transfer time (obtained thanks to performance models). The beta factor is
  2245. the coefficient to be applied to it before adding it to the computation part.
  2246. @end table
  2247. @node Misc
  2248. @subsection Miscellaneous and debug
  2249. @menu
  2250. * STARPU_SILENT:: Disable verbose mode
  2251. * STARPU_LOGFILENAME:: Select debug file name
  2252. * STARPU_FXT_PREFIX:: FxT trace location
  2253. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2254. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2255. @end menu
  2256. @node STARPU_SILENT
  2257. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2258. @table @asis
  2259. @item @emph{Description}:
  2260. This variable allows to disable verbose mode at runtime when StarPU
  2261. has been configured with the option @code{--enable-verbose}.
  2262. @end table
  2263. @node STARPU_LOGFILENAME
  2264. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2265. @table @asis
  2266. @item @emph{Description}:
  2267. This variable specifies in which file the debugging output should be saved to.
  2268. @end table
  2269. @node STARPU_FXT_PREFIX
  2270. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2271. @table @asis
  2272. @item @emph{Description}
  2273. This variable specifies in which directory to save the trace generated if FxT is enabled.
  2274. @end table
  2275. @node STARPU_LIMIT_GPU_MEM
  2276. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2277. @table @asis
  2278. @item @emph{Description}
  2279. This variable specifies the maximum number of megabytes that should be
  2280. available to the application on each GPUs. In case this value is smaller than
  2281. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2282. on the device. This variable is intended to be used for experimental purposes
  2283. as it emulates devices that have a limited amount of memory.
  2284. @end table
  2285. @node STARPU_GENERATE_TRACE
  2286. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2287. @table @asis
  2288. @item @emph{Description}
  2289. When set to 1, this variable indicates that StarPU should automatically
  2290. generate a Paje trace when starpu_shutdown is called.
  2291. @end table
  2292. @c ---------------------------------------------------------------------
  2293. @c StarPU API
  2294. @c ---------------------------------------------------------------------
  2295. @node StarPU API
  2296. @chapter StarPU API
  2297. @menu
  2298. * Initialization and Termination:: Initialization and Termination methods
  2299. * Workers' Properties:: Methods to enumerate workers' properties
  2300. * Data Library:: Methods to manipulate data
  2301. * Data Interfaces::
  2302. * Data Partition::
  2303. * Codelets and Tasks:: Methods to construct tasks
  2304. * Explicit Dependencies:: Explicit Dependencies
  2305. * Implicit Data Dependencies:: Implicit Data Dependencies
  2306. * Performance Model API::
  2307. * Profiling API:: Profiling API
  2308. * CUDA extensions:: CUDA extensions
  2309. * OpenCL extensions:: OpenCL extensions
  2310. * Cell extensions:: Cell extensions
  2311. * Miscellaneous helpers::
  2312. @end menu
  2313. @node Initialization and Termination
  2314. @section Initialization and Termination
  2315. @menu
  2316. * starpu_init:: Initialize StarPU
  2317. * struct starpu_conf:: StarPU runtime configuration
  2318. * starpu_conf_init:: Initialize starpu_conf structure
  2319. * starpu_shutdown:: Terminate StarPU
  2320. @end menu
  2321. @node starpu_init
  2322. @subsection @code{starpu_init} -- Initialize StarPU
  2323. @table @asis
  2324. @item @emph{Description}:
  2325. This is StarPU initialization method, which must be called prior to any other
  2326. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2327. policy, number of cores, ...) by passing a non-null argument. Default
  2328. configuration is used if the passed argument is @code{NULL}.
  2329. @item @emph{Return value}:
  2330. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2331. indicates that no worker was available (so that StarPU was not initialized).
  2332. @item @emph{Prototype}:
  2333. @code{int starpu_init(struct starpu_conf *conf);}
  2334. @end table
  2335. @node struct starpu_conf
  2336. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2337. @table @asis
  2338. @item @emph{Description}:
  2339. This structure is passed to the @code{starpu_init} function in order
  2340. to configure StarPU.
  2341. When the default value is used, StarPU automatically selects the number
  2342. of processing units and takes the default scheduling policy. This parameter
  2343. overwrites the equivalent environment variables.
  2344. @item @emph{Fields}:
  2345. @table @asis
  2346. @item @code{sched_policy_name} (default = NULL):
  2347. This is the name of the scheduling policy. This can also be specified with the
  2348. @code{STARPU_SCHED} environment variable.
  2349. @item @code{sched_policy} (default = NULL):
  2350. This is the definition of the scheduling policy. This field is ignored
  2351. if @code{sched_policy_name} is set.
  2352. @item @code{ncpus} (default = -1):
  2353. This is the number of CPU cores that StarPU can use. This can also be
  2354. specified with the @code{STARPU_NCPUS} environment variable.
  2355. @item @code{ncuda} (default = -1):
  2356. This is the number of CUDA devices that StarPU can use. This can also be
  2357. specified with the @code{STARPU_NCUDA} environment variable.
  2358. @item @code{nopencl} (default = -1):
  2359. This is the number of OpenCL devices that StarPU can use. This can also be
  2360. specified with the @code{STARPU_NOPENCL} environment variable.
  2361. @item @code{nspus} (default = -1):
  2362. This is the number of Cell SPUs that StarPU can use. This can also be
  2363. specified with the @code{STARPU_NGORDON} environment variable.
  2364. @item @code{use_explicit_workers_bindid} (default = 0)
  2365. If this flag is set, the @code{workers_bindid} array indicates where the
  2366. different workers are bound, otherwise StarPU automatically selects where to
  2367. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2368. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2369. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2370. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2371. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2372. where to bind the different workers. The i-th entry of the
  2373. @code{workers_bindid} indicates the logical identifier of the processor which
  2374. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2375. either determined by the OS, or provided by the @code{hwloc} library in case it
  2376. is available.
  2377. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2378. ignored.
  2379. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2380. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2381. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2382. CUDA devices in a round-robin fashion.
  2383. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2384. ignored.
  2385. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2386. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2387. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2388. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2389. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2390. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2391. OpenCL devices in a round-robin fashion.
  2392. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2393. @item @code{calibrate} (default = 0):
  2394. If this flag is set, StarPU will calibrate the performance models when
  2395. executing tasks. If this value is equal to -1, the default value is used. The
  2396. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2397. variable when it is set.
  2398. @end table
  2399. @end table
  2400. @node starpu_conf_init
  2401. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2402. @table @asis
  2403. This function initializes the @code{starpu_conf} structure passed as argument
  2404. with the default values. In case some configuration parameters are already
  2405. specified through environment variables, @code{starpu_conf_init} initializes
  2406. the fields of the structure according to the environment variables. For
  2407. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2408. @code{.ncuda} field of the structure passed as argument.
  2409. @item @emph{Return value}:
  2410. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2411. indicates that the argument was NULL.
  2412. @item @emph{Prototype}:
  2413. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2414. @end table
  2415. @node starpu_shutdown
  2416. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2417. @deftypefun void starpu_shutdown (void)
  2418. This is StarPU termination method. It must be called at the end of the
  2419. application: statistics and other post-mortem debugging information are not
  2420. guaranteed to be available until this method has been called.
