starpu.texi 164 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Research Papers::
  78. @end menu
  79. From a programming point of view, StarPU is not a new language but a library
  80. that executes tasks explicitly submitted by the application. The data that a
  81. task manipulates are automatically transferred onto the accelerator so that the
  82. programmer does not have to take care of complex data movements. StarPU also
  83. takes particular care of scheduling those tasks efficiently and allows
  84. scheduling experts to implement custom scheduling policies in a portable
  85. fashion.
  86. @c explain the notion of codelet and task (i.e. g(A, B)
  87. @node Codelet and Tasks
  88. @subsection Codelet and Tasks
  89. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  90. computational kernel that can possibly be implemented on multiple architectures
  91. such as a CPU, a CUDA device or a Cell's SPU.
  92. @c TODO insert illustration f : f_spu, f_cpu, ...
  93. Another important data structure is the @b{task}. Executing a StarPU task
  94. consists in applying a codelet on a data set, on one of the architectures on
  95. which the codelet is implemented. In addition to the codelet that a task
  96. useuses, it also describes which data are accessed, and how they are
  97. accessed during the computation (read and/or write).
  98. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  99. operation. The task structure can also specify a @b{callback} function that is
  100. called once StarPU has properly executed the task. It also contains optional
  101. fields that the application may use to give hints to the scheduler (such as
  102. priority levels).
  103. A task may be identified by a unique 64-bit number chosen by the application
  104. which we refer as a @b{tag}.
  105. Task dependencies can be enforced either by the means of callback functions, by
  106. expressing dependencies between explicit tasks or by expressing dependencies
  107. between tags (which can thus correspond to tasks that have not been submitted
  108. yet).
  109. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  110. @c DSM
  111. @node StarPU Data Management Library
  112. @subsection StarPU Data Management Library
  113. Because StarPU schedules tasks at runtime, data transfers have to be
  114. done automatically and ``just-in-time'' between processing units,
  115. relieving the application programmer from explicit data transfers.
  116. Moreover, to avoid unnecessary transfers, StarPU keeps data
  117. where it was last needed, even if was modified there, and it
  118. allows multiple copies of the same data to reside at the same time on
  119. several processing units as long as it is not modified.
  120. @node Research Papers
  121. @subsection Research Papers
  122. Research papers about StarPU can be found at
  123. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  124. Notably a good overview in the research report
  125. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  126. @c ---------------------------------------------------------------------
  127. @c Installing StarPU
  128. @c ---------------------------------------------------------------------
  129. @node Installing StarPU
  130. @chapter Installing StarPU
  131. @menu
  132. * Downloading StarPU::
  133. * Configuration of StarPU::
  134. * Building and Installing StarPU::
  135. @end menu
  136. StarPU can be built and installed by the standard means of the GNU
  137. autotools. The following chapter is intended to briefly remind how these tools
  138. can be used to install StarPU.
  139. @node Downloading StarPU
  140. @section Downloading StarPU
  141. @menu
  142. * Getting Sources::
  143. * Optional dependencies::
  144. @end menu
  145. @node Getting Sources
  146. @subsection Getting Sources
  147. The simplest way to get StarPU sources is to download the latest official
  148. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  149. or the latest nightly snapshot from
  150. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  151. how to get the very latest version from the subversion repository itself, it
  152. should be needed only if you need the very latest changes (i.e. less than a
  153. day!)
  154. The source code is managed by a Subversion server hosted by the
  155. InriaGforge. To get the source code, you need:
  156. @itemize
  157. @item
  158. To install the client side of the software Subversion if it is
  159. not already available on your system. The software can be obtained from
  160. @indicateurl{http://subversion.tigris.org} . If you are running
  161. on Windows, you will probably prefer to use TortoiseSVN from
  162. @indicateurl{http://tortoisesvn.tigris.org/} .
  163. @item
  164. You can check out the project's SVN repository through anonymous
  165. access. This will provide you with a read access to the
  166. repository.
  167. If you need to have write access on the StarPU project, you can also choose to
  168. become a member of the project @code{starpu}. For this, you first need to get
  169. an account to the gForge server. You can then send a request to join the project
  170. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  171. @item
  172. More information on how to get a gForge account, to become a member of
  173. a project, or on any other related task can be obtained from the
  174. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  175. thing is to upload your public SSH key on the gForge server (see the
  176. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  177. instructions).
  178. @end itemize
  179. You can now check out the latest version from the Subversion server:
  180. @itemize
  181. @item
  182. using the anonymous access via svn:
  183. @example
  184. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. @item
  187. using the anonymous access via https:
  188. @example
  189. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  190. @end example
  191. The password is @code{anonsvn}.
  192. @item
  193. using your gForge account
  194. @example
  195. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  196. @end example
  197. @end itemize
  198. The following step requires the availability of @code{autoconf} and
  199. @code{automake} to generate the @code{./configure} script. This is
  200. done by calling @code{./autogen.sh}. The required version for
  201. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  202. @example
  203. % ./autogen.sh
  204. @end example
  205. If the autotools are not available on your machine or not recent
  206. enough, you can choose to download the latest nightly tarball, which
  207. is provided with a @code{configure} script.
  208. @example
  209. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  210. @end example
  211. @node Optional dependencies
  212. @subsection Optional dependencies
  213. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  214. but strongly recommended. It allows to increase performance, and to
  215. perform some topology aware scheduling.
  216. @code{hwloc} is available in major distributions and for most OSes and can be
  217. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  218. @node Configuration of StarPU
  219. @section Configuration of StarPU
  220. @menu
  221. * Generating Makefiles and configuration scripts::
  222. * Running the configuration::
  223. @end menu
  224. @node Generating Makefiles and configuration scripts
  225. @subsection Generating Makefiles and configuration scripts
  226. This step is not necessary when using the tarball releases of StarPU. If you
  227. are using the source code from the svn repository, you first need to generate
  228. the configure scripts and the Makefiles.
  229. @example
  230. % ./autogen.sh
  231. @end example
  232. @node Running the configuration
  233. @subsection Running the configuration
  234. @example
  235. % ./configure
  236. @end example
  237. Details about options that are useful to give to @code{./configure} are given in
  238. @ref{Compilation configuration}.
  239. @node Building and Installing StarPU
  240. @section Building and Installing StarPU
  241. @menu
  242. * Building::
  243. * Sanity Checks::
  244. * Installing::
  245. @end menu
  246. @node Building
  247. @subsection Building
  248. @example
  249. % make
  250. @end example
  251. @node Sanity Checks
  252. @subsection Sanity Checks
  253. In order to make sure that StarPU is working properly on the system, it is also
  254. possible to run a test suite.
  255. @example
  256. % make check
  257. @end example
  258. @node Installing
  259. @subsection Installing
  260. In order to install StarPU at the location that was specified during
  261. configuration:
  262. @example
  263. % make install
  264. @end example
  265. @c ---------------------------------------------------------------------
  266. @c Using StarPU
  267. @c ---------------------------------------------------------------------
  268. @node Using StarPU
  269. @chapter Using StarPU
  270. @menu
  271. * Setting flags for compiling and linking applications::
  272. * Running a basic StarPU application::
  273. * Kernel threads started by StarPU::
  274. * Using accelerators::
  275. @end menu
  276. @node Setting flags for compiling and linking applications
  277. @section Setting flags for compiling and linking applications
  278. Compiling and linking an application against StarPU may require to use
  279. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  280. To this end, it is possible to use the @code{pkg-config} tool.
  281. If StarPU was not installed at some standard location, the path of StarPU's
  282. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  283. that @code{pkg-config} can find it. For example if StarPU was installed in
  284. @code{$prefix_dir}:
  285. @example
  286. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  287. @end example
  288. The flags required to compile or link against StarPU are then
  289. accessible with the following commands:
  290. @example
  291. % pkg-config --cflags libstarpu # options for the compiler
  292. % pkg-config --libs libstarpu # options for the linker
  293. @end example
  294. @node Running a basic StarPU application
  295. @section Running a basic StarPU application
  296. Basic examples using StarPU have been built in the directory
  297. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  298. example @code{vector_scal}.
  299. @example
  300. % $prefix_dir/lib/starpu/examples/vector_scal
  301. BEFORE : First element was 1.000000
  302. AFTER First element is 3.140000
  303. %
  304. @end example
  305. When StarPU is used for the first time, the directory
  306. @code{$HOME/.starpu/} is created, performance models will be stored in
  307. that directory.
  308. Please note that buses are benchmarked when StarPU is launched for the
  309. first time. This may take a few minutes, or less if @code{hwloc} is
  310. installed. This step is done only once per user and per machine.
  311. @node Kernel threads started by StarPU
  312. @section Kernel threads started by StarPU
  313. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  314. them per GPU. The application is not supposed to do computations in its own
  315. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  316. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  317. worker).
  318. @node Using accelerators
  319. @section Using accelerators
  320. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  321. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  322. This design choice was necessary as OpenCL and CUDA can not run at the
  323. same time on the same NVIDIA GPU, as there is currently no interoperability
  324. between them.
  325. Details on how to specify devices running OpenCL and the ones running
  326. CUDA are given in @ref{Enabling OpenCL}.
  327. @c ---------------------------------------------------------------------
  328. @c Basic Examples
  329. @c ---------------------------------------------------------------------
  330. @node Basic Examples
  331. @chapter Basic Examples
  332. @menu
  333. * Compiling and linking options::
  334. * Hello World:: Submitting Tasks
  335. * Scaling a Vector:: Manipulating Data
  336. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  337. * Task and Worker Profiling::
  338. * Partitioning Data:: Partitioning Data
  339. * Performance model example::
  340. * Theoretical lower bound on execution time::
  341. * Insert Task Utility::
  342. * More examples:: More examples shipped with StarPU
  343. * Debugging:: When things go wrong.
  344. @end menu
  345. @node Compiling and linking options
  346. @section Compiling and linking options
  347. Let's suppose StarPU has been installed in the directory
  348. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  349. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  350. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  351. libraries at runtime.
  352. @example
  353. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  354. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  355. @end example
  356. The Makefile could for instance contain the following lines to define which
  357. options must be given to the compiler and to the linker:
  358. @cartouche
  359. @example
  360. CFLAGS += $$(pkg-config --cflags libstarpu)
  361. LDFLAGS += $$(pkg-config --libs libstarpu)
  362. @end example
  363. @end cartouche
  364. @node Hello World
  365. @section Hello World
  366. @menu
  367. * Required Headers::
  368. * Defining a Codelet::
  369. * Submitting a Task::
  370. * Execution of Hello World::
  371. @end menu
  372. In this section, we show how to implement a simple program that submits a task to StarPU.
  373. @node Required Headers
  374. @subsection Required Headers
  375. The @code{starpu.h} header should be included in any code using StarPU.
  376. @cartouche
  377. @smallexample
  378. #include <starpu.h>
  379. @end smallexample
  380. @end cartouche
  381. @node Defining a Codelet
  382. @subsection Defining a Codelet
  383. @cartouche
  384. @smallexample
  385. struct params @{
  386. int i;
  387. float f;
  388. @};
  389. void cpu_func(void *buffers[], void *cl_arg)
  390. @{
  391. struct params *params = cl_arg;
  392. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  393. @}
  394. starpu_codelet cl =
  395. @{
  396. .where = STARPU_CPU,
  397. .cpu_func = cpu_func,
  398. .nbuffers = 0
  399. @};
  400. @end smallexample
  401. @end cartouche
  402. A codelet is a structure that represents a computational kernel. Such a codelet
  403. may contain an implementation of the same kernel on different architectures
  404. (e.g. CUDA, Cell's SPU, x86, ...).
