| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | ################### Performance Model Version45##################### COMBs# number of combinations9##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb4)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.700359e+03   	1.036459e+03   	3.886208e+05   	2.666205e+09   	58d39bff17	6553600        	0.000000e+00   	2.067623e+03   	3.658691e+02   	3.825102e+05   	8.156510e+08   	1852c1922b7	1638400        	0.000000e+00   	6.344928e+02   	1.313164e+02   	1.091328e+05   	7.220992e+07   	172##################### COMB_5# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb5)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.634729e+03   	1.380283e+03   	4.777005e+05   	3.306586e+09   	72d39bff17	6553600        	0.000000e+00   	2.102108e+03   	3.770829e+02   	2.690698e+05   	5.838144e+08   	1282c1922b7	1638400        	0.000000e+00   	6.251127e+02   	1.334964e+02   	1.168961e+05   	7.640580e+07   	187##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 4##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda4_impl0 (Comb0)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	5.973111e+03   	7.873858e+02   	4.420102e+05   	2.686054e+09   	74d39bff17	6553600        	0.000000e+00   	2.088129e+03   	3.411148e+02   	2.129891e+05   	4.566174e+08   	1022c1922b7	1638400        	0.000000e+00   	5.816119e+02   	1.098601e+02   	6.165086e+04   	3.713622e+07   	106##################### COMB_6# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 6##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda6_impl0 (Comb6)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	5.813439e+03   	5.835403e+02   	2.441645e+05   	1.433737e+09   	42d39bff17	6553600        	0.000000e+00   	2.170079e+03   	5.032568e+02   	7.161259e+04   	1.637628e+08   	332c1922b7	1638400        	0.000000e+00   	6.080488e+02   	1.225789e+02   	3.101049e+04   	1.962219e+07   	51##################### COMB_8# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb8)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	9.133611e+04   	7.141260e+02   	1.032098e+07   	9.427358e+11   	113d39bff17	6553600        	0.000000e+00   	2.797330e+04   	6.068477e+02   	1.482585e+06   	4.149232e+10   	532c1922b7	1638400        	0.000000e+00   	3.803279e+03   	2.345034e+02   	3.308852e+05   	1.263233e+09   	87##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb1)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.609495e+03   	1.035460e+03   	4.296172e+05   	2.909244e+09   	65d39bff17	6553600        	0.000000e+00   	2.129873e+03   	3.868465e+02   	3.407797e+05   	7.497615e+08   	1602c1922b7	1638400        	0.000000e+00   	6.443548e+02   	1.239934e+02   	8.054435e+04   	5.382094e+07   	125##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 7##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda7_impl0 (Comb3)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	5.938773e+03   	5.045720e+02   	2.078570e+05   	1.243326e+09   	35d39bff17	6553600        	0.000000e+00   	2.180034e+03   	4.239424e+02   	1.286220e+05   	2.910041e+08   	592c1922b7	1638400        	0.000000e+00   	5.996256e+02   	1.220514e+02   	5.816368e+04   	3.632139e+07   	97##################### COMB_7# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 5##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda5_impl0 (Comb7)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.467618e+03   	9.651621e+02   	2.910428e+05   	1.924273e+09   	45d39bff17	6553600        	0.000000e+00   	2.057931e+03   	3.333471e+02   	1.872717e+05   	3.955042e+08   	912c1922b7	1638400        	0.000000e+00   	6.141799e+02   	1.365857e+02   	5.159111e+04   	3.325329e+07   	84##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb2)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.429538e+03   	9.929716e+02   	5.015040e+05   	3.301346e+09   	78d39bff17	6553600        	0.000000e+00   	2.056349e+03   	3.356881e+02   	4.565094e+05   	9.637588e+08   	2222c1922b7	1638400        	0.000000e+00   	6.374873e+02   	1.360140e+02   	9.498561e+04   	6.330859e+07   	149
 |