  2421. @end deftypefun
  2422. @node Workers' Properties
  2423. @section Workers' Properties
  2424. @menu
  2425. * starpu_worker_get_count:: Get the number of processing units
  2426. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2427. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2428. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2429. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2430. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2431. * starpu_worker_get_id:: Get the identifier of the current worker
  2432. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2433. * starpu_worker_get_devid:: Get the device identifier of a worker
  2434. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2435. * starpu_worker_get_name:: Get the name of a worker
  2436. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2437. @end menu
  2438. @node starpu_worker_get_count
  2439. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2440. @deftypefun unsigned starpu_worker_get_count (void)
  2441. This function returns the number of workers (i.e. processing units executing
  2442. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2443. @end deftypefun
  2444. @node starpu_worker_get_count_by_type
  2445. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2446. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2447. Returns the number of workers of the type indicated by the argument. A positive
  2448. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2449. the type is not valid otherwise.
  2450. @end deftypefun
  2451. @node starpu_cpu_worker_get_count
  2452. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2453. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2454. This function returns the number of CPUs controlled by StarPU. The returned
  2455. value should be at most @code{STARPU_NMAXCPUS}.
  2456. @end deftypefun
  2457. @node starpu_cuda_worker_get_count
  2458. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2459. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2460. This function returns the number of CUDA devices controlled by StarPU. The returned
  2461. value should be at most @code{STARPU_MAXCUDADEVS}.
  2462. @end deftypefun
  2463. @node starpu_opencl_worker_get_count
  2464. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2465. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2466. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2467. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2468. @end deftypefun
  2469. @node starpu_spu_worker_get_count
  2470. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2471. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2472. This function returns the number of Cell SPUs controlled by StarPU.
  2473. @end deftypefun
  2474. @node starpu_worker_get_id
  2475. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2476. @deftypefun int starpu_worker_get_id (void)
  2477. This function returns the identifier of the worker associated to the calling
  2478. thread. The returned value is either -1 if the current context is not a StarPU
  2479. worker (i.e. when called from the application outside a task or a callback), or
  2480. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2481. @end deftypefun
  2482. @node starpu_worker_get_ids_by_type
  2483. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2484. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2485. Fill the workerids array with the identifiers of the workers that have the type
  2486. indicated in the first argument. The maxsize argument indicates the size of the
  2487. workids array. The returned value gives the number of identifiers that were put
  2488. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2489. workers with the appropriate type: in that case, the array is filled with the
  2490. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2491. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2492. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2493. @end deftypefun
  2494. @node starpu_worker_get_devid
  2495. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2496. @deftypefun int starpu_worker_get_devid (int @var{id})
  2497. This functions returns the device id of the worker associated to an identifier
  2498. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2499. CUDA worker, this device identifier is the logical device identifier exposed by
  2500. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2501. identifier of a CPU worker is the logical identifier of the core on which the
  2502. worker was bound; this identifier is either provided by the OS or by the
  2503. @code{hwloc} library in case it is available.
  2504. @end deftypefun
  2505. @node starpu_worker_get_type
  2506. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2507. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2508. This function returns the type of worker associated to an identifier (as
  2509. returned by the @code{starpu_worker_get_id} function). The returned value
  2510. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2511. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2512. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2513. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2514. identifier is unspecified.
  2515. @end deftypefun
  2516. @node starpu_worker_get_name
  2517. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2518. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2519. StarPU associates a unique human readable string to each processing unit. This
  2520. function copies at most the @var{maxlen} first bytes of the unique string
  2521. associated to a worker identified by its identifier @var{id} into the
  2522. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2523. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2524. function on an invalid identifier results in an unspecified behaviour.
  2525. @end deftypefun
  2526. @node starpu_worker_get_memory_node
  2527. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2528. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2529. This function returns the identifier of the memory node associated to the
  2530. worker identified by @var{workerid}.
  2531. @end deftypefun
  2532. @node Data Library
  2533. @section Data Library
  2534. This section describes the data management facilities provided by StarPU.
  2535. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2536. design their own data interfaces if required.
  2537. @menu
  2538. * starpu_malloc:: Allocate data and pin it
  2539. * starpu_access_mode:: Data access mode
  2540. * unsigned memory_node:: Memory node
  2541. * starpu_data_handle:: StarPU opaque data handle
  2542. * void *interface:: StarPU data interface
  2543. * starpu_data_register:: Register a piece of data to StarPU
  2544. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2545. * starpu_data_invalidate:: Invalidate all data replicates
  2546. * starpu_data_acquire:: Access registered data from the application
  2547. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2548. * starpu_data_release:: Release registered data from the application
  2549. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2550. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2551. @end menu
  2552. @node starpu_malloc
  2553. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2554. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2555. This function allocates data of the given size in main memory. It will also try to pin it in
  2556. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2557. thus permit data transfer and computation overlapping. The allocated buffer must
  2558. be freed thanks to the @code{starpu_free} function.
  2559. @end deftypefun
  2560. @node starpu_access_mode
  2561. @subsection @code{starpu_access_mode} -- Data access mode
  2562. This datatype describes a data access mode. The different available modes are:
  2563. @table @asis
  2564. @table @asis
  2565. @item @code{STARPU_R} read-only mode.
  2566. @item @code{STARPU_W} write-only mode.
  2567. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2568. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2569. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2570. @end table
  2571. @end table
  2572. @node unsigned memory_node
  2573. @subsection @code{unsigned memory_node} -- Memory node
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. Every worker is associated to a memory node which is a logical abstraction of
  2577. the address space from which the processing unit gets its data. For instance,
  2578. the memory node associated to the different CPU workers represents main memory
  2579. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2580. Every memory node is identified by a logical index which is accessible from the
  2581. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2582. to StarPU, the specified memory node indicates where the piece of data
  2583. initially resides (we also call this memory node the home node of a piece of
  2584. data).
  2585. @end table
  2586. @node starpu_data_handle
  2587. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2588. @table @asis
  2589. @item @emph{Description}:
  2590. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2591. data. Once a piece of data has been registered to StarPU, it is associated to a
  2592. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2593. over the entire machine, so that we can maintain data consistency and locate
  2594. data replicates for instance.
  2595. @end table
  2596. @node void *interface
  2597. @subsection @code{void *interface} -- StarPU data interface
  2598. @table @asis
  2599. @item @emph{Description}:
  2600. Data management is done at a high-level in StarPU: rather than accessing a mere
  2601. list of contiguous buffers, the tasks may manipulate data that are described by
  2602. a high-level construct which we call data interface.
  2603. An example of data interface is the "vector" interface which describes a
  2604. contiguous data array on a spefic memory node. This interface is a simple
  2605. structure containing the number of elements in the array, the size of the
  2606. elements, and the address of the array in the appropriate address space (this
  2607. address may be invalid if there is no valid copy of the array in the memory
  2608. node). More informations on the data interfaces provided by StarPU are
  2609. given in @ref{Data Interfaces}.
  2610. When a piece of data managed by StarPU is used by a task, the task
  2611. implementation is given a pointer to an interface describing a valid copy of
  2612. the data that is accessible from the current processing unit.
  2613. @end table
  2614. @node starpu_data_register
  2615. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2616. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2617. Register a piece of data into the handle located at the @var{handleptr}
  2618. address. The @var{interface} buffer contains the initial description of the
  2619. data in the home node. The @var{ops} argument is a pointer to a structure
  2620. describing the different methods used to manipulate this type of interface. See
  2621. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2622. If @code{home_node} is -1, StarPU will automatically
  2623. allocate the memory when it is used for the
  2624. first time in write-only mode. Once such data handle has been automatically
  2625. allocated, it is possible to access it using any access mode.
  2626. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2627. matrix) which can be registered by the means of helper functions (e.g.
  2628. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2629. @end deftypefun
  2630. @node starpu_data_unregister
  2631. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2632. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2633. This function unregisters a data handle from StarPU. If the data was
  2634. automatically allocated by StarPU because the home node was -1, all
  2635. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2636. is put back into the home node in the buffer that was initially registered.