  405. The @code{nbuffers} field specifies the number of data buffers that are
  406. manipulated by the codelet: here the codelet does not access or modify any data
  407. that is controlled by our data management library. Note that the argument
  408. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  409. structure) does not count as a buffer since it is not managed by our data
  410. management library, but just contain trivial parameters.
  411. @c TODO need a crossref to the proper description of "where" see bla for more ...
  412. We create a codelet which may only be executed on the CPUs. The @code{where}
  413. field is a bitmask that defines where the codelet may be executed. Here, the
  414. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  415. (@pxref{Codelets and Tasks} for more details on this field).
  416. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  417. which @emph{must} have the following prototype:
  418. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  419. In this example, we can ignore the first argument of this function which gives a
  420. description of the input and output buffers (e.g. the size and the location of
  421. the matrices) since there is none.
  422. The second argument is a pointer to a buffer passed as an
  423. argument to the codelet by the means of the @code{cl_arg} field of the
  424. @code{starpu_task} structure.
  425. @c TODO rewrite so that it is a little clearer ?
  426. Be aware that this may be a pointer to a
  427. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  428. if the codelet modifies this buffer, there is no guarantee that the initial
  429. buffer will be modified as well: this for instance implies that the buffer
  430. cannot be used as a synchronization medium. If synchronization is needed, data
  431. has to be registered to StarPU, see @ref{Scaling a Vector}.
  432. @node Submitting a Task
  433. @subsection Submitting a Task
  434. @cartouche
  435. @smallexample
  436. void callback_func(void *callback_arg)
  437. @{
  438. printf("Callback function (arg %x)\n", callback_arg);
  439. @}
  440. int main(int argc, char **argv)
  441. @{
  442. /* @b{initialize StarPU} */
  443. starpu_init(NULL);
  444. struct starpu_task *task = starpu_task_create();
  445. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  446. struct params params = @{ 1, 2.0f @};
  447. task->cl_arg = &params;
  448. task->cl_arg_size = sizeof(params);
  449. task->callback_func = callback_func;
  450. task->callback_arg = 0x42;
  451. /* @b{starpu_task_submit will be a blocking call} */
  452. task->synchronous = 1;
  453. /* @b{submit the task to StarPU} */
  454. starpu_task_submit(task);
  455. /* @b{terminate StarPU} */
  456. starpu_shutdown();
  457. return 0;
  458. @}
  459. @end smallexample
  460. @end cartouche
  461. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  462. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  463. be submitted after the termination of StarPU by a call to
  464. @code{starpu_shutdown}.
  465. In the example above, a task structure is allocated by a call to
  466. @code{starpu_task_create}. This function only allocates and fills the
  467. corresponding structure with the default settings (@pxref{Codelets and
  468. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  469. @c not really clear ;)
  470. The @code{cl} field is a pointer to the codelet which the task will
  471. execute: in other words, the codelet structure describes which computational
  472. kernel should be offloaded on the different architectures, and the task
  473. structure is a wrapper containing a codelet and the piece of data on which the
  474. codelet should operate.
  475. The optional @code{cl_arg} field is a pointer to a buffer (of size
  476. @code{cl_arg_size}) with some parameters for the kernel
  477. described by the codelet. For instance, if a codelet implements a computational
  478. kernel that multiplies its input vector by a constant, the constant could be
  479. specified by the means of this buffer, instead of registering it as a StarPU
  480. data. It must however be noted that StarPU avoids making copy whenever possible
  481. and rather passes the pointer as such, so the buffer which is pointed at must
  482. kept allocated until the task terminates, and if several tasks are submitted
  483. with various parameters, each of them must be given a pointer to their own
  484. buffer.
  485. Once a task has been executed, an optional callback function is be called.
  486. While the computational kernel could be offloaded on various architectures, the
  487. callback function is always executed on a CPU. The @code{callback_arg}
  488. pointer is passed as an argument of the callback. The prototype of a callback
  489. function must be:
  490. @code{void (*callback_function)(void *);}
  491. If the @code{synchronous} field is non-zero, task submission will be
  492. synchronous: the @code{starpu_task_submit} function will not return until the
  493. task was executed. Note that the @code{starpu_shutdown} method does not
  494. guarantee that asynchronous tasks have been executed before it returns,
  495. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  496. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  497. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  498. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  499. @code{starpu_data_set_sequential_consistency_flag}.
  500. @node Execution of Hello World
  501. @subsection Execution of Hello World
  502. @smallexample
  503. % make hello_world
  504. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  505. % ./hello_world
  506. Hello world (params = @{1, 2.000000@} )
  507. Callback function (arg 42)
  508. @end smallexample
  509. @node Scaling a Vector
  510. @section Manipulating Data: Scaling a Vector
  511. The previous example has shown how to submit tasks. In this section,
  512. we show how StarPU tasks can manipulate data. The full source code for
  513. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  514. @menu
  515. * Source code of Vector Scaling::
  516. * Execution of Vector Scaling::
  517. @end menu
  518. @node Source code of Vector Scaling
  519. @subsection Source code of Vector Scaling
  520. Programmers can describe the data layout of their application so that StarPU is
  521. responsible for enforcing data coherency and availability across the machine.
  522. Instead of handling complex (and non-portable) mechanisms to perform data
  523. movements, programmers only declare which piece of data is accessed and/or
  524. modified by a task, and StarPU makes sure that when a computational kernel
  525. starts somewhere (e.g. on a GPU), its data are available locally.
  526. Before submitting those tasks, the programmer first needs to declare the
  527. different pieces of data to StarPU using the @code{starpu_*_data_register}
  528. functions. To ease the development of applications for StarPU, it is possible
  529. to describe multiple types of data layout. A type of data layout is called an
  530. @b{interface}. There are different predefined interfaces available in StarPU:
  531. here we will consider the @b{vector interface}.
  532. The following lines show how to declare an array of @code{NX} elements of type
  533. @code{float} using the vector interface:
  534. @cartouche
  535. @smallexample
  536. float vector[NX];
  537. starpu_data_handle vector_handle;
  538. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  539. sizeof(vector[0]));
  540. @end smallexample
  541. @end cartouche
  542. The first argument, called the @b{data handle}, is an opaque pointer which
  543. designates the array in StarPU. This is also the structure which is used to
  544. describe which data is used by a task. The second argument is the node number
  545. where the data originally resides. Here it is 0 since the @code{vector} array is in
  546. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  547. the number of elements in the vector and the size of each element.
  548. The following shows how to construct a StarPU task that will manipulate the
  549. vector and a constant factor.
  550. @cartouche
  551. @smallexample
  552. float factor = 3.14;
  553. struct starpu_task *task = starpu_task_create();
  554. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  555. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  556. task->buffers[0].mode = STARPU_RW;
  557. task->cl_arg = &factor;
  558. task->cl_arg_size = sizeof(factor);
  559. task->synchronous = 1;
  560. starpu_task_submit(task);
  561. @end smallexample
  562. @end cartouche
  563. Since the factor is a mere constant float value parameter,
  564. it does not need a preliminary registration, and
  565. can just be passed through the @code{cl_arg} pointer like in the previous
  566. example. The vector parameter is described by its handle.
  567. There are two fields in each element of the @code{buffers} array.
  568. @code{handle} is the handle of the data, and @code{mode} specifies how the
  569. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  570. write-only and @code{STARPU_RW} for read and write access).
  571. The definition of the codelet can be written as follows:
  572. @cartouche
  573. @smallexample
  574. void scal_cpu_func(void *buffers[], void *cl_arg)
  575. @{
  576. unsigned i;
  577. float *factor = cl_arg;
  578. /* length of the vector */
  579. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  580. /* CPU copy of the vector pointer */
  581. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  582. for (i = 0; i < n; i++)
  583. val[i] *= *factor;
  584. @}
  585. starpu_codelet cl = @{
  586. .where = STARPU_CPU,
  587. .cpu_func = scal_cpu_func,
  588. .nbuffers = 1
  589. @};
  590. @end smallexample
  591. @end cartouche
  592. The first argument is an array that gives
  593. a description of all the buffers passed in the @code{task->buffers}@ array. The
  594. size of this array is given by the @code{nbuffers} field of the codelet
  595. structure. For the sake of genericity, this array contains pointers to the
  596. different interfaces describing each buffer. In the case of the @b{vector
  597. interface}, the location of the vector (resp. its length) is accessible in the
  598. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  599. read-write fashion, any modification will automatically affect future accesses
  600. to this vector made by other tasks.
  601. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  602. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  603. constant factor from this pointer.
  604. @node Execution of Vector Scaling
  605. @subsection Execution of Vector Scaling
  606. @smallexample
  607. % make vector_scal
  608. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  609. % ./vector_scal
  610. 0.000000 3.000000 6.000000 9.000000 12.000000
  611. @end smallexample
  612. @node Vector Scaling on an Hybrid CPU/GPU Machine
  613. @section Vector Scaling on an Hybrid CPU/GPU Machine
  614. Contrary to the previous examples, the task submitted in this example may not
  615. only be executed by the CPUs, but also by a CUDA device.
  616. @menu
  617. * Definition of the CUDA Kernel::
  618. * Definition of the OpenCL Kernel::
  619. * Definition of the Main Code::
  620. * Execution of Hybrid Vector Scaling::
  621. @end menu
  622. @node Definition of the CUDA Kernel
  623. @subsection Definition of the CUDA Kernel
  624. The CUDA implementation can be written as follows. It needs to be compiled with
  625. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  626. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  627. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  628. call.
  629. @cartouche
  630. @smallexample
  631. #include <starpu.h>
  632. static __global__ void vector_mult_cuda(float *val, unsigned n,
  633. float factor)
  634. @{
  635. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  636. if (i < n)
  637. val[i] *= factor;
  638. @}
  639. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  640. @{
  641. float *factor = (float *)_args;
  642. /* length of the vector */
  643. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  644. /* CUDA copy of the vector pointer */
  645. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  646. unsigned threads_per_block = 64;
  647. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  648. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  649. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @node Definition of the OpenCL Kernel
  654. @subsection Definition of the OpenCL Kernel
  655. The OpenCL implementation can be written as follows. StarPU provides
  656. tools to compile a OpenCL kernel stored in a file.
  657. @cartouche
  658. @smallexample
  659. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  660. @{
  661. const int i = get_global_id(0);
  662. if (i < nx) @{
  663. val[i] *= factor;
  664. @}
  665. @}
  666. @end smallexample
  667. @end cartouche
  668. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  669. a device pointer, so that it is passed as such to the OpenCL kernel.
