| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | ################### Performance Model Version45##################### COMBs# number of combinations9##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb2)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.925318e+03   	8.376976e+02   	5.748014e+05   	4.038926e+09   	83d39bff17	6553600        	0.000000e+00   	2.271937e+03   	3.454949e+02   	2.340095e+05   	5.439496e+08   	1032c1922b7	1638400        	0.000000e+00   	7.049814e+02   	1.197767e+02   	1.254867e+05   	9.101946e+07   	178##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb1)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.291615e+03   	1.041939e+03   	4.593717e+05   	3.417957e+09   	63d39bff17	6553600        	0.000000e+00   	2.282720e+03   	4.096195e+02   	3.903452e+05   	9.197407e+08   	1712c1922b7	1638400        	0.000000e+00   	6.999720e+02   	1.145665e+02   	1.343946e+05   	9.659256e+07   	192##################### COMB_7# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 5##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda5_impl0 (Comb7)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.177388e+03   	9.455873e+02   	3.947563e+05   	2.882497e+09   	55d39bff17	6553600        	0.000000e+00   	2.335362e+03   	3.317057e+02   	2.825788e+05   	6.732374e+08   	1212c1922b7	1638400        	0.000000e+00   	7.266144e+02   	9.381637e+01   	4.432348e+04   	3.274297e+07   	61##################### COMB_8# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb8)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	9.210227e+04   	5.563000e+02   	1.252591e+07   	1.153707e+12   	136d39bff17	6553600        	0.000000e+00   	2.809162e+04   	4.267578e+02   	1.573131e+06   	4.420199e+10   	562c1922b7	1638400        	0.000000e+00   	3.732094e+03   	1.582101e+02   	3.993341e+05   	1.493031e+09   	107##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 7##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda7_impl0 (Comb3)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.047943e+03   	9.923280e+02   	4.017327e+05   	2.887518e+09   	57d39bff17	6553600        	0.000000e+00   	2.358363e+03   	2.904964e+02   	2.381946e+05   	5.702726e+08   	1012c1922b7	1638400        	0.000000e+00   	7.376273e+02   	1.192099e+02   	4.425764e+04   	3.349831e+07   	60##################### COMB_5# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb5)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.125894e+03   	1.170430e+03   	6.769599e+05   	4.954085e+09   	95d39bff17	6553600        	0.000000e+00   	2.913435e+03   	7.837592e+02   	2.651226e+05   	8.283167e+08   	912c1922b7	1638400        	0.000000e+00   	7.396845e+02   	1.557697e+02   	7.692719e+04   	5.942533e+07   	104##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 4##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda4_impl0 (Comb0)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	6.906666e+03   	1.069281e+03   	3.177066e+05   	2.246888e+09   	46d39bff17	6553600        	0.000000e+00   	2.331985e+03   	3.108312e+02   	2.914982e+05   	6.918465e+08   	1252c1922b7	1638400        	0.000000e+00   	7.036069e+02   	1.117682e+02   	5.277052e+04   	3.806661e+07   	75##################### COMB_6# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 6##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda6_impl0 (Comb6)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.634969e+03   	1.278868e+03   	4.122883e+05   	3.236126e+09   	54d39bff17	6553600        	0.000000e+00   	2.361692e+03   	2.763159e+02   	1.747652e+05   	4.183915e+08   	742c1922b7	1638400        	0.000000e+00   	7.215132e+02   	1.060983e+02   	7.287283e+04   	5.371565e+07   	101##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb4)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		nff82dda0	14745600       	0.000000e+00   	7.011366e+03   	8.280915e+02   	6.871138e+05   	4.884809e+09   	98d39bff17	6553600        	0.000000e+00   	2.294721e+03   	3.366230e+02   	4.451759e+05   	1.043537e+09   	1942c1922b7	1638400        	0.000000e+00   	6.840134e+02   	1.166270e+02   	1.114942e+05   	7.848061e+07   	163
 |