  2637. Using a data handle that has been unregistered from StarPU results in an
  2638. undefined behaviour.
  2639. @end deftypefun
  2640. @node starpu_data_invalidate
  2641. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2642. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2643. Destroy all replicates of the data handle. After data invalidation, the first
  2644. access to the handle must be performed in write-only mode. Accessing an
  2645. invalidated data in read-mode results in undefined behaviour.
  2646. @end deftypefun
  2647. @c TODO create a specific sections about user interaction with the DSM ?
  2648. @node starpu_data_acquire
  2649. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2650. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2651. The application must call this function prior to accessing registered data from
  2652. main memory outside tasks. StarPU ensures that the application will get an
  2653. up-to-date copy of the data in main memory located where the data was
  2654. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2655. be consistent with the access mode specified in the @var{mode} argument.
  2656. @code{starpu_data_release} must be called once the application does not need to
  2657. access the piece of data anymore. Note that implicit data
  2658. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2659. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2660. the data, unless that they have not been disabled explictly by calling
  2661. @code{starpu_data_set_default_sequential_consistency_flag} or
  2662. @code{starpu_data_set_sequential_consistency_flag}.
  2663. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2664. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2665. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2666. @end deftypefun
  2667. @node starpu_data_acquire_cb
  2668. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2669. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2670. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2671. @code{starpu_data_release}. When the data specified in the first argument is
  2672. available in the appropriate access mode, the callback function is executed.
  2673. The application may access the requested data during the execution of this
  2674. callback. The callback function must call @code{starpu_data_release} once the
  2675. application does not need to access the piece of data anymore.
  2676. Note that implicit data dependencies are also enforced by
  2677. @code{starpu_data_acquire_cb} in case they are enabled.
  2678. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2679. be called from task callbacks. Upon successful completion, this function
  2680. returns 0.
  2681. @end deftypefun
  2682. @node starpu_data_release
  2683. @subsection @code{starpu_data_release} -- Release registered data from the application
  2684. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2685. This function releases the piece of data acquired by the application either by
  2686. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2687. @end deftypefun
  2688. @node starpu_data_set_wt_mask
  2689. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2690. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2691. This function sets the write-through mask of a given data, i.e. a bitmask of
  2692. nodes where the data should be always replicated after modification.
  2693. @end deftypefun
  2694. @node starpu_data_prefetch_on_node
  2695. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2696. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2697. Issue a prefetch request for a given data to a given node, i.e.
  2698. requests that the data be replicated to the given node, so that it is available
  2699. there for tasks. If the @var{async} parameter is 0, the call will block until
  2700. the transfer is achieved, else the call will return as soon as the request is
  2701. scheduled (which may however have to wait for a task completion).
  2702. @end deftypefun
  2703. @node Data Interfaces
  2704. @section Data Interfaces
  2705. @menu
  2706. * Variable Interface::
  2707. * Vector Interface::
  2708. * Matrix Interface::
  2709. * 3D Matrix Interface::
  2710. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2711. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2712. @end menu
  2713. @node Variable Interface
  2714. @subsection Variable Interface
  2715. @table @asis
  2716. @item @emph{Description}:
  2717. This variant of @code{starpu_data_register} uses the variable interface,
  2718. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2719. and @code{elemsize} is the size of the variable.
  2720. @item @emph{Prototype}:
  2721. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2722. uint32_t home_node,
  2723. uintptr_t ptr, size_t elemsize);}
  2724. @item @emph{Example}:
  2725. @cartouche
  2726. @smallexample
  2727. float var;
  2728. starpu_data_handle var_handle;
  2729. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2730. @end smallexample
  2731. @end cartouche
  2732. @end table
  2733. @node Vector Interface
  2734. @subsection Vector Interface
  2735. @table @asis
  2736. @item @emph{Description}:
  2737. This variant of @code{starpu_data_register} uses the vector interface,
  2738. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2739. element in the home node. @code{nx} is the number of elements in the vector.
  2740. @code{elemsize} is the size of each element.
  2741. @item @emph{Prototype}:
  2742. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2743. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2744. @item @emph{Example}:
  2745. @cartouche
  2746. @smallexample
  2747. float vector[NX];
  2748. starpu_data_handle vector_handle;
  2749. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2750. sizeof(vector[0]));
  2751. @end smallexample
  2752. @end cartouche
  2753. @end table
  2754. @node Matrix Interface
  2755. @subsection Matrix Interface
  2756. @table @asis
  2757. @item @emph{Description}:
  2758. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2759. matrices of elements. @code{ptr} is the address of the first element in the home
  2760. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2761. of elements in a row (this can be different from @code{ld} if there are extra
  2762. elements for alignment for instance). @code{ny} is the number of rows.
  2763. @code{elemsize} is the size of each element.
  2764. @item @emph{Prototype}:
  2765. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2766. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2767. uint32_t ny, size_t elemsize);}
  2768. @item @emph{Example}:
  2769. @cartouche
  2770. @smallexample
  2771. float *matrix;
  2772. starpu_data_handle matrix_handle;
  2773. matrix = (float*)malloc(width * height * sizeof(float));
  2774. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2775. width, width, height, sizeof(float));
  2776. @end smallexample
  2777. @end cartouche
  2778. @end table
  2779. @node 3D Matrix Interface
  2780. @subsection 3D Matrix Interface
  2781. @table @asis
  2782. @item @emph{Description}:
  2783. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2784. @code{ptr} is the address of the array of first element in the home node.
  2785. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2786. of rows between z planes. @code{nx} is the number of elements in a row (this
  2787. can be different from @code{ldy} if there are extra elements for alignment
  2788. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2789. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2790. each element.
  2791. @item @emph{Prototype}:
  2792. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2793. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2794. uint32_t ny, uint32_t nz, size_t elemsize);}
  2795. @item @emph{Example}:
  2796. @cartouche
  2797. @smallexample
  2798. float *block;
  2799. starpu_data_handle block_handle;
  2800. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2801. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2802. nx, nx*ny, nx, ny, nz, sizeof(float));
  2803. @end smallexample
  2804. @end cartouche
  2805. @end table
  2806. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2807. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2808. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2809. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2810. TODO
  2811. @end deftypefun
  2812. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2813. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2814. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2815. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2816. TODO
  2817. @end deftypefun
  2818. @node Data Partition
  2819. @section Data Partition
  2820. @menu
  2821. * struct starpu_data_filter:: StarPU filter structure
  2822. * starpu_data_partition:: Partition Data
  2823. * starpu_data_unpartition:: Unpartition Data
  2824. * starpu_data_get_nb_children::
  2825. * starpu_data_get_sub_data::
  2826. * Predefined filter functions::
  2827. @end menu
  2828. @node struct starpu_data_filter
  2829. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2830. @table @asis
  2831. @item @emph{Description}:
  2832. The filter structure describes a data partitioning operation, to be given to the
  2833. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2834. @item @emph{Fields}:
  2835. @table @asis
  2836. @item @code{filter_func}:
  2837. This function fills the @code{child_interface} structure with interface
  2838. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2839. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2840. @item @code{nchildren}:
  2841. This is the number of parts to partition the data into.
  2842. @item @code{get_nchildren}:
  2843. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2844. children depends on the actual data (e.g. the number of blocks in a sparse
  2845. matrix).
  2846. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2847. @item @code{get_child_ops}:
  2848. In case the resulting children use a different data interface, this function
  2849. returns which interface is used by child number @code{id}.
  2850. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2851. @item @code{filter_arg}:
  2852. Some filters take an addition parameter, but this is usually unused.
  2853. @item @code{filter_arg_ptr}:
  2854. Some filters take an additional array parameter like the sizes of the parts, but
  2855. this is usually unused.