  670. @cartouche
  671. @smallexample
  672. #include <starpu.h>
  673. @i{#include <starpu_opencl.h>}
  674. @i{extern struct starpu_opencl_program programs;}
  675. void scal_opencl_func(void *buffers[], void *_args)
  676. @{
  677. float *factor = _args;
  678. @i{ int id, devid, err;}
  679. @i{ cl_kernel kernel;}
  680. @i{ cl_command_queue queue;}
  681. @i{ cl_event event;}
  682. /* length of the vector */
  683. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  684. /* OpenCL copy of the vector pointer */
  685. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  686. @i{ id = starpu_worker_get_id();}
  687. @i{ devid = starpu_worker_get_devid(id);}
  688. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  689. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  690. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  691. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  692. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  693. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  694. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  695. @i{ @{}
  696. @i{ size_t global=1;}
  697. @i{ size_t local=1;}
  698. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  699. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  700. @i{ @}}
  701. @i{ clFinish(queue);}
  702. @i{ starpu_opencl_collect_stats(event);}
  703. @i{ clReleaseEvent(event);}
  704. @i{ starpu_opencl_release_kernel(kernel);}
  705. @}
  706. @end smallexample
  707. @end cartouche
  708. @node Definition of the Main Code
  709. @subsection Definition of the Main Code
  710. The CPU implementation is the same as in the previous section.
  711. Here is the source of the main application. You can notice the value of the
  712. field @code{where} for the codelet. We specify
  713. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  714. can be executed either on a CPU or on a CUDA or an OpenCL device.
  715. @cartouche
  716. @smallexample
  717. #include <starpu.h>
  718. #define NX 2048
  719. extern void scal_cuda_func(void *buffers[], void *_args);
  720. extern void scal_cpu_func(void *buffers[], void *_args);
  721. extern void scal_opencl_func(void *buffers[], void *_args);
  722. /* @b{Definition of the codelet} */
  723. static starpu_codelet cl = @{
  724. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  725. /* @b{on a CUDA device, or on an OpenCL device} */
  726. .cuda_func = scal_cuda_func;
  727. .cpu_func = scal_cpu_func;
  728. .opencl_func = scal_opencl_func;
  729. .nbuffers = 1;
  730. @}
  731. #ifdef STARPU_USE_OPENCL
  732. /* @b{The compiled version of the OpenCL program} */
  733. struct starpu_opencl_program programs;
  734. #endif
  735. int main(int argc, char **argv)
  736. @{
  737. float *vector;
  738. int i, ret;
  739. float factor=3.0;
  740. struct starpu_task *task;
  741. starpu_data_handle vector_handle;
  742. starpu_init(NULL); /* @b{Initialising StarPU} */
  743. #ifdef STARPU_USE_OPENCL
  744. starpu_opencl_load_opencl_from_file(
  745. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  746. &programs, NULL);
  747. #endif
  748. vector = malloc(NX*sizeof(vector[0]));
  749. assert(vector);
  750. for(i=0 ; i<NX ; i++) vector[i] = i;
  751. @end smallexample
  752. @end cartouche
  753. @cartouche
  754. @smallexample
  755. /* @b{Registering data within StarPU} */
  756. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  757. NX, sizeof(vector[0]));
  758. /* @b{Definition of the task} */
  759. task = starpu_task_create();
  760. task->cl = &cl;
  761. task->buffers[0].handle = vector_handle;
  762. task->buffers[0].mode = STARPU_RW;
  763. task->cl_arg = &factor;
  764. task->cl_arg_size = sizeof(factor);
  765. @end smallexample
  766. @end cartouche
  767. @cartouche
  768. @smallexample
  769. /* @b{Submitting the task} */
  770. ret = starpu_task_submit(task);
  771. if (ret == -ENODEV) @{
  772. fprintf(stderr, "No worker may execute this task\n");
  773. return 1;
  774. @}
  775. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  776. /* @b{Waiting for its termination} */
  777. starpu_task_wait_for_all();
  778. /* @b{Update the vector in RAM} */
  779. starpu_data_acquire(vector_handle, STARPU_R);
  780. @end smallexample
  781. @end cartouche
  782. @cartouche
  783. @smallexample
  784. /* @b{Access the data} */
  785. for(i=0 ; i<NX; i++) @{
  786. fprintf(stderr, "%f ", vector[i]);
  787. @}
  788. fprintf(stderr, "\n");
  789. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  790. starpu_data_release(vector_handle);
  791. starpu_data_unregister(vector_handle);
  792. starpu_shutdown();
  793. return 0;
  794. @}
  795. @end smallexample
  796. @end cartouche
  797. @node Execution of Hybrid Vector Scaling
  798. @subsection Execution of Hybrid Vector Scaling
  799. The Makefile given at the beginning of the section must be extended to
  800. give the rules to compile the CUDA source code. Note that the source
  801. file of the OpenCL kernel does not need to be compiled now, it will
  802. be compiled at run-time when calling the function
  803. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  804. @cartouche
  805. @smallexample
  806. CFLAGS += $(shell pkg-config --cflags libstarpu)
  807. LDFLAGS += $(shell pkg-config --libs libstarpu)
  808. CC = gcc
  809. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  810. %.o: %.cu
  811. nvcc $(CFLAGS) $< -c $@
  812. clean:
  813. rm -f vector_scal *.o
  814. @end smallexample
  815. @end cartouche
  816. @smallexample
  817. % make
  818. @end smallexample
  819. and to execute it, with the default configuration:
  820. @smallexample
  821. % ./vector_scal
  822. 0.000000 3.000000 6.000000 9.000000 12.000000
  823. @end smallexample
  824. or for example, by disabling CPU devices:
  825. @smallexample
  826. % STARPU_NCPUS=0 ./vector_scal
  827. 0.000000 3.000000 6.000000 9.000000 12.000000
  828. @end smallexample
  829. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  830. see @ref{Using accelerators}):
  831. @smallexample
  832. % STARPU_NCUDA=0 ./vector_scal
  833. 0.000000 3.000000 6.000000 9.000000 12.000000
  834. @end smallexample
  835. @node Task and Worker Profiling
  836. @section Task and Worker Profiling
  837. A full example showing how to use the profiling API is available in
  838. the StarPU sources in the directory @code{examples/profiling/}.
  839. @cartouche
  840. @smallexample
  841. struct starpu_task *task = starpu_task_create();
  842. task->cl = &cl;
  843. task->synchronous = 1;
  844. /* We will destroy the task structure by hand so that we can
  845. * query the profiling info before the task is destroyed. */
  846. task->destroy = 0;
  847. /* Submit and wait for completion (since synchronous was set to 1) */
  848. starpu_task_submit(task);
  849. /* The task is finished, get profiling information */
  850. struct starpu_task_profiling_info *info = task->profiling_info;
  851. /* How much time did it take before the task started ? */
  852. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  853. /* How long was the task execution ? */
  854. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  855. /* We don't need the task structure anymore */
  856. starpu_task_destroy(task);
  857. @end smallexample
  858. @end cartouche
  859. @cartouche
  860. @smallexample
  861. /* Display the occupancy of all workers during the test */
  862. int worker;
  863. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  864. @{
  865. struct starpu_worker_profiling_info worker_info;
  866. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  867. STARPU_ASSERT(!ret);
  868. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  869. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  870. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  871. float executing_ratio = 100.0*executing_time/total_time;
  872. float sleeping_ratio = 100.0*sleeping_time/total_time;
  873. char workername[128];
  874. starpu_worker_get_name(worker, workername, 128);
  875. fprintf(stderr, "Worker %s:\n", workername);
  876. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  877. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  878. executing_ratio);
  879. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  880. sleeping_ratio);
  881. @}
  882. @end smallexample
  883. @end cartouche
  884. @node Partitioning Data
  885. @section Partitioning Data
  886. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  887. @cartouche
  888. @smallexample
  889. int vector[NX];
  890. starpu_data_handle handle;
  891. /* Declare data to StarPU */
  892. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  893. /* Partition the vector in PARTS sub-vectors */
  894. starpu_filter f =
  895. @{
  896. .filter_func = starpu_block_filter_func_vector,
  897. .nchildren = PARTS,
  898. .get_nchildren = NULL,
  899. .get_child_ops = NULL
  900. @};
  901. starpu_data_partition(handle, &f);
  902. @end smallexample
  903. @end cartouche
  904. @cartouche
  905. @smallexample
  906. /* Submit a task on each sub-vector */
  907. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  908. /* Get subdata number i (there is only 1 dimension) */
  909. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  910. struct starpu_task *task = starpu_task_create();
  911. task->buffers[0].handle = sub_handle;
  912. task->buffers[0].mode = STARPU_RW;
  913. task->cl = &cl;
  914. task->synchronous = 1;
  915. task->cl_arg = &factor;
  916. task->cl_arg_size = sizeof(factor);
  917. starpu_task_submit(task);
  918. @}
  919. @end smallexample
  920. @end cartouche
  921. Partitioning can be applied several times, see
  922. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  923. @node Performance model example
  924. @section Performance model example
  925. To achieve good scheduling, StarPU scheduling policies need to be able to
  926. estimate in advance the duration of a task. This is done by giving to codelets a
  927. performance model. There are several kinds of performance models.
  928. @itemize
  929. @item
  930. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  931. see for instance
  932. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  933. @item
  934. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  935. given set of data input/output sizes, the performance will always be about the
  936. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  937. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  938. few different sets of data input/output sizes. StarPU will then keep record of
  939. the average time of previous executions on the various processing units, and use
  940. it as an estimation. History is done per task size, by using a hash of the input
  941. and ouput sizes as an index.
  942. It will also save it in @code{~/.starpu/sampling/codelets}
  943. for further executions, and can be observed by using the
  944. @code{starpu_perfmodel_display} command. The following is a small code example.
  945. @cartouche
  946. @smallexample
  947. static struct starpu_perfmodel_t mult_perf_model = @{
  948. .type = STARPU_HISTORY_BASED,
  949. .symbol = "mult_perf_model"
  950. @};
  951. starpu_codelet cl = @{
  952. .where = STARPU_CPU,
  953. .cpu_func = cpu_mult,
  954. .nbuffers = 3,
  955. /* for the scheduling policy to be able to use performance models */
  956. .model = &mult_perf_model
  957. @};
  958. @end smallexample
  959. @end cartouche
  960. @item
  961. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  962. type). This still assumes performance regularity, but can work with various data
  963. input sizes, by applying a*n^b+c regression over observed execution times.
  964. @end itemize
  965. How to use schedulers which can benefit from such performance model is explained
  966. in @ref{Task scheduling policy}.
  967. The same can be done for task power consumption estimation, by setting the
  968. @code{power_model} field the same way as the @code{model} field. Note: for
  969. now, the application has to give to the power consumption performance model
  970. a name which is different from the execution time performance model.
  971. @node Theoretical lower bound on execution time
  972. @section Theoretical lower bound on execution time
  973. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  974. bound for the execution time of a whole set of tasks. See for
  975. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  976. call @code{starpu_bound_start}, and after complete execution, call
  977. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  978. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  979. problem corresponding to the schedule of your tasks. Run it through
  980. @code{lp_solve} or any other linear programming solver, and that will give you a
  981. lower bound for the total execution time of your tasks. If StarPU was compiled
  982. with the glpk library installed, @code{starpu_bound_compute} can be used to
  983. solve it immediately and get the optimized minimum. Its @code{integer}
  984. parameter allows to decide whether integer resolution should be computed
  985. and returned.
