| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 | /* dlarzt.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b8 = 0.;static integer c__1 = 1;/* Subroutine */ int _starpu_dlarzt_(char *direct, char *storev, integer *n, integer *	k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 	integer *ldt){    /* System generated locals */    integer t_dim1, t_offset, v_dim1, v_offset, i__1;    doublereal d__1;    /* Local variables */    integer i__, j, info;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dtrmv_(char *, 	    char *, char *, integer *, doublereal *, integer *, doublereal *, 	    integer *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLARZT forms the triangular factor T of a real block reflector *//*  H of order > n, which is defined as a product of k elementary *//*  reflectors. *//*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; *//*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. *//*  If STOREV = 'C', the vector which defines the elementary reflector *//*  H(i) is stored in the i-th column of the array V, and *//*     H  =  I - V * T * V' *//*  If STOREV = 'R', the vector which defines the elementary reflector *//*  H(i) is stored in the i-th row of the array V, and *//*     H  =  I - V' * T * V *//*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported. *//*  Arguments *//*  ========= *//*  DIRECT  (input) CHARACTER*1 *//*          Specifies the order in which the elementary reflectors are *//*          multiplied to form the block reflector: *//*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) *//*          = 'B': H = H(k) . . . H(2) H(1) (Backward) *//*  STOREV  (input) CHARACTER*1 *//*          Specifies how the vectors which define the elementary *//*          reflectors are stored (see also Further Details): *//*          = 'C': columnwise                        (not supported yet) *//*          = 'R': rowwise *//*  N       (input) INTEGER *//*          The order of the block reflector H. N >= 0. *//*  K       (input) INTEGER *//*          The order of the triangular factor T (= the number of *//*          elementary reflectors). K >= 1. *//*  V       (input/output) DOUBLE PRECISION array, dimension *//*                               (LDV,K) if STOREV = 'C' *//*                               (LDV,N) if STOREV = 'R' *//*          The matrix V. See further details. *//*  LDV     (input) INTEGER *//*          The leading dimension of the array V. *//*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i). *//*  T       (output) DOUBLE PRECISION array, dimension (LDT,K) *//*          The k by k triangular factor T of the block reflector. *//*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is *//*          lower triangular. The rest of the array is not used. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= K. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA *//*  The shape of the matrix V and the storage of the vectors which define *//*  the H(i) is best illustrated by the following example with n = 5 and *//*  k = 3. The elements equal to 1 are not stored; the corresponding *//*  array elements are modified but restored on exit. The rest of the *//*  array is not used. *//*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': *//*                                              ______V_____ *//*         ( v1 v2 v3 )                        /            \ *//*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 ) *//*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   ) *//*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     ) *//*         ( v1 v2 v3 ) *//*            .  .  . *//*            .  .  . *//*            1  .  . *//*               1  . *//*                  1 *//*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': *//*                                                        ______V_____ *//*            1                                          /            \ *//*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 ) *//*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 ) *//*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 ) *//*            .  .  . *//*         ( v1 v2 v3 ) *//*         ( v1 v2 v3 ) *//*     V = ( v1 v2 v3 ) *//*         ( v1 v2 v3 ) *//*         ( v1 v2 v3 ) *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Check for currently supported options */    /* Parameter adjustments */    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    --tau;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    /* Function Body */    info = 0;    if (! _starpu_lsame_(direct, "B")) {	info = -1;    } else if (! _starpu_lsame_(storev, "R")) {	info = -2;    }    if (info != 0) {	i__1 = -info;	_starpu_xerbla_("DLARZT", &i__1);	return 0;    }    for (i__ = *k; i__ >= 1; --i__) {	if (tau[i__] == 0.) {/*           H(i)  =  I */	    i__1 = *k;	    for (j = i__; j <= i__1; ++j) {		t[j + i__ * t_dim1] = 0.;/* L10: */	    }	} else {/*           general case */	    if (i__ < *k) {/*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)' */		i__1 = *k - i__;		d__1 = -tau[i__];		_starpu_dgemv_("No transpose", &i__1, n, &d__1, &v[i__ + 1 + v_dim1], 			ldv, &v[i__ + v_dim1], ldv, &c_b8, &t[i__ + 1 + i__ * 			t_dim1], &c__1);/*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i) */		i__1 = *k - i__;		_starpu_dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 			+ (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1], &c__1);	    }	    t[i__ + i__ * t_dim1] = tau[i__];	}/* L20: */    }    return 0;/*     End of DLARZT */} /* _starpu_dlarzt_ */
 |