  2856. @end table
  2857. @end table
  2858. @node starpu_data_partition
  2859. @subsection starpu_data_partition -- Partition Data
  2860. @table @asis
  2861. @item @emph{Description}:
  2862. This requests partitioning one StarPU data @code{initial_handle} into several
  2863. subdata according to the filter @code{f}
  2864. @item @emph{Prototype}:
  2865. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2866. @item @emph{Example}:
  2867. @cartouche
  2868. @smallexample
  2869. struct starpu_data_filter f = @{
  2870. .filter_func = starpu_vertical_block_filter_func,
  2871. .nchildren = nslicesx,
  2872. .get_nchildren = NULL,
  2873. .get_child_ops = NULL
  2874. @};
  2875. starpu_data_partition(A_handle, &f);
  2876. @end smallexample
  2877. @end cartouche
  2878. @end table
  2879. @node starpu_data_unpartition
  2880. @subsection starpu_data_unpartition -- Unpartition data
  2881. @table @asis
  2882. @item @emph{Description}:
  2883. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2884. collected back into one big piece in the @code{gathering_node} (usually 0).
  2885. @item @emph{Prototype}:
  2886. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2887. @item @emph{Example}:
  2888. @cartouche
  2889. @smallexample
  2890. starpu_data_unpartition(A_handle, 0);
  2891. @end smallexample
  2892. @end cartouche
  2893. @end table
  2894. @node starpu_data_get_nb_children
  2895. @subsection starpu_data_get_nb_children
  2896. @table @asis
  2897. @item @emph{Description}:
  2898. This function returns the number of children.
  2899. @item @emph{Return value}:
  2900. The number of children.
  2901. @item @emph{Prototype}:
  2902. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2903. @end table
  2904. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2905. @node starpu_data_get_sub_data
  2906. @subsection starpu_data_get_sub_data
  2907. @table @asis
  2908. @item @emph{Description}:
  2909. After partitioning a StarPU data by applying a filter,
  2910. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2911. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2912. is the number of filters to traverse (in case several filters have been applied,
  2913. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2914. parameters are the indexes.
  2915. @item @emph{Return value}:
  2916. A handle to the subdata.
  2917. @item @emph{Prototype}:
  2918. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2919. @item @emph{Example}:
  2920. @cartouche
  2921. @smallexample
  2922. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2923. @end smallexample
  2924. @end cartouche
  2925. @end table
  2926. @node Predefined filter functions
  2927. @subsection Predefined filter functions
  2928. @menu
  2929. * Partitioning BCSR Data::
  2930. * Partitioning BLAS interface::
  2931. * Partitioning Vector Data::
  2932. * Partitioning Block Data::
  2933. @end menu
  2934. This section gives a partial list of the predefined partitioning functions.
  2935. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2936. list can be found in @code{starpu_data_filters.h} .
  2937. @node Partitioning BCSR Data
  2938. @subsubsection Partitioning BCSR Data
  2939. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2940. TODO
  2941. @end deftypefun
  2942. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2943. TODO
  2944. @end deftypefun
  2945. @node Partitioning BLAS interface
  2946. @subsubsection Partitioning BLAS interface
  2947. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2948. This partitions a dense Matrix into horizontal blocks.
  2949. @end deftypefun
  2950. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2951. This partitions a dense Matrix into vertical blocks.
  2952. @end deftypefun
  2953. @node Partitioning Vector Data
  2954. @subsubsection Partitioning Vector Data
  2955. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2956. This partitions a vector into blocks of the same size.
  2957. @end deftypefun
  2958. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2959. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  2960. @end deftypefun
  2961. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2962. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  2963. @end deftypefun
  2964. @node Partitioning Block Data
  2965. @subsubsection Partitioning Block Data
  2966. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2967. This partitions a 3D matrix along the X axis.
  2968. @end deftypefun
  2969. @node Codelets and Tasks
  2970. @section Codelets and Tasks
  2971. This section describes the interface to manipulate codelets and tasks.
  2972. @deftp {Data Type} {struct starpu_codelet}
  2973. The codelet structure describes a kernel that is possibly implemented on various
  2974. targets. For compatibility, make sure to initialize the whole structure to zero.
  2975. @table @asis
  2976. @item @code{where}
  2977. Indicates which types of processing units are able to execute the codelet.
  2978. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2979. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2980. indicates that it is only available on Cell SPUs.
  2981. @item @code{cpu_func} (optional)
  2982. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2983. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2984. argument being the array of data managed by the data management library, and
  2985. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2986. field of the @code{starpu_task} structure.
  2987. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2988. the @code{where} field, it must be non-null otherwise.
  2989. @item @code{cuda_func} (optional)
  2990. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2991. must be a host-function written in the CUDA runtime API}. Its prototype must
  2992. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2993. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2994. field, it must be non-null otherwise.
  2995. @item @code{opencl_func} (optional)
  2996. Is a function pointer to the OpenCL implementation of the codelet. Its
  2997. prototype must be:
  2998. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2999. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3000. @code{where} field, it must be non-null otherwise.
  3001. @item @code{gordon_func} (optional)
  3002. This is the index of the Cell SPU implementation within the Gordon library.
  3003. See Gordon documentation for more details on how to register a kernel and
  3004. retrieve its index.
  3005. @item @code{nbuffers}
  3006. Specifies the number of arguments taken by the codelet. These arguments are
  3007. managed by the DSM and are accessed from the @code{void *buffers[]}
  3008. array. The constant argument passed with the @code{cl_arg} field of the
  3009. @code{starpu_task} structure is not counted in this number. This value should
  3010. not be above @code{STARPU_NMAXBUFS}.
  3011. @item @code{model} (optional)
  3012. This is a pointer to the task duration performance model associated to this
  3013. codelet. This optional field is ignored when set to @code{NULL}.
  3014. TODO
  3015. @item @code{power_model} (optional)
  3016. This is a pointer to the task power consumption performance model associated
  3017. to this codelet. This optional field is ignored when set to @code{NULL}.
  3018. In the case of parallel codelets, this has to account for all processing units
  3019. involved in the parallel execution.
  3020. TODO
  3021. @end table
  3022. @end deftp
  3023. @deftp {Data Type} {struct starpu_task}
  3024. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3025. processing units managed by StarPU. It instantiates a codelet. It can either be
  3026. allocated dynamically with the @code{starpu_task_create} method, or declared
  3027. statically. In the latter case, the programmer has to zero the
  3028. @code{starpu_task} structure and to fill the different fields properly. The
  3029. indicated default values correspond to the configuration of a task allocated
  3030. with @code{starpu_task_create}.
  3031. @table @asis
  3032. @item @code{cl}
  3033. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3034. describes where the kernel should be executed, and supplies the appropriate
  3035. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3036. such empty tasks can be useful for synchronization purposes.
  3037. @item @code{buffers}
  3038. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3039. different pieces of data accessed by the task, and how they should be accessed.
  3040. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3041. @code{handle} field specifies the handle of the piece of data, and the
  3042. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3043. of entries in this array must be specified in the @code{nbuffers} field of the
  3044. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3045. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3046. option when configuring StarPU.
  3047. @item @code{cl_arg} (optional; default: @code{NULL})
  3048. This pointer is passed to the codelet through the second argument
  3049. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3050. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3051. argument.
  3052. @item @code{cl_arg_size} (optional, Cell-specific)
  3053. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3054. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3055. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3056. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3057. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3058. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3059. codelets, where the @code{cl_arg} pointer is given as such.