  986. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  987. dependencies into account. It must be understood that the linear programming
  988. problem size is quadratic with the number of tasks and thus the time to solve it
  989. will be very long, it could be minutes for just a few dozen tasks. You should
  990. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  991. problem to MPS format and then use a better solver, @code{glpsol} might be
  992. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  993. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  994. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  995. of @code{lp_solve}. For instance, we often just use
  996. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  997. the @code{-gr} option can also be quite useful.
  998. Setting @code{deps} to 0 will only take into account the actual computations
  999. on processing units. It however still properly takes into account the varying
  1000. performances of kernels and processing units, which is quite more accurate than
  1001. just comparing StarPU performances with the fastest of the kernels being used.
  1002. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1003. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1004. tasks before less prioritized tasks, to check to which extend this results
  1005. to a less optimal solution. This increases even more computation time.
  1006. Note that for simplicity, all this however doesn't take into account data
  1007. transfers, which are assumed to be completely overlapped.
  1008. @node Insert Task Utility
  1009. @section Insert Task Utility
  1010. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1011. the creation and submission of tasks.
  1012. @deftypefun void starpu_insert_task (starpu_codelet *cl, ...)
  1013. Create and submit a task corresponding to @var{cl} with the following
  1014. arguments. The argument list must be zero-terminated.
  1015. The arguments following the codelets can be of the following types:
  1016. @itemize
  1017. @item
  1018. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1019. @item
  1020. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1021. the size of the constant;
  1022. @item
  1023. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1024. @item
  1025. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1026. argument to the callback function;
  1027. @item
  1028. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1029. @end itemize
  1030. Parameters to be passed to the codelet implementation are defined
  1031. through the type @code{STARPU_VALUE}. The function
  1032. @code{starpu_unpack_cl_args} must be called within the codelet
  1033. implementation to retrieve them.
  1034. @end deftypefun
  1035. Here the implementation of the codelet:
  1036. @smallexample
  1037. void func_cpu(void *descr[], void *_args)
  1038. @{
  1039. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1040. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1041. int ifactor;
  1042. float ffactor;
  1043. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1044. *x0 = *x0 * ifactor;
  1045. *x1 = *x1 * ffactor;
  1046. @}
  1047. starpu_codelet mycodelet = @{
  1048. .where = STARPU_CPU,
  1049. .cpu_func = func_cpu,
  1050. .nbuffers = 2
  1051. @};
  1052. @end smallexample
  1053. And the call to the @code{starpu_insert_task} wrapper:
  1054. @smallexample
  1055. starpu_insert_task(&mycodelet,
  1056. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1057. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1058. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1059. 0);
  1060. @end smallexample
  1061. The call to @code{starpu_insert_task} is equivalent to the following
  1062. code:
  1063. @smallexample
  1064. struct starpu_task *task = starpu_task_create();
  1065. task->cl = &mycodelet;
  1066. task->buffers[0].handle = data_handles[0];
  1067. task->buffers[0].mode = STARPU_RW;
  1068. task->buffers[1].handle = data_handles[1];
  1069. task->buffers[1].mode = STARPU_RW;
  1070. char *arg_buffer;
  1071. size_t arg_buffer_size;
  1072. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1073. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1074. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1075. 0);
  1076. task->cl_arg = arg_buffer;
  1077. task->cl_arg_size = arg_buffer_size;
  1078. int ret = starpu_task_submit(task);
  1079. @end smallexample
  1080. @node Debugging
  1081. @section Debugging
  1082. StarPU provides several tools to help debugging aplications. Execution traces
  1083. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1084. gdb helpers are also provided to show the whole StarPU state:
  1085. @smallexample
  1086. (gdb) source tools/gdbinit
  1087. (gdb) help starpu
  1088. @end smallexample
  1089. @node More examples
  1090. @section More examples
  1091. More examples are available in the StarPU sources in the @code{examples/}
  1092. directory. Simple examples include:
  1093. @table @asis
  1094. @item @code{incrementer/}:
  1095. Trivial incrementation test.
  1096. @item @code{basic_examples/}:
  1097. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1098. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1099. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1100. interface, and an example using the variable data interface.
  1101. @item @code{matvecmult/}:
  1102. OpenCL example from NVidia, adapted to StarPU.
  1103. @item @code{axpy/}:
  1104. AXPY CUBLAS operation adapted to StarPU.
  1105. @item @code{fortran/}:
  1106. Example of Fortran bindings.
  1107. @end table
  1108. More advanced examples include:
  1109. @table @asis
  1110. @item @code{filters/}:
  1111. Examples using filters, as shown in @ref{Partitioning Data}.
  1112. @item @code{lu/}:
  1113. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1114. @item @code{cholesky/}:
  1115. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1116. @end table
  1117. @c ---------------------------------------------------------------------
  1118. @c Performance options
  1119. @c ---------------------------------------------------------------------
  1120. @node Performance optimization
  1121. @chapter How to optimize performance with StarPU
  1122. TODO: improve!
  1123. @menu
  1124. * Data management::
  1125. * Task submission::
  1126. * Task priorities::
  1127. * Task scheduling policy::
  1128. * Task distribution vs Data transfer::
  1129. * Power-based scheduling::
  1130. * Profiling::
  1131. * CUDA-specific optimizations::
  1132. @end menu
  1133. Simply encapsulating application kernels into tasks already permits to
  1134. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1135. few additional changes are needed.
  1136. @node Data management
  1137. @section Data management
  1138. @c By default, StarPU does not enable data prefetching, because CUDA does
  1139. @c not announce when too many data transfers were scheduled and can thus block
  1140. @c unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1141. @c .
  1142. By default, StarPU leaves replicates of data wherever they were used, in case they
  1143. will be re-used by other tasks, thus saving the data transfer time. When some
  1144. task modifies some data, all the other replicates are invalidated, and only the
  1145. processing unit will have a valid replicate of the data. If the application knows
  1146. that this data will not be re-used by further tasks, it should advise StarPU to
  1147. immediately replicate it to a desired list of memory nodes (given through a
  1148. bitmask). This can be understood like the write-through mode of CPU caches.
  1149. @example
  1150. starpu_data_set_wt_mask(img_handle, 1<<0);
  1151. @end example
  1152. will for instance request to always transfer a replicate into the main memory (node
  1153. 0), as bit 0 of the write-through bitmask is being set.
  1154. When the application allocates data, whenever possible it should use the
  1155. @code{starpu_malloc} function, which will ask CUDA or
  1156. OpenCL to make the allocation itself and pin the corresponding allocated
  1157. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1158. transfer to overlap with computations.
  1159. @node Task submission
  1160. @section Task submission
  1161. To let StarPU make online optimizations, tasks should be submitted
  1162. asynchronously as much as possible. Ideally, all the tasks should be
  1163. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1164. @code{starpu_data_unregister} be done to wait for
  1165. termination. StarPU will then be able to rework the whole schedule, overlap
  1166. computation with communication, manage accelerator local memory usage, etc.
  1167. @node Task priorities
  1168. @section Task priorities
  1169. By default, StarPU will consider the tasks in the order they are submitted by
  1170. the application. If the application programmer knows that some tasks should
  1171. be performed in priority (for instance because their output is needed by many
  1172. other tasks and may thus be a bottleneck if not executed early enough), the
  1173. @code{priority} field of the task structure should be set to transmit the
  1174. priority information to StarPU.
  1175. @node Task scheduling policy
  1176. @section Task scheduling policy
  1177. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1178. because it provides correct load balance even if the application codelets do not
  1179. have performance models. If your application codelets have performance models
  1180. (@pxref{Performance model example} for examples showing how to do it),
  1181. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1182. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1183. the list of available schedulers.
  1184. @c TODO: give some details about each scheduler.
  1185. Most schedulers are based on an estimation of codelet duration on each kind
  1186. of processing unit. For this to be possible, the application programmer needs
  1187. to configure a performance model for the codelets of the application (see
  1188. @ref{Performance model example} for instance). History-based performance models
  1189. use on-line calibration. StarPU will automatically calibrate codelets
  1190. which have never been calibrated yet. To force continuing calibration, use
  1191. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1192. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1193. Note: due to CUDA limitations, to be able to measure kernel duration,
  1194. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1195. disables data transfer / computation overlapping, and should thus not be used
  1196. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1197. only if a performance-model-based scheduler is chosen.
  1198. @node Task distribution vs Data transfer
  1199. @section Task distribution vs Data transfer
  1200. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1201. thus needs to find a balance between both. The target function that the
  1202. @code{dmda} scheduler of StarPU
  1203. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1204. @code{T_execution} is the estimated execution time of the codelet (usually
  1205. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1206. latter is however estimated based on bus calibration before execution start,
  1207. i.e. with an idle machine. You can force bus re-calibration by running
  1208. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1209. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1210. This is of course imprecise, but in practice, a rough estimation already gives
  1211. the good results that a precise estimation would give.
  1212. @node Power-based scheduling
  1213. @section Power-based scheduling
  1214. If the application can provide some power performance model (through
  1215. the @code{power_model} field of the codelet structure), StarPU will
  1216. take it into account when distributing tasks. The target function that
  1217. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1218. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1219. is the estimated task consumption in Joules. To tune this parameter, use
  1220. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1221. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1222. alpha and beta to zero permits to only take into account power consumption.
  1223. This is however not sufficient to correctly optimize power: the scheduler would
  1224. simply tend to run all computations on the most energy-conservative processing
  1225. unit. To account for the consumption of the whole machine (including idle
  1226. processing units), the idle power of the machine should be given by setting
  1227. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1228. be obtained from the machine power supplier.
  1229. The power actually consumed by the total execution can be displayed by setting
  1230. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1231. @node Profiling
  1232. @section Profiling
  1233. A quick view of how many tasks each worker has executed can be obtained by setting
  1234. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1235. execution did happen on accelerators without penalizing performance with
  1236. the profiling overhead.
  1237. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1238. calling @code{starpu_profiling_status_set} from the source code.
  1239. Statistics on the execution can then be obtained by using @code{export
  1240. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1241. More details on performance feedback are provided by the next chapter.
  1242. @node CUDA-specific optimizations
  1243. @section CUDA-specific optimizations
  1244. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1245. communications and the codelet computations if the application does not use a
  1246. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1247. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1248. operations. For instance:
  1249. @example
  1250. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1251. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1252. @end example
  1253. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1254. kernels. That will lower the potential for overlapping.