  3060. @item @code{callback_func} (optional) (default: @code{NULL})
  3061. This is a function pointer of prototype @code{void (*f)(void *)} which
  3062. specifies a possible callback. If this pointer is non-null, the callback
  3063. function is executed @emph{on the host} after the execution of the task. The
  3064. callback is passed the value contained in the @code{callback_arg} field. No
  3065. callback is executed if the field is set to @code{NULL}.
  3066. @item @code{callback_arg} (optional) (default: @code{NULL})
  3067. This is the pointer passed to the callback function. This field is ignored if
  3068. the @code{callback_func} is set to @code{NULL}.
  3069. @item @code{use_tag} (optional) (default: @code{0})
  3070. If set, this flag indicates that the task should be associated with the tag
  3071. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3072. with the task and to express task dependencies easily.
  3073. @item @code{tag_id}
  3074. This fields contains the tag associated to the task if the @code{use_tag} field
  3075. was set, it is ignored otherwise.
  3076. @item @code{synchronous}
  3077. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3078. returns only when the task has been executed (or if no worker is able to
  3079. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3080. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3081. This field indicates a level of priority for the task. This is an integer value
  3082. that must be set between the return values of the
  3083. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3084. and that of the @code{starpu_sched_get_max_priority} for the most important
  3085. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3086. are provided for convenience and respectively returns value of
  3087. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3088. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3089. order to allow static task initialization. Scheduling strategies that take
  3090. priorities into account can use this parameter to take better scheduling
  3091. decisions, but the scheduling policy may also ignore it.
  3092. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3093. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3094. task to the worker specified by the @code{workerid} field.
  3095. @item @code{workerid} (optional)
  3096. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3097. which is the identifier of the worker that should process this task (as
  3098. returned by @code{starpu_worker_get_id}). This field is ignored if
  3099. @code{execute_on_a_specific_worker} field is set to 0.
  3100. @item @code{detach} (optional) (default: @code{1})
  3101. If this flag is set, it is not possible to synchronize with the task
  3102. by the means of @code{starpu_task_wait} later on. Internal data structures
  3103. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3104. flag is not set.
  3105. @item @code{destroy} (optional) (default: @code{1})
  3106. If this flag is set, the task structure will automatically be freed, either
  3107. after the execution of the callback if the task is detached, or during
  3108. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3109. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3110. called explicitly. Setting this flag for a statically allocated task structure
  3111. will result in undefined behaviour.
  3112. @item @code{predicted} (output field)
  3113. Predicted duration of the task. This field is only set if the scheduling
  3114. strategy used performance models.
  3115. @end table
  3116. @end deftp
  3117. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3118. Initialize @var{task} with default values. This function is implicitly
  3119. called by @code{starpu_task_create}. By default, tasks initialized with
  3120. @code{starpu_task_init} must be deinitialized explicitly with
  3121. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3122. constant @code{STARPU_TASK_INITIALIZER}.
  3123. @end deftypefun
  3124. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3125. Allocate a task structure and initialize it with default values. Tasks
  3126. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3127. task is terminated. If the destroy flag is explicitly unset, the resources used
  3128. by the task are freed by calling
  3129. @code{starpu_task_destroy}.
  3130. @end deftypefun
  3131. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3132. Release all the structures automatically allocated to execute @var{task}. This is
  3133. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3134. freed. This should be used for statically allocated tasks for instance.
  3135. @end deftypefun
  3136. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3137. Free the resource allocated during @code{starpu_task_create} and
  3138. associated with @var{task}. This function can be called automatically
  3139. after the execution of a task by setting the @code{destroy} flag of the
  3140. @code{starpu_task} structure (default behaviour). Calling this function
  3141. on a statically allocated task results in an undefined behaviour.
  3142. @end deftypefun
  3143. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3144. This function blocks until @var{task} has been executed. It is not possible to
  3145. synchronize with a task more than once. It is not possible to wait for
  3146. synchronous or detached tasks.
  3147. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3148. indicates that the specified task was either synchronous or detached.
  3149. @end deftypefun
  3150. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3151. This function submits @var{task} to StarPU. Calling this function does
  3152. not mean that the task will be executed immediately as there can be data or task
  3153. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3154. scheduling this task with respect to such dependencies.
  3155. This function returns immediately if the @code{synchronous} field of the
  3156. @code{starpu_task} structure was set to 0, and block until the termination of
  3157. the task otherwise. It is also possible to synchronize the application with
  3158. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3159. function for instance.
  3160. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3161. means that there is no worker able to process this task (e.g. there is no GPU
  3162. available and this task is only implemented for CUDA devices).
  3163. @end deftypefun
  3164. @deftypefun int starpu_task_wait_for_all (void)
  3165. This function blocks until all the tasks that were submitted are terminated.
  3166. @end deftypefun
  3167. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3168. This function returns the task currently executed by the worker, or
  3169. NULL if it is called either from a thread that is not a task or simply
  3170. because there is no task being executed at the moment.
  3171. @end deftypefun
  3172. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3173. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3174. @end deftypefun
  3175. @c Callbacks : what can we put in callbacks ?
  3176. @node Explicit Dependencies
  3177. @section Explicit Dependencies
  3178. @menu
  3179. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3180. * starpu_tag_t:: Task logical identifier
  3181. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3182. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3183. * starpu_tag_wait:: Block until a Tag is terminated
  3184. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3185. * starpu_tag_remove:: Destroy a Tag
  3186. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3187. @end menu
  3188. @node starpu_task_declare_deps_array
  3189. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3190. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3191. Declare task dependencies between a @var{task} and an array of tasks of length
  3192. @var{ndeps}. This function must be called prior to the submission of the task,
  3193. but it may called after the submission or the execution of the tasks in the
  3194. array provided the tasks are still valid (ie. they were not automatically
  3195. destroyed). Calling this function on a task that was already submitted or with
  3196. an entry of @var{task_array} that is not a valid task anymore results in an
  3197. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3198. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3199. same task, in this case, the dependencies are added. It is possible to have
  3200. redundancy in the task dependencies.
  3201. @end deftypefun
  3202. @node starpu_tag_t
  3203. @subsection @code{starpu_tag_t} -- Task logical identifier
  3204. @table @asis
  3205. @item @emph{Description}:
  3206. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3207. dependencies between tasks by the means of those tags. To do so, fill the
  3208. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3209. be arbitrary) and set the @code{use_tag} field to 1.
  3210. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3211. not be started until the tasks which holds the declared dependency tags are
  3212. completed.
  3213. @end table
  3214. @node starpu_tag_declare_deps
  3215. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3216. @table @asis
  3217. @item @emph{Description}:
  3218. Specify the dependencies of the task identified by tag @code{id}. The first
  3219. argument specifies the tag which is configured, the second argument gives the
  3220. number of tag(s) on which @code{id} depends. The following arguments are the
  3221. tags which have to be terminated to unlock the task.
  3222. This function must be called before the associated task is submitted to StarPU
  3223. with @code{starpu_task_submit}.
  3224. @item @emph{Remark}
  3225. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3226. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3227. typically need to be explicitly casted. Using the
  3228. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3229. @item @emph{Prototype}:
  3230. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3231. @item @emph{Example}:
  3232. @cartouche
  3233. @example
  3234. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3235. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3236. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3237. @end example
  3238. @end cartouche
  3239. @end table
  3240. @node starpu_tag_declare_deps_array
  3241. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3242. @table @asis
  3243. @item @emph{Description}:
  3244. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3245. does not take a variable number of arguments but an array of tags of size
  3246. @code{ndeps}.
  3247. @item @emph{Prototype}:
  3248. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3249. @item @emph{Example}:
  3250. @cartouche
  3251. @example
  3252. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3253. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3254. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3255. @end example
  3256. @end cartouche
  3257. @end table
  3258. @node starpu_tag_wait
  3259. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3260. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3261. This function blocks until the task associated to tag @var{id} has been
  3262. executed. This is a blocking call which must therefore not be called within
  3263. tasks or callbacks, but only from the application directly. It is possible to
  3264. synchronize with the same tag multiple times, as long as the
  3265. @code{starpu_tag_remove} function is not called. Note that it is still
  3266. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3267. data structure was freed (e.g. if the @code{destroy} flag of the
  3268. @code{starpu_task} was enabled).
  3269. @end deftypefun
  3270. @node starpu_tag_wait_array
  3271. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3272. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3273. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3274. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3275. terminated.
  3276. @end deftypefun
  3277. @node starpu_tag_remove
  3278. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3279. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3280. This function releases the resources associated to tag @var{id}. It can be
  3281. called once the corresponding task has been executed and when there is
  3282. no other tag that depend on this tag anymore.
  3283. @end deftypefun
  3284. @node starpu_tag_notify_from_apps
  3285. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3286. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3287. This function explicitly unlocks tag @var{id}. It may be useful in the
  3288. case of applications which execute part of their computation outside StarPU
  3289. tasks (e.g. third-party libraries). It is also provided as a
  3290. convenient tool for the programmer, for instance to entirely construct the task
  3291. DAG before actually giving StarPU the opportunity to execute the tasks.
  3292. @end deftypefun
  3293. @node Implicit Data Dependencies
  3294. @section Implicit Data Dependencies
  3295. @menu
  3296. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3297. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3298. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3299. @end menu
  3300. In this section, we describe how StarPU makes it possible to insert implicit
  3301. task dependencies in order to enforce sequential data consistency. When this
  3302. data consistency is enabled on a specific data handle, any data access will
  3303. appear as sequentially consistent from the application. For instance, if the
  3304. application submits two tasks that access the same piece of data in read-only
  3305. mode, and then a third task that access it in write mode, dependencies will be
  3306. added between the two first tasks and the third one. Implicit data dependencies
  3307. are also inserted in the case of data accesses from the application.
  3308. @node starpu_data_set_default_sequential_consistency_flag
  3309. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3310. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3311. Set the default sequential consistency flag. If a non-zero value is passed, a
  3312. sequential data consistency will be enforced for all handles registered after
  3313. this function call, otherwise it is disabled. By default, StarPU enables
  3314. sequential data consistency. It is also possible to select the data consistency
  3315. mode of a specific data handle with the
  3316. @code{starpu_data_set_sequential_consistency_flag} function.
  3317. @end deftypefun
  3318. @node starpu_data_get_default_sequential_consistency_flag
  3319. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3320. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3321. This function returns the current default sequential consistency flag.
  3322. @end deftypefun
  3323. @node starpu_data_set_sequential_consistency_flag
  3324. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3325. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3326. Select the data consistency mode associated to a data handle. The consistency
  3327. mode set using this function has the priority over the default mode which can
  3328. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3329. @end deftypefun
  3330. @node Performance Model API
  3331. @section Performance Model API
  3332. @menu
  3333. * starpu_load_history_debug::
  3334. * starpu_perfmodel_debugfilepath::
  3335. * starpu_perfmodel_get_arch_name::
  3336. * starpu_force_bus_sampling::
  3337. @end menu
  3338. @node starpu_load_history_debug
  3339. @subsection @code{starpu_load_history_debug}
  3340. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3341. TODO
  3342. @end deftypefun
  3343. @node starpu_perfmodel_debugfilepath
  3344. @subsection @code{starpu_perfmodel_debugfilepath}
  3345. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3346. TODO
  3347. @end deftypefun
  3348. @node starpu_perfmodel_get_arch_name
  3349. @subsection @code{starpu_perfmodel_get_arch_name}
  3350. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3351. TODO
  3352. @end deftypefun
  3353. @node starpu_force_bus_sampling
  3354. @subsection @code{starpu_force_bus_sampling}
  3355. @deftypefun void starpu_force_bus_sampling (void)
  3356. This forces sampling the bus performance model again.
  3357. @end deftypefun
  3358. @node Profiling API
  3359. @section Profiling API
  3360. @menu
  3361. * starpu_profiling_status_set:: starpu_profiling_status_set
  3362. * starpu_profiling_status_get:: starpu_profiling_status_get
  3363. * struct starpu_task_profiling_info:: task profiling information
  3364. * struct starpu_worker_profiling_info:: worker profiling information
  3365. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3366. * struct starpu_bus_profiling_info:: bus profiling information
  3367. * starpu_bus_get_count::
  3368. * starpu_bus_get_id::
  3369. * starpu_bus_get_src::
  3370. * starpu_bus_get_dst::
  3371. * starpu_timing_timespec_delay_us::
  3372. * starpu_timing_timespec_to_us::
  3373. * starpu_bus_profiling_helper_display_summary::
  3374. * starpu_worker_profiling_helper_display_summary::
  3375. @end menu
  3376. @node starpu_profiling_status_set
  3377. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3378. @table @asis
  3379. @item @emph{Description}:
  3380. Thie function sets the profiling status. Profiling is activated by passing
  3381. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3382. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3383. resets all profiling measurements. When profiling is enabled, the
  3384. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3385. to a valid @code{struct starpu_task_profiling_info} structure containing
  3386. information about the execution of the task.
  3387. @item @emph{Return value}:
  3388. Negative return values indicate an error, otherwise the previous status is
  3389. returned.
  3390. @item @emph{Prototype}:
  3391. @code{int starpu_profiling_status_set(int status);}
  3392. @end table
  3393. @node starpu_profiling_status_get
  3394. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3395. @deftypefun int starpu_profiling_status_get (void)
  3396. Return the current profiling status or a negative value in case there was an error.
  3397. @end deftypefun
  3398. @node struct starpu_task_profiling_info
  3399. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3400. @table @asis
  3401. @item @emph{Description}:
  3402. This structure contains information about the execution of a task. It is
  3403. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3404. structure if profiling was enabled.
  3405. @item @emph{Fields}:
  3406. @table @asis
  3407. @item @code{submit_time}:
  3408. Date of task submission (relative to the initialization of StarPU).
  3409. @item @code{start_time}:
  3410. Date of task execution beginning (relative to the initialization of StarPU).
  3411. @item @code{end_time}:
  3412. Date of task execution termination (relative to the initialization of StarPU).
  3413. @item @code{workerid}:
  3414. Identifier of the worker which has executed the task.
  3415. @end table
  3416. @end table
  3417. @node struct starpu_worker_profiling_info
  3418. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3419. @table @asis
  3420. @item @emph{Description}:
  3421. This structure contains the profiling information associated to a worker.
  3422. @item @emph{Fields}:
  3423. @table @asis
  3424. @item @code{start_time}:
  3425. Starting date for the reported profiling measurements.
  3426. @item @code{total_time}:
  3427. Duration of the profiling measurement interval.
  3428. @item @code{executing_time}:
  3429. Time spent by the worker to execute tasks during the profiling measurement interval.
  3430. @item @code{sleeping_time}:
  3431. Time spent idling by the worker during the profiling measurement interval.
  3432. @item @code{executed_tasks}:
  3433. Number of tasks executed by the worker during the profiling measurement interval.
  3434. @end table
  3435. @end table
  3436. @node starpu_worker_get_profiling_info
  3437. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3438. @table @asis
  3439. @item @emph{Description}:
  3440. Get the profiling info associated to the worker identified by @code{workerid},
  3441. and reset the profiling measurements. If the @code{worker_info} argument is
  3442. NULL, only reset the counters associated to worker @code{workerid}.
  3443. @item @emph{Return value}:
  3444. Upon successful completion, this function returns 0. Otherwise, a negative
  3445. value is returned.