  1255. @c ---------------------------------------------------------------------
  1256. @c Performance feedback
  1257. @c ---------------------------------------------------------------------
  1258. @node Performance feedback
  1259. @chapter Performance feedback
  1260. @menu
  1261. * On-line:: On-line performance feedback
  1262. * Off-line:: Off-line performance feedback
  1263. * Codelet performance:: Performance of codelets
  1264. @end menu
  1265. @node On-line
  1266. @section On-line performance feedback
  1267. @menu
  1268. * Enabling monitoring:: Enabling on-line performance monitoring
  1269. * Task feedback:: Per-task feedback
  1270. * Codelet feedback:: Per-codelet feedback
  1271. * Worker feedback:: Per-worker feedback
  1272. * Bus feedback:: Bus-related feedback
  1273. @end menu
  1274. @node Enabling monitoring
  1275. @subsection Enabling on-line performance monitoring
  1276. In order to enable online performance monitoring, the application can call
  1277. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1278. detect whether monitoring is already enabled or not by calling
  1279. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1280. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1281. can also be set to 1 to achieve the same effect.
  1282. Likewise, performance monitoring is stopped by calling
  1283. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1284. does not reset the performance counters so that the application may consult
  1285. them later on.
  1286. More details about the performance monitoring API are available in section
  1287. @ref{Profiling API}.
  1288. @node Task feedback
  1289. @subsection Per-task feedback
  1290. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1291. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1292. structure when a task terminates.
  1293. This structure is automatically destroyed when the task structure is destroyed,
  1294. either automatically or by calling @code{starpu_task_destroy}.
  1295. The @code{starpu_task_profiling_info} structure indicates the date when the
  1296. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1297. terminated (@code{end_time}), relative to the initialization of
  1298. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1299. that has executed the task (@code{workerid}).
  1300. These date are stored as @code{timespec} structures which the user may convert
  1301. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1302. function.
  1303. It it worth noting that the application may directly access this structure from
  1304. the callback executed at the end of the task. The @code{starpu_task} structure
  1305. associated to the callback currently being executed is indeed accessible with
  1306. the @code{starpu_get_current_task()} function.
  1307. @node Codelet feedback
  1308. @subsection Per-codelet feedback
  1309. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1310. an array of counters. The i-th entry of the array is incremented every time a
  1311. task implementing the codelet is executed on the i-th worker.
  1312. This array is not reinitialized when profiling is enabled or disabled.
  1313. @node Worker feedback
  1314. @subsection Per-worker feedback
  1315. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1316. function is a @code{starpu_worker_profiling_info} structure that gives
  1317. statistics about the specified worker. This structure specifies when StarPU
  1318. started collecting profiling information for that worker (@code{start_time}),
  1319. the duration of the profiling measurement interval (@code{total_time}), the
  1320. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1321. because there is no task to execute at all (@code{sleeping_time}), and the
  1322. number of tasks that were executed while profiling was enabled.
  1323. These values give an estimation of the proportion of time spent do real work,
  1324. and the time spent either sleeping because there are not enough executable
  1325. tasks or simply wasted in pure StarPU overhead.
  1326. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1327. information associated to a worker.
  1328. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1329. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1330. generate a graphic showing the evolution of these values during the time, for
  1331. the different workers.
  1332. @node Bus feedback
  1333. @subsection Bus-related feedback
  1334. TODO
  1335. @c how to enable/disable performance monitoring
  1336. @c what kind of information do we get ?
  1337. @node Off-line
  1338. @section Off-line performance feedback
  1339. @menu
  1340. * Generating traces:: Generating traces with FxT
  1341. * Gantt diagram:: Creating a Gantt Diagram
  1342. * DAG:: Creating a DAG with graphviz
  1343. * starpu-top:: Monitoring activity
  1344. @end menu
  1345. @node Generating traces
  1346. @subsection Generating traces with FxT
  1347. StarPU can use the FxT library (see
  1348. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1349. with a limited runtime overhead.
  1350. You can either get the FxT library from CVS (autotools are required):
  1351. @example
  1352. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1353. % ./bootstrap
  1354. @end example
  1355. If autotools are not available on your machine, or if you prefer to do so,
  1356. FxT's code is also available as a tarball:
  1357. @example
  1358. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1359. @end example
  1360. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1361. done following the standard procedure:
  1362. @example
  1363. % ./configure --prefix=$FXTDIR
  1364. % make
  1365. % make install
  1366. @end example
  1367. In order to have StarPU to generate traces, StarPU should be configured with
  1368. the @code{--with-fxt} option:
  1369. @example
  1370. $ ./configure --with-fxt=$FXTDIR
  1371. @end example
  1372. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1373. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1374. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1375. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1376. @code{/tmp/} directory by default, or by the directory specified by
  1377. the @code{STARPU_FXT_PREFIX} environment variable.
  1378. @node Gantt diagram
  1379. @subsection Creating a Gantt Diagram
  1380. When the FxT trace file @code{filename} has been generated, it is possible to
  1381. generate a trace in the Paje format by calling:
  1382. @example
  1383. % starpu_fxt_tool -i filename
  1384. @end example
  1385. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1386. to 1 before application execution will make StarPU do it automatically at
  1387. application shutdown.
  1388. This will create a @code{paje.trace} file in the current directory that can be
  1389. inspected with the ViTE trace visualizing open-source tool. More information
  1390. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1391. possible to open the @code{paje.trace} file with ViTE by using the following
  1392. command:
  1393. @example
  1394. % vite paje.trace
  1395. @end example
  1396. @node DAG
  1397. @subsection Creating a DAG with graphviz
  1398. When the FxT trace file @code{filename} has been generated, it is possible to
  1399. generate a task graph in the DOT format by calling:
  1400. @example
  1401. $ starpu_fxt_tool -i filename
  1402. @end example
  1403. This will create a @code{dag.dot} file in the current directory. This file is a
  1404. task graph described using the DOT language. It is possible to get a
  1405. graphical output of the graph by using the graphviz library:
  1406. @example
  1407. $ dot -Tpdf dag.dot -o output.pdf
  1408. @end example
  1409. @node starpu-top
  1410. @subsection Monitoring activity
  1411. When the FxT trace file @code{filename} has been generated, it is possible to
  1412. generate a activity trace by calling:
  1413. @example
  1414. $ starpu_fxt_tool -i filename
  1415. @end example
  1416. This will create an @code{activity.data} file in the current
  1417. directory. A profile of the application showing the activity of StarPU
  1418. during the execution of the program can be generated:
  1419. @example
  1420. $ starpu_top.sh activity.data
  1421. @end example
  1422. This will create a file named @code{activity.eps} in the current directory.
  1423. This picture is composed of two parts.
  1424. The first part shows the activity of the different workers. The green sections
  1425. indicate which proportion of the time was spent executed kernels on the
  1426. processing unit. The red sections indicate the proportion of time spent in
  1427. StartPU: an important overhead may indicate that the granularity may be too
  1428. low, and that bigger tasks may be appropriate to use the processing unit more
  1429. efficiently. The black sections indicate that the processing unit was blocked
  1430. because there was no task to process: this may indicate a lack of parallelism
  1431. which may be alleviated by creating more tasks when it is possible.
  1432. The second part of the @code{activity.eps} picture is a graph showing the
  1433. evolution of the number of tasks available in the system during the execution.
  1434. Ready tasks are shown in black, and tasks that are submitted but not
  1435. schedulable yet are shown in grey.
  1436. @node Codelet performance
  1437. @section Performance of codelets
  1438. The performance model of codelets can be examined by using the
  1439. @code{starpu_perfmodel_display} tool:
  1440. @example
  1441. $ starpu_perfmodel_display -l
  1442. file: <malloc_pinned.hannibal>
  1443. file: <starpu_slu_lu_model_21.hannibal>
  1444. file: <starpu_slu_lu_model_11.hannibal>
  1445. file: <starpu_slu_lu_model_22.hannibal>
  1446. file: <starpu_slu_lu_model_12.hannibal>
  1447. @end example
  1448. Here, the codelets of the lu example are available. We can examine the
  1449. performance of the 22 kernel:
  1450. @example
  1451. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1452. performance model for cpu
  1453. # hash size mean dev n
  1454. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1455. performance model for cuda_0
  1456. # hash size mean dev n
  1457. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1458. performance model for cuda_1
  1459. # hash size mean dev n
  1460. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1461. performance model for cuda_2
  1462. # hash size mean dev n
  1463. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1464. @end example
  1465. We can see that for the given size, over a sample of a few hundreds of
  1466. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1467. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1468. CPUs.
  1469. @c ---------------------------------------------------------------------
  1470. @c MPI support
  1471. @c ---------------------------------------------------------------------
  1472. @node StarPU MPI support
  1473. @chapter StarPU MPI support
  1474. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1475. @c ---------------------------------------------------------------------
  1476. @c Configuration options
  1477. @c ---------------------------------------------------------------------
  1478. @node Configuring StarPU
  1479. @chapter Configuring StarPU
  1480. @menu
  1481. * Compilation configuration::
  1482. * Execution configuration through environment variables::
  1483. @end menu
  1484. @node Compilation configuration
  1485. @section Compilation configuration
  1486. The following arguments can be given to the @code{configure} script.
  1487. @menu
  1488. * Common configuration::
  1489. * Configuring workers::
  1490. * Advanced configuration::
  1491. @end menu
  1492. @node Common configuration
  1493. @subsection Common configuration
  1494. @menu
  1495. * --enable-debug::
  1496. * --enable-fast::
  1497. * --enable-verbose::
  1498. * --enable-coverage::
  1499. @end menu
  1500. @node --enable-debug
  1501. @subsubsection @code{--enable-debug}
  1502. @table @asis
  1503. @item @emph{Description}:
  1504. Enable debugging messages.
  1505. @end table
  1506. @node --enable-fast
  1507. @subsubsection @code{--enable-fast}
  1508. @table @asis
  1509. @item @emph{Description}:
  1510. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1511. @end table
  1512. @node --enable-verbose
  1513. @subsubsection @code{--enable-verbose}
  1514. @table @asis
  1515. @item @emph{Description}:
  1516. Augment the verbosity of the debugging messages. This can be disabled
  1517. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1518. any value.
  1519. @smallexample
  1520. % STARPU_SILENT=1 ./vector_scal
  1521. @end smallexample
  1522. @end table
  1523. @node --enable-coverage
  1524. @subsubsection @code{--enable-coverage}
  1525. @table @asis
  1526. @item @emph{Description}:
  1527. Enable flags for the @code{gcov} coverage tool.
  1528. @end table
  1529. @node Configuring workers
  1530. @subsection Configuring workers
  1531. @menu
  1532. * --enable-nmaxcpus::
  1533. * --disable-cpu::
  1534. * --enable-maxcudadev::
  1535. * --disable-cuda::
  1536. * --with-cuda-dir::
  1537. * --with-cuda-include-dir::
  1538. * --with-cuda-lib-dir::
  1539. * --enable-maxopencldev::
  1540. * --disable-opencl::
  1541. * --with-opencl-dir::
  1542. * --with-opencl-include-dir::
  1543. * --with-opencl-lib-dir::
  1544. * --enable-gordon::
  1545. * --with-gordon-dir::
  1546. @end menu
  1547. @node --enable-nmaxcpus
  1548. @subsubsection @code{--enable-nmaxcpus=<number>}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Defines the maximum number of CPU cores that StarPU will support, then
  1552. available as the @code{STARPU_NMAXCPUS} macro.
  1553. @end table
  1554. @node --disable-cpu
  1555. @subsubsection @code{--disable-cpu}
  1556. @table @asis
  1557. @item @emph{Description}:
  1558. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1559. @end table
  1560. @node --enable-maxcudadev
  1561. @subsubsection @code{--enable-maxcudadev=<number>}
  1562. @table @asis
  1563. @item @emph{Description}:
  1564. Defines the maximum number of CUDA devices that StarPU will support, then
  1565. available as the @code{STARPU_MAXCUDADEVS} macro.
  1566. @end table
  1567. @node --disable-cuda
  1568. @subsubsection @code{--disable-cuda}
  1569. @table @asis
  1570. @item @emph{Description}:
  1571. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1572. @end table
  1573. @node --with-cuda-dir
  1574. @subsubsection @code{--with-cuda-dir=<path>}
  1575. @table @asis
  1576. @item @emph{Description}:
  1577. Specify the directory where CUDA is installed. This directory should notably contain
  1578. @code{include/cuda.h}.
  1579. @end table
  1580. @node --with-cuda-include-dir
  1581. @subsubsection @code{--with-cuda-include-dir=<path>}
  1582. @table @asis
  1583. @item @emph{Description}:
  1584. Specify the directory where CUDA headers are installed. This directory should
  1585. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1586. value given to @code{--with-cuda-dir}.
  1587. @end table
  1588. @node --with-cuda-lib-dir
  1589. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1590. @table @asis
  1591. @item @emph{Description}:
  1592. Specify the directory where the CUDA library is installed. This directory should
  1593. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1594. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1595. @end table
  1596. @node --enable-maxopencldev
  1597. @subsubsection @code{--enable-maxopencldev=<number>}
  1598. @table @asis
  1599. @item @emph{Description}:
  1600. Defines the maximum number of OpenCL devices that StarPU will support, then
  1601. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1602. @end table
  1603. @node --disable-opencl
  1604. @subsubsection @code{--disable-opencl}
  1605. @table @asis
  1606. @item @emph{Description}:
  1607. Disable the use of OpenCL, even if the SDK is detected.
  1608. @end table
  1609. @node --with-opencl-dir
  1610. @subsubsection @code{--with-opencl-dir=<path>}
  1611. @table @asis
  1612. @item @emph{Description}:
  1613. Specify the location of the OpenCL SDK. This directory should notably contain
  1614. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1615. @end table
  1616. @node --with-opencl-include-dir
  1617. @subsubsection @code{--with-opencl-include-dir=<path>}
  1618. @table @asis
  1619. @item @emph{Description}:
  1620. Specify the location of OpenCL headers. This directory should notably contain
  1621. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1622. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1623. @end table
  1624. @node --with-opencl-lib-dir
  1625. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1626. @table @asis
  1627. @item @emph{Description}:
  1628. Specify the location of the OpenCL library. This directory should notably
  1629. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1630. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1631. @end table
  1632. @node --enable-gordon
  1633. @subsubsection @code{--enable-gordon}
  1634. @table @asis
  1635. @item @emph{Description}:
  1636. Enable the use of the Gordon runtime for Cell SPUs.
  1637. @c TODO: rather default to enabled when detected
  1638. @end table
  1639. @node --with-gordon-dir
  1640. @subsubsection @code{--with-gordon-dir=<path>}
  1641. @table @asis
  1642. @item @emph{Description}:
  1643. Specify the location of the Gordon SDK.
  1644. @end table
  1645. @node Advanced configuration
  1646. @subsection Advanced configuration
  1647. @menu
  1648. * --enable-perf-debug::
  1649. * --enable-model-debug::
  1650. * --enable-stats::
  1651. * --enable-maxbuffers::
  1652. * --enable-allocation-cache::
  1653. * --enable-opengl-render::
  1654. * --enable-blas-lib::
  1655. * --with-magma::
  1656. * --with-fxt::
  1657. * --with-perf-model-dir::
  1658. * --with-mpicc::
  1659. * --with-goto-dir::
  1660. * --with-atlas-dir::
  1661. * --with-mkl-cflags::
  1662. * --with-mkl-ldflags::
  1663. @end menu
  1664. @node --enable-perf-debug
  1665. @subsubsection @code{--enable-perf-debug}
  1666. @table @asis
  1667. @item @emph{Description}:
  1668. Enable performance debugging.
  1669. @end table
  1670. @node --enable-model-debug
  1671. @subsubsection @code{--enable-model-debug}
  1672. @table @asis
  1673. @item @emph{Description}:
  1674. Enable performance model debugging.
  1675. @end table
  1676. @node --enable-stats
  1677. @subsubsection @code{--enable-stats}
  1678. @table @asis
  1679. @item @emph{Description}:
  1680. Enable statistics.
  1681. @end table
  1682. @node --enable-maxbuffers
  1683. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1684. @table @asis
  1685. @item @emph{Description}:
  1686. Define the maximum number of buffers that tasks will be able to take
  1687. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1688. @end table
  1689. @node --enable-allocation-cache
  1690. @subsubsection @code{--enable-allocation-cache}
  1691. @table @asis
  1692. @item @emph{Description}:
  1693. Enable the use of a data allocation cache to avoid the cost of it with
  1694. CUDA. Still experimental.
  1695. @end table
  1696. @node --enable-opengl-render
  1697. @subsubsection @code{--enable-opengl-render}
  1698. @table @asis
  1699. @item @emph{Description}:
  1700. Enable the use of OpenGL for the rendering of some examples.
  1701. @c TODO: rather default to enabled when detected
  1702. @end table
  1703. @node --enable-blas-lib
  1704. @subsubsection @code{--enable-blas-lib=<name>}
  1705. @table @asis
  1706. @item @emph{Description}:
  1707. Specify the blas library to be used by some of the examples. The
  1708. library has to be 'atlas' or 'goto'.
  1709. @end table
  1710. @node --with-magma
  1711. @subsubsection @code{--with-magma=<path>}
  1712. @table @asis
  1713. @item @emph{Description}:
  1714. Specify where magma is installed. This directory should notably contain
  1715. @code{include/magmablas.h}.
  1716. @end table
  1717. @node --with-fxt
  1718. @subsubsection @code{--with-fxt=<path>}
  1719. @table @asis
  1720. @item @emph{Description}:
  1721. Specify the location of FxT (for generating traces and rendering them
  1722. using ViTE). This directory should notably contain
  1723. @code{include/fxt/fxt.h}.
  1724. @c TODO add ref to other section
  1725. @end table
  1726. @node --with-perf-model-dir
  1727. @subsubsection @code{--with-perf-model-dir=<dir>}
  1728. @table @asis
  1729. @item @emph{Description}:
  1730. Specify where performance models should be stored (instead of defaulting to the
  1731. current user's home).
  1732. @end table
  1733. @node --with-mpicc
  1734. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1735. @table @asis
  1736. @item @emph{Description}:
  1737. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1738. @end table
  1739. @node --with-goto-dir
  1740. @subsubsection @code{--with-goto-dir=<dir>}
  1741. @table @asis
  1742. @item @emph{Description}:
  1743. Specify the location of GotoBLAS.
  1744. @end table
  1745. @node --with-atlas-dir
  1746. @subsubsection @code{--with-atlas-dir=<dir>}
  1747. @table @asis
  1748. @item @emph{Description}:
  1749. Specify the location of ATLAS. This directory should notably contain
  1750. @code{include/cblas.h}.
  1751. @end table
  1752. @node --with-mkl-cflags
  1753. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1754. @table @asis
  1755. @item @emph{Description}:
  1756. Specify the compilation flags for the MKL Library.
  1757. @end table
  1758. @node --with-mkl-ldflags
  1759. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1760. @table @asis
  1761. @item @emph{Description}:
  1762. Specify the linking flags for the MKL Library. Note that the
  1763. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1764. website provides a script to determine the linking flags.
  1765. @end table
  1766. @c ---------------------------------------------------------------------
  1767. @c Environment variables
  1768. @c ---------------------------------------------------------------------
  1769. @node Execution configuration through environment variables
  1770. @section Execution configuration through environment variables
  1771. @menu
  1772. * Workers:: Configuring workers
  1773. * Scheduling:: Configuring the Scheduling engine
  1774. * Misc:: Miscellaneous and debug
  1775. @end menu
  1776. Note: the values given in @code{starpu_conf} structure passed when
  1777. calling @code{starpu_init} will override the values of the environment
  1778. variables.
  1779. @node Workers
  1780. @subsection Configuring workers
  1781. @menu
  1782. * STARPU_NCPUS:: Number of CPU workers
  1783. * STARPU_NCUDA:: Number of CUDA workers
  1784. * STARPU_NOPENCL:: Number of OpenCL workers
  1785. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1786. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1787. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1788. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1789. @end menu
  1790. @node STARPU_NCPUS
  1791. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1792. @table @asis
  1793. @item @emph{Description}:
  1794. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1795. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1796. the accelerators.
  1797. @end table
  1798. @node STARPU_NCUDA
  1799. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1800. @table @asis
  1801. @item @emph{Description}:
  1802. Specify the number of CUDA devices that StarPU can use. If
  1803. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1804. possible to select which CUDA devices should be used by the means of the
  1805. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1806. create as many CUDA workers as there are CUDA devices.
  1807. @end table
  1808. @node STARPU_NOPENCL
  1809. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1810. @table @asis
  1811. @item @emph{Description}:
  1812. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1813. @end table
  1814. @node STARPU_NGORDON
  1815. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1816. @table @asis
  1817. @item @emph{Description}:
  1818. Specify the number of SPUs that StarPU can use.
  1819. @end table
  1820. @node STARPU_WORKERS_CPUID
  1821. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1822. @table @asis
  1823. @item @emph{Description}:
  1824. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1825. specifies on which logical CPU the different workers should be
  1826. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1827. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1828. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1829. determined by the OS, or provided by the @code{hwloc} library in case it is
  1830. available.
  1831. Note that the first workers correspond to the CUDA workers, then come the
  1832. OpenCL and the SPU, and finally the CPU workers. For example if
  1833. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1834. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1835. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1836. the logical CPUs #1 and #3 will be used by the CPU workers.
  1837. If the number of workers is larger than the array given in
  1838. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1839. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1840. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1841. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1842. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1843. @end table
  1844. @node STARPU_WORKERS_CUDAID
  1845. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1846. @table @asis
  1847. @item @emph{Description}:
  1848. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1849. possible to select which CUDA devices should be used by StarPU. On a machine
  1850. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1851. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1852. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1853. the one reported by CUDA).
  1854. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1855. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1856. @end table
  1857. @node STARPU_WORKERS_OPENCLID
  1858. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1859. @table @asis
  1860. @item @emph{Description}:
  1861. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1862. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1863. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1864. @end table
  1865. @node Scheduling
  1866. @subsection Configuring the Scheduling engine
  1867. @menu
  1868. * STARPU_SCHED:: Scheduling policy
  1869. * STARPU_CALIBRATE:: Calibrate performance models
  1870. * STARPU_PREFETCH:: Use data prefetch
  1871. * STARPU_SCHED_ALPHA:: Computation factor
  1872. * STARPU_SCHED_BETA:: Communication factor
  1873. @end menu
  1874. @node STARPU_SCHED
  1875. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1876. @table @asis
  1877. @item @emph{Description}:
  1878. This chooses between the different scheduling policies proposed by StarPU: work
  1879. random, stealing, greedy, with performance models, etc.
  1880. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1881. @end table
  1882. @node STARPU_CALIBRATE
  1883. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1884. @table @asis
  1885. @item @emph{Description}:
  1886. If this variable is set to 1, the performance models are calibrated during
  1887. the execution. If it is set to 2, the previous values are dropped to restart
  1888. calibration from scratch. Setting this variable to 0 disable calibration, this
  1889. is the default behaviour.
  1890. Note: this currently only applies to dm, dmda and heft scheduling policies.
  1891. @end table
  1892. @node STARPU_PREFETCH
  1893. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1894. @table @asis
  1895. @item @emph{Description}:
  1896. This variable indicates whether data prefetching should be enabled (0 means
  1897. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1898. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1899. advance, so that data is already present on the GPU when the task starts. As a
  1900. result, computation and data transfers are overlapped.
  1901. Note that prefetching is enabled by default in StarPU.
  1902. @end table
  1903. @node STARPU_SCHED_ALPHA
  1904. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1905. @table @asis
  1906. @item @emph{Description}:
  1907. To estimate the cost of a task StarPU takes into account the estimated
  1908. computation time (obtained thanks to performance models). The alpha factor is
  1909. the coefficient to be applied to it before adding it to the communication part.
  1910. @end table
  1911. @node STARPU_SCHED_BETA
  1912. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1913. @table @asis
  1914. @item @emph{Description}:
  1915. To estimate the cost of a task StarPU takes into account the estimated
  1916. data transfer time (obtained thanks to performance models). The beta factor is
  1917. the coefficient to be applied to it before adding it to the computation part.
  1918. @end table
  1919. @node Misc
  1920. @subsection Miscellaneous and debug
  1921. @menu
  1922. * STARPU_SILENT:: Disable verbose mode
  1923. * STARPU_LOGFILENAME:: Select debug file name
  1924. * STARPU_FXT_PREFIX:: FxT trace location
  1925. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1926. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1927. @end menu
  1928. @node STARPU_SILENT
  1929. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1930. @table @asis
  1931. @item @emph{Description}:
  1932. This variable allows to disable verbose mode at runtime when StarPU
  1933. has been configured with the option @code{--enable-verbose}.
  1934. @end table
  1935. @node STARPU_LOGFILENAME
  1936. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1937. @table @asis
  1938. @item @emph{Description}:
  1939. This variable specifies in which file the debugging output should be saved to.
  1940. @end table
  1941. @node STARPU_FXT_PREFIX
  1942. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1943. @table @asis
  1944. @item @emph{Description}
  1945. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1946. @end table
  1947. @node STARPU_LIMIT_GPU_MEM
  1948. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1949. @table @asis
  1950. @item @emph{Description}
  1951. This variable specifies the maximum number of megabytes that should be
  1952. available to the application on each GPUs. In case this value is smaller than
  1953. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1954. on the device. This variable is intended to be used for experimental purposes
  1955. as it emulates devices that have a limited amount of memory.
  1956. @end table
  1957. @node STARPU_GENERATE_TRACE
  1958. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1959. @table @asis
  1960. @item @emph{Description}
  1961. When set to 1, this variable indicates that StarPU should automatically
  1962. generate a Paje trace when starpu_shutdown is called.
  1963. @end table
  1964. @c ---------------------------------------------------------------------
  1965. @c StarPU API
  1966. @c ---------------------------------------------------------------------
  1967. @node StarPU API
  1968. @chapter StarPU API
  1969. @menu
  1970. * Initialization and Termination:: Initialization and Termination methods
  1971. * Workers' Properties:: Methods to enumerate workers' properties
  1972. * Data Library:: Methods to manipulate data
  1973. * Data Interfaces::
  1974. * Data Partition::
  1975. * Codelets and Tasks:: Methods to construct tasks
  1976. * Explicit Dependencies:: Explicit Dependencies
  1977. * Implicit Data Dependencies:: Implicit Data Dependencies
  1978. * Performance Model API::
  1979. * Profiling API:: Profiling API
  1980. * CUDA extensions:: CUDA extensions
  1981. * OpenCL extensions:: OpenCL extensions
  1982. * Cell extensions:: Cell extensions
  1983. * Miscellaneous helpers::
  1984. @end menu
  1985. @node Initialization and Termination
  1986. @section Initialization and Termination
  1987. @menu
  1988. * starpu_init:: Initialize StarPU
  1989. * struct starpu_conf:: StarPU runtime configuration
  1990. * starpu_conf_init:: Initialize starpu_conf structure
  1991. * starpu_shutdown:: Terminate StarPU
  1992. @end menu
  1993. @node starpu_init
  1994. @subsection @code{starpu_init} -- Initialize StarPU
  1995. @table @asis
  1996. @item @emph{Description}:
  1997. This is StarPU initialization method, which must be called prior to any other
  1998. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1999. policy, number of cores, ...) by passing a non-null argument. Default
  2000. configuration is used if the passed argument is @code{NULL}.
  2001. @item @emph{Return value}:
  2002. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2003. indicates that no worker was available (so that StarPU was not initialized).
  2004. @item @emph{Prototype}:
  2005. @code{int starpu_init(struct starpu_conf *conf);}
  2006. @end table
  2007. @node struct starpu_conf
  2008. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2009. @table @asis
  2010. @item @emph{Description}:
  2011. This structure is passed to the @code{starpu_init} function in order
  2012. to configure StarPU.
  2013. When the default value is used, StarPU automatically selects the number
  2014. of processing units and takes the default scheduling policy. This parameter
  2015. overwrites the equivalent environment variables.
  2016. @item @emph{Fields}:
  2017. @table @asis
  2018. @item @code{sched_policy_name} (default = NULL):
  2019. This is the name of the scheduling policy. This can also be specified with the
  2020. @code{STARPU_SCHED} environment variable.
  2021. @item @code{sched_policy} (default = NULL):
  2022. This is the definition of the scheduling policy. This field is ignored
  2023. if @code{sched_policy_name} is set.
  2024. @item @code{ncpus} (default = -1):
  2025. This is the number of CPU cores that StarPU can use. This can also be
  2026. specified with the @code{STARPU_NCPUS} environment variable.
  2027. @item @code{ncuda} (default = -1):
  2028. This is the number of CUDA devices that StarPU can use. This can also be
  2029. specified with the @code{STARPU_NCUDA} environment variable.
  2030. @item @code{nopencl} (default = -1):
  2031. This is the number of OpenCL devices that StarPU can use. This can also be
  2032. specified with the @code{STARPU_NOPENCL} environment variable.
  2033. @item @code{nspus} (default = -1):
  2034. This is the number of Cell SPUs that StarPU can use. This can also be
  2035. specified with the @code{STARPU_NGORDON} environment variable.
  2036. @item @code{use_explicit_workers_bindid} (default = 0)
  2037. If this flag is set, the @code{workers_bindid} array indicates where the
  2038. different workers are bound, otherwise StarPU automatically selects where to
  2039. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2040. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2041. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2042. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2043. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2044. where to bind the different workers. The i-th entry of the
  2045. @code{workers_bindid} indicates the logical identifier of the processor which
  2046. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2047. either determined by the OS, or provided by the @code{hwloc} library in case it
  2048. is available.
  2049. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2050. ignored.
  2051. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2052. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2053. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2054. CUDA devices in a round-robin fashion.
  2055. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2056. ignored.
  2057. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2058. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2059. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2060. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2061. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2062. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2063. OpenCL devices in a round-robin fashion.
  2064. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2065. @item @code{calibrate} (default = 0):
  2066. If this flag is set, StarPU will calibrate the performance models when
  2067. executing tasks. If this value is equal to -1, the default value is used. The
  2068. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2069. variable when it is set.
  2070. @end table
  2071. @end table
  2072. @node starpu_conf_init
  2073. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2074. @table @asis
  2075. This function initializes the @code{starpu_conf} structure passed as argument
  2076. with the default values. In case some configuration parameters are already
  2077. specified through environment variables, @code{starpu_conf_init} initializes
  2078. the fields of the structure according to the environment variables. For
  2079. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2080. @code{.ncuda} field of the structure passed as argument.
  2081. @item @emph{Return value}:
  2082. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2083. indicates that the argument was NULL.
  2084. @item @emph{Prototype}:
  2085. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2086. @end table
  2087. @node starpu_shutdown
  2088. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2089. @table @asis
  2090. @item @emph{Description}:
  2091. This is StarPU termination method. It must be called at the end of the
  2092. application: statistics and other post-mortem debugging information are not
  2093. guaranteed to be available until this method has been called.
  2094. @item @emph{Prototype}:
  2095. @code{void starpu_shutdown(void);}
  2096. @end table
  2097. @node Workers' Properties
  2098. @section Workers' Properties
  2099. @menu
  2100. * starpu_worker_get_count:: Get the number of processing units
  2101. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2102. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2103. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2104. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2105. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2106. * starpu_worker_get_id:: Get the identifier of the current worker
  2107. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2108. * starpu_worker_get_devid:: Get the device identifier of a worker
  2109. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2110. * starpu_worker_get_name:: Get the name of a worker
  2111. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2112. @end menu
  2113. @node starpu_worker_get_count
  2114. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2115. @table @asis
  2116. @item @emph{Description}:
  2117. This function returns the number of workers (i.e. processing units executing
  2118. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2119. @item @emph{Prototype}:
  2120. @code{unsigned starpu_worker_get_count(void);}
  2121. @end table
  2122. @node starpu_worker_get_count_by_type
  2123. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2124. @table @asis
  2125. @item @emph{Description}:
  2126. Returns the number of workers of the type indicated by the argument. A positive
  2127. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2128. the type is not valid otherwise.
  2129. @item @emph{Prototype}:
  2130. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2131. @end table
  2132. @node starpu_cpu_worker_get_count
  2133. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2134. @table @asis
  2135. @item @emph{Description}:
  2136. This function returns the number of CPUs controlled by StarPU. The returned
  2137. value should be at most @code{STARPU_NMAXCPUS}.
  2138. @item @emph{Prototype}:
  2139. @code{unsigned starpu_cpu_worker_get_count(void);}
  2140. @end table
  2141. @node starpu_cuda_worker_get_count
  2142. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2143. @table @asis
  2144. @item @emph{Description}:
  2145. This function returns the number of CUDA devices controlled by StarPU. The returned
  2146. value should be at most @code{STARPU_MAXCUDADEVS}.
  2147. @item @emph{Prototype}:
  2148. @code{unsigned starpu_cuda_worker_get_count(void);}
  2149. @end table
  2150. @node starpu_opencl_worker_get_count
  2151. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2152. @table @asis
  2153. @item @emph{Description}:
  2154. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2155. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2156. @item @emph{Prototype}:
  2157. @code{unsigned starpu_opencl_worker_get_count(void);}
  2158. @end table
  2159. @node starpu_spu_worker_get_count
  2160. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2161. @table @asis
  2162. @item @emph{Description}:
  2163. This function returns the number of Cell SPUs controlled by StarPU.
  2164. @item @emph{Prototype}:
  2165. @code{unsigned starpu_opencl_worker_get_count(void);}
  2166. @end table
  2167. @node starpu_worker_get_id
  2168. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2169. @table @asis
  2170. @item @emph{Description}:
  2171. This function returns the identifier of the worker associated to the calling
  2172. thread. The returned value is either -1 if the current context is not a StarPU
  2173. worker (i.e. when called from the application outside a task or a callback), or
  2174. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2175. @item @emph{Prototype}:
  2176. @code{int starpu_worker_get_id(void);}
  2177. @end table
  2178. @node starpu_worker_get_ids_by_type
  2179. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2180. @table @asis
  2181. @item @emph{Description}:
  2182. Fill the workerids array with the identifiers of the workers that have the type
  2183. indicated in the first argument. The maxsize argument indicates the size of the
  2184. workids array. The returned value gives the number of identifiers that were put
  2185. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2186. workers with the appropriate type: in that case, the array is filled with the
  2187. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2188. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2189. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2190. @item @emph{Prototype}:
  2191. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2192. @end table
  2193. @node starpu_worker_get_devid
  2194. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2195. @table @asis
  2196. @item @emph{Description}:
  2197. This functions returns the device id of the worker associated to an identifier
  2198. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2199. CUDA worker, this device identifier is the logical device identifier exposed by
  2200. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2201. identifier of a CPU worker is the logical identifier of the core on which the
  2202. worker was bound; this identifier is either provided by the OS or by the
  2203. @code{hwloc} library in case it is available.
  2204. @item @emph{Prototype}:
  2205. @code{int starpu_worker_get_devid(int id);}
  2206. @end table
  2207. @node starpu_worker_get_type
  2208. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. This function returns the type of worker associated to an identifier (as
  2212. returned by the @code{starpu_worker_get_id} function). The returned value
  2213. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2214. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2215. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2216. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2217. identifier is unspecified.
  2218. @item @emph{Prototype}:
  2219. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2220. @end table
  2221. @node starpu_worker_get_name
  2222. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. StarPU associates a unique human readable string to each processing unit. This
  2226. function copies at most the @code{maxlen} first bytes of the unique string
  2227. associated to a worker identified by its identifier @code{id} into the
  2228. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2229. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2230. function on an invalid identifier results in an unspecified behaviour.
  2231. @item @emph{Prototype}:
  2232. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2233. @end table
  2234. @node starpu_worker_get_memory_node
  2235. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2236. @table @asis
  2237. @item @emph{Description}:
  2238. This function returns the identifier of the memory node associated to the
  2239. worker identified by @code{workerid}.
  2240. @item @emph{Prototype}:
  2241. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2242. @end table
  2243. @node Data Library
  2244. @section Data Library
  2245. This section describes the data management facilities provided by StarPU.
  2246. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2247. design their own data interfaces if required.
  2248. @menu
  2249. * starpu_malloc:: Allocate data and pin it
  2250. * starpu_access_mode:: Data access mode
  2251. * unsigned memory_node:: Memory node
  2252. * starpu_data_handle:: StarPU opaque data handle
  2253. * void *interface:: StarPU data interface
  2254. * starpu_data_register:: Register a piece of data to StarPU
  2255. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2256. * starpu_data_invalidate:: Invalidate all data replicates
  2257. * starpu_data_acquire:: Access registered data from the application
  2258. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2259. * starpu_data_release:: Release registered data from the application
  2260. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2261. @end menu
  2262. @node starpu_malloc
  2263. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2264. @table @asis
  2265. @item @emph{Description}:
  2266. This function allocates data of the given size. It will also try to pin it in
  2267. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2268. thus permit data transfer and computation overlapping. The allocated buffer must
  2269. be freed thanks to the @code{starpu_free} function.
  2270. @item @emph{Prototype}:
  2271. @code{int starpu_malloc(void **A, size_t dim);}
  2272. @end table
  2273. @node starpu_access_mode
  2274. @subsection @code{starpu_access_mode} -- Data access mode
  2275. This datatype describes a data access mode. The different available modes are:
  2276. @table @asis
  2277. @table @asis
  2278. @item @code{STARPU_R} read-only mode.
  2279. @item @code{STARPU_W} write-only mode.
  2280. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2281. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2282. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2283. @end table
  2284. @end table
  2285. @node unsigned memory_node
  2286. @subsection @code{unsigned memory_node} -- Memory node
  2287. @table @asis
  2288. @item @emph{Description}:
  2289. Every worker is associated to a memory node which is a logical abstraction of
  2290. the address space from which the processing unit gets its data. For instance,
  2291. the memory node associated to the different CPU workers represents main memory
  2292. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2293. Every memory node is identified by a logical index which is accessible from the
  2294. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2295. to StarPU, the specified memory node indicates where the piece of data
  2296. initially resides (we also call this memory node the home node of a piece of
  2297. data).
  2298. @end table
  2299. @node starpu_data_handle
  2300. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2301. @table @asis
  2302. @item @emph{Description}:
  2303. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2304. data. Once a piece of data has been registered to StarPU, it is associated to a
  2305. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2306. over the entire machine, so that we can maintain data consistency and locate
  2307. data replicates for instance.
  2308. @end table
  2309. @node void *interface
  2310. @subsection @code{void *interface} -- StarPU data interface
  2311. @table @asis
  2312. @item @emph{Description}:
  2313. Data management is done at a high-level in StarPU: rather than accessing a mere
  2314. list of contiguous buffers, the tasks may manipulate data that are described by
  2315. a high-level construct which we call data interface.
  2316. An example of data interface is the "vector" interface which describes a
  2317. contiguous data array on a spefic memory node. This interface is a simple
  2318. structure containing the number of elements in the array, the size of the
  2319. elements, and the address of the array in the appropriate address space (this
  2320. address may be invalid if there is no valid copy of the array in the memory
  2321. node). More informations on the data interfaces provided by StarPU are
  2322. given in @ref{Data Interfaces}.
  2323. When a piece of data managed by StarPU is used by a task, the task
  2324. implementation is given a pointer to an interface describing a valid copy of
  2325. the data that is accessible from the current processing unit.
  2326. @end table
  2327. @node starpu_data_register
  2328. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2329. @table @asis
  2330. @item @emph{Description}:
  2331. Register a piece of data into the handle located at the @code{handleptr}
  2332. address. The @code{interface} buffer contains the initial description of the
  2333. data in the home node. The @code{ops} argument is a pointer to a structure
  2334. describing the different methods used to manipulate this type of interface. See
  2335. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2336. If @code{home_node} is -1, StarPU will automatically
  2337. allocate the memory when it is used for the
  2338. first time in write-only mode. Once such data handle has been automatically
  2339. allocated, it is possible to access it using any access mode.
  2340. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2341. matrix) which can be registered by the means of helper functions (e.g.
  2342. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2343. @item @emph{Prototype}:
  2344. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2345. uint32_t home_node,
  2346. void *interface,
  2347. struct starpu_data_interface_ops_t *ops);}
  2348. @end table
  2349. @node starpu_data_unregister
  2350. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2351. @table @asis
  2352. @item @emph{Description}:
  2353. This function unregisters a data handle from StarPU. If the data was
  2354. automatically allocated by StarPU because the home node was -1, all
  2355. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2356. is put back into the home node in the buffer that was initially registered.
  2357. Using a data handle that has been unregistered from StarPU results in an
  2358. undefined behaviour.
  2359. @item @emph{Prototype}:
  2360. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2361. @end table
  2362. @node starpu_data_invalidate
  2363. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2364. @table @asis
  2365. @item @emph{Description}:
  2366. Destroy all replicates of the data handle. After data invalidation, the first
  2367. access to the handle must be performed in write-only mode. Accessing an
  2368. invalidated data in read-mode results in undefined behaviour.
  2369. @item @emph{Prototype}:
  2370. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2371. @end table
  2372. @c TODO create a specific sections about user interaction with the DSM ?
  2373. @node starpu_data_acquire
  2374. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2375. @table @asis
  2376. @item @emph{Description}:
  2377. The application must call this function prior to accessing registered data from
  2378. main memory outside tasks. StarPU ensures that the application will get an
  2379. up-to-date copy of the data in main memory located where the data was
  2380. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2381. be consistent with the access mode specified in the @code{mode} argument.
  2382. @code{starpu_data_release} must be called once the application does not need to
  2383. access the piece of data anymore. Note that implicit data
  2384. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2385. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2386. the data, unless that they have not been disabled explictly by calling
  2387. @code{starpu_data_set_default_sequential_consistency_flag} or
  2388. @code{starpu_data_set_sequential_consistency_flag}.
  2389. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2390. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2391. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2392. @item @emph{Prototype}:
  2393. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2394. @end table
  2395. @node starpu_data_acquire_cb
  2396. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2397. @table @asis
  2398. @item @emph{Description}:
  2399. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2400. @code{starpu_data_release}. When the data specified in the first argument is
  2401. available in the appropriate access mode, the callback function is executed.
  2402. The application may access the requested data during the execution of this
  2403. callback. The callback function must call @code{starpu_data_release} once the
  2404. application does not need to access the piece of data anymore.
  2405. Note that implicit data dependencies are also enforced by
  2406. @code{starpu_data_acquire_cb} in case they are enabled.
  2407. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2408. be called from task callbacks. Upon successful completion, this function
  2409. returns 0.
  2410. @item @emph{Prototype}:
  2411. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2412. @end table
  2413. @node starpu_data_release
  2414. @subsection @code{starpu_data_release} -- Release registered data from the application
  2415. @table @asis
  2416. @item @emph{Description}:
  2417. This function releases the piece of data acquired by the application either by
  2418. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2419. @item @emph{Prototype}:
  2420. @code{void starpu_data_release(starpu_data_handle handle);}
  2421. @end table
  2422. @node starpu_data_set_wt_mask
  2423. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. This function sets the write-through mask of a given data, i.e. a bitmask of
  2427. nodes where the data should be always replicated after modification.
  2428. @item @emph{Prototype}:
  2429. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2430. @end table
  2431. @node Data Interfaces
  2432. @section Data Interfaces
  2433. @menu
  2434. * Variable Interface::
  2435. * Vector Interface::
  2436. * Matrix Interface::
  2437. * 3D Matrix Interface::
  2438. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2439. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2440. @end menu
  2441. @node Variable Interface
  2442. @subsection Variable Interface
  2443. @table @asis
  2444. @item @emph{Description}:
  2445. This variant of @code{starpu_data_register} uses the variable interface,
  2446. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2447. and @code{elemsize} is the size of the variable.
  2448. @item @emph{Prototype}:
  2449. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2450. uint32_t home_node,
  2451. uintptr_t ptr, size_t elemsize);}
  2452. @item @emph{Example}:
  2453. @cartouche
  2454. @smallexample
  2455. float var;
  2456. starpu_data_handle var_handle;
  2457. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2458. @end smallexample
  2459. @end cartouche
  2460. @end table
  2461. @node Vector Interface
  2462. @subsection Vector Interface
  2463. @table @asis
  2464. @item @emph{Description}:
  2465