  3446. @item @emph{Prototype}:
  3447. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3448. @end table
  3449. @node struct starpu_bus_profiling_info
  3450. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3451. @table @asis
  3452. @item @emph{Description}:
  3453. TODO
  3454. @item @emph{Fields}:
  3455. @table @asis
  3456. @item @code{start_time}:
  3457. TODO
  3458. @item @code{total_time}:
  3459. TODO
  3460. @item @code{transferred_bytes}:
  3461. TODO
  3462. @item @code{transfer_count}:
  3463. TODO
  3464. @end table
  3465. @end table
  3466. @node starpu_bus_get_count
  3467. @subsection @code{starpu_bus_get_count}
  3468. @deftypefun int starpu_bus_get_count (void)
  3469. TODO
  3470. @end deftypefun
  3471. @node starpu_bus_get_id
  3472. @subsection @code{starpu_bus_get_id}
  3473. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3474. TODO
  3475. @end deftypefun
  3476. @node starpu_bus_get_src
  3477. @subsection @code{starpu_bus_get_src}
  3478. @deftypefun int starpu_bus_get_src (int @var{busid})
  3479. TODO
  3480. @end deftypefun
  3481. @node starpu_bus_get_dst
  3482. @subsection @code{starpu_bus_get_dst}
  3483. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3484. TODO
  3485. @end deftypefun
  3486. @node starpu_timing_timespec_delay_us
  3487. @subsection @code{starpu_timing_timespec_delay_us}
  3488. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3489. TODO
  3490. @end deftypefun
  3491. @node starpu_timing_timespec_to_us
  3492. @subsection @code{starpu_timing_timespec_to_us}
  3493. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3494. TODO
  3495. @end deftypefun
  3496. @node starpu_bus_profiling_helper_display_summary
  3497. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3498. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3499. TODO
  3500. @end deftypefun
  3501. @node starpu_worker_profiling_helper_display_summary
  3502. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3503. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3504. TODO
  3505. @end deftypefun
  3506. @node CUDA extensions
  3507. @section CUDA extensions
  3508. @c void starpu_malloc(float **A, size_t dim);
  3509. @menu
  3510. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3511. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3512. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3513. @end menu
  3514. @node starpu_cuda_get_local_stream
  3515. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3516. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3517. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3518. function is only provided for convenience so that programmers can easily use
  3519. asynchronous operations within codelets without having to create a stream by
  3520. hand. Note that the application is not forced to use the stream provided by
  3521. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3522. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3523. the likelihood of having all transfers overlapped.
  3524. @end deftypefun
  3525. @node starpu_helper_cublas_init
  3526. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3527. @deftypefun void starpu_helper_cublas_init (void)
  3528. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3529. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3530. controlled by StarPU. This call blocks until CUBLAS has been properly
  3531. initialized on every device.
  3532. @end deftypefun
  3533. @node starpu_helper_cublas_shutdown
  3534. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3535. @deftypefun void starpu_helper_cublas_shutdown (void)
  3536. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3537. @end deftypefun
  3538. @node OpenCL extensions
  3539. @section OpenCL extensions
  3540. @menu
  3541. * Enabling OpenCL:: Enabling OpenCL
  3542. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3543. * Loading OpenCL kernels:: Loading OpenCL kernels
  3544. * OpenCL statistics:: Collecting statistics from OpenCL
  3545. @end menu
  3546. @node Enabling OpenCL
  3547. @subsection Enabling OpenCL
  3548. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3549. enabled by default. To enable OpenCL, you need either to disable CUDA
  3550. when configuring StarPU:
  3551. @example
  3552. % ./configure --disable-cuda
  3553. @end example
  3554. or when running applications:
  3555. @example
  3556. % STARPU_NCUDA=0 ./application
  3557. @end example
  3558. OpenCL will automatically be started on any device not yet used by
  3559. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3560. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3561. so:
  3562. @example
  3563. % STARPU_NCUDA=2 ./application
  3564. @end example
  3565. @node Compiling OpenCL kernels
  3566. @subsection Compiling OpenCL kernels
  3567. Source codes for OpenCL kernels can be stored in a file or in a
  3568. string. StarPU provides functions to build the program executable for
  3569. each available OpenCL device as a @code{cl_program} object. This
  3570. program executable can then be loaded within a specific queue as
  3571. explained in the next section. These are only helpers, Applications
  3572. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3573. use (e.g. different programs on the different OpenCL devices, for
  3574. relocation purpose for instance).
  3575. @menu
  3576. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3577. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3578. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3579. @end menu
  3580. @node starpu_opencl_load_opencl_from_file
  3581. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3582. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3583. TODO
  3584. @end deftypefun
  3585. @node starpu_opencl_load_opencl_from_string
  3586. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3587. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3588. TODO
  3589. @end deftypefun
  3590. @node starpu_opencl_unload_opencl
  3591. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3592. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3593. TODO
  3594. @end deftypefun
  3595. @node Loading OpenCL kernels
  3596. @subsection Loading OpenCL kernels
  3597. @menu
  3598. * starpu_opencl_load_kernel:: Loading a kernel
  3599. * starpu_opencl_relase_kernel:: Releasing a kernel
  3600. @end menu
  3601. @node starpu_opencl_load_kernel
  3602. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3603. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3604. TODO
  3605. @end deftypefun
  3606. @node starpu_opencl_relase_kernel
  3607. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3608. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3609. TODO
  3610. @end deftypefun
  3611. @node OpenCL statistics
  3612. @subsection OpenCL statistics
  3613. @menu
  3614. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3615. @end menu
  3616. @node starpu_opencl_collect_stats
  3617. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3618. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3619. After termination of the kernels, the OpenCL codelet should call this function
  3620. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3621. collect statistics about the kernel execution (used cycles, consumed power).
  3622. @end deftypefun
  3623. @node Cell extensions
  3624. @section Cell extensions
  3625. nothing yet.
  3626. @node Miscellaneous helpers
  3627. @section Miscellaneous helpers
  3628. @menu
  3629. * starpu_data_cpy:: Copy a data handle into another data handle
  3630. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3631. @end menu
  3632. @node starpu_data_cpy
  3633. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3634. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3635. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3636. The @var{asynchronous} parameter indicates whether the function should
  3637. block or not. In the case of an asynchronous call, it is possible to
  3638. synchronize with the termination of this operation either by the means of
  3639. implicit dependencies (if enabled) or by calling
  3640. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3641. this callback function is executed after the handle has been copied, and it is
  3642. given the @var{callback_arg} pointer as argument.
  3643. @end deftypefun
  3644. @node starpu_execute_on_each_worker
  3645. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3646. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3647. When calling this method, the offloaded function specified by the first argument is
  3648. executed by every StarPU worker that may execute the function.
  3649. The second argument is passed to the offloaded function.
  3650. The last argument specifies on which types of processing units the function
  3651. should be executed. Similarly to the @var{where} field of the
  3652. @code{starpu_codelet} structure, it is possible to specify that the function
  3653. should be executed on every CUDA device and every CPU by passing
  3654. @code{STARPU_CPU|STARPU_CUDA}.
  3655. This function blocks until the function has been executed on every appropriate
  3656. processing units, so that it may not be called from a callback function for
  3657. instance.
  3658. @end deftypefun
  3659. @c ---------------------------------------------------------------------
  3660. @c Advanced Topics
  3661. @c ---------------------------------------------------------------------
  3662. @node Advanced Topics
  3663. @chapter Advanced Topics
  3664. @menu
  3665. * Defining a new data interface::
  3666. * Defining a new scheduling policy::
  3667. @end menu
  3668. @node Defining a new data interface
  3669. @section Defining a new data interface
  3670. @menu
  3671. * struct starpu_data_interface_ops_t:: Per-interface methods
  3672. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3673. * An example of data interface:: An example of data interface
  3674. @end menu
  3675. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3676. @node struct starpu_data_interface_ops_t
  3677. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3678. @table @asis
  3679. @item @emph{Description}:
  3680. TODO describe all the different fields
  3681. @end table
  3682. @node struct starpu_data_copy_methods
  3683. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3684. @table @asis
  3685. @item @emph{Description}:
  3686. TODO describe all the different fields
  3687. @end table
  3688. @node An example of data interface
  3689. @subsection An example of data interface
  3690. @table @asis
  3691. TODO
  3692. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3693. @end table
  3694. @node Defining a new scheduling policy
  3695. @section Defining a new scheduling policy
  3696. TODO
  3697. A full example showing how to define a new scheduling policy is available in
  3698. the StarPU sources in the directory @code{examples/scheduler/}.
  3699. @menu
  3700. * struct starpu_sched_policy_s::
  3701. * starpu_worker_set_sched_condition::
  3702. * starpu_sched_set_min_priority:: Set the minimum priority level
  3703. * starpu_sched_set_max_priority:: Set the maximum priority level
  3704. * starpu_push_local_task:: Assign a task to a worker
  3705. * Source code::
  3706. @end menu
  3707. @node struct starpu_sched_policy_s
  3708. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3709. @table @asis
  3710. @item @emph{Description}:
  3711. This structure contains all the methods that implement a scheduling policy. An
  3712. application may specify which scheduling strategy in the @code{sched_policy}
  3713. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3714. function.
  3715. @item @emph{Fields}:
  3716. @table @asis
  3717. @item @code{init_sched}:
  3718. Initialize the scheduling policy.
  3719. @item @code{deinit_sched}:
  3720. Cleanup the scheduling policy.
  3721. @item @code{push_task}:
  3722. Insert a task into the scheduler.
  3723. @item @code{push_prio_task}:
  3724. Insert a priority task into the scheduler.
  3725. @item @code{push_prio_notify}:
  3726. Notify the scheduler that a task was pushed on the worker. This method is
  3727. called when a task that was explicitely assigned to a worker is scheduled. This
  3728. method therefore permits to keep the state of of the scheduler coherent even
  3729. when StarPU bypasses the scheduling strategy.
  3730. @item @code{pop_task}:
  3731. Get a task from the scheduler. The mutex associated to the worker is already
  3732. taken when this method is called. If this method is defined as @code{NULL}, the
  3733. worker will only execute tasks from its local queue. In this case, the
  3734. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3735. assign tasks to the different workers.
  3736. @item @code{pop_every_task}:
  3737. Remove all available tasks from the scheduler (tasks are chained by the means
  3738. of the prev and next fields of the starpu_task structure). The mutex associated
  3739. to the worker is already taken when this method is called.
  3740. @item @code{post_exec_hook} (optionnal):
  3741. This method is called every time a task has been executed.
  3742. @item @code{policy_name}:
  3743. Name of the policy (optionnal).
  3744. @item @code{policy_description}:
  3745. Description of the policy (optionnal).
  3746. @end table
  3747. @end table
  3748. @node starpu_worker_set_sched_condition
  3749. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3750. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3751. When there is no available task for a worker, StarPU blocks this worker on a
  3752. condition variable. This function specifies which condition variable (and the
  3753. associated mutex) should be used to block (and to wake up) a worker. Note that
  3754. multiple workers may use the same condition variable. For instance, in the case
  3755. of a scheduling strategy with a single task queue, the same condition variable
  3756. would be used to block and wake up all workers.
  3757. The initialization method of a scheduling strategy (@code{init_sched}) must
  3758. call this function once per worker.
  3759. @end deftypefun
  3760. @node starpu_sched_set_min_priority
  3761. @subsection @code{starpu_sched_set_min_priority}
  3762. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3763. Defines the minimum priority level supported by the scheduling policy. The
  3764. default minimum priority level is the same as the default priority level which
  3765. is 0 by convention. The application may access that value by calling the
  3766. @code{starpu_sched_get_min_priority} function. This function should only be
  3767. called from the initialization method of the scheduling policy, and should not
  3768. be used directly from the application.
  3769. @end deftypefun
  3770. @node starpu_sched_set_max_priority
  3771. @subsection @code{starpu_sched_set_max_priority}
  3772. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3773. Defines the maximum priority level supported by the scheduling policy. The
  3774. default maximum priority level is 1. The application may access that value by
  3775. calling the @code{starpu_sched_get_max_priority} function. This function should
  3776. only be called from the initialization method of the scheduling policy, and
  3777. should not be used directly from the application.
  3778. @end deftypefun
  3779. @node starpu_push_local_task
  3780. @subsection @code{starpu_push_local_task}
  3781. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3782. The scheduling policy may put tasks directly into a worker's local queue so
  3783. that it is not always necessary to create its own queue when the local queue
  3784. is sufficient. If "back" not null, the task is put at the back of the queue
  3785. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3786. a FIFO ordering.
  3787. @end deftypefun
  3788. @node Source code
  3789. @subsection Source code
  3790. @cartouche
  3791. @smallexample
  3792. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3793. .init_sched = init_dummy_sched,
  3794. .deinit_sched = deinit_dummy_sched,
  3795. .push_task = push_task_dummy,
  3796. .push_prio_task = NULL,
  3797. .pop_task = pop_task_dummy,
  3798. .post_exec_hook = NULL,
  3799. .pop_every_task = NULL,
  3800. .policy_name = "dummy",
  3801. .policy_description = "dummy scheduling strategy"
  3802. @};
  3803. @end smallexample
  3804. @end cartouche
  3805. @c ---------------------------------------------------------------------
  3806. @c Appendices
  3807. @c ---------------------------------------------------------------------
  3808. @c ---------------------------------------------------------------------
  3809. @c Full source code for the 'Scaling a Vector' example
  3810. @c ---------------------------------------------------------------------
  3811. @node Full source code for the 'Scaling a Vector' example
  3812. @appendix Full source code for the 'Scaling a Vector' example
  3813. @menu
  3814. * Main application::
  3815. * CPU Kernel::
  3816. * CUDA Kernel::
  3817. * OpenCL Kernel::
  3818. @end menu
  3819. @node Main application
  3820. @section Main application
  3821. @smallexample
  3822. @include vector_scal_c.texi
  3823. @end smallexample
  3824. @node CPU Kernel
  3825. @section CPU Kernel
  3826. @smallexample
  3827. @include vector_scal_cpu.texi
  3828. @end smallexample
  3829. @node CUDA Kernel
  3830. @section CUDA Kernel
  3831. @smallexample
  3832. @include vector_scal_cuda.texi
  3833. @end smallexample
  3834. @node OpenCL Kernel
  3835. @section OpenCL Kernel
  3836. @menu
  3837. * Invoking the kernel::
  3838. * Source of the kernel::
  3839. @end menu
  3840. @node Invoking the kernel
  3841. @subsection Invoking the kernel
  3842. @smallexample
  3843. @include vector_scal_opencl.texi
  3844. @end smallexample
  3845. @node Source of the kernel
  3846. @subsection Source of the kernel
  3847. @smallexample
  3848. @include vector_scal_opencl_codelet.texi
  3849. @end smallexample
  3850. @c
  3851. @c Indices.
  3852. @c
  3853. @node Function Index
  3854. @unnumbered Function Index
  3855. @printindex fn
  3856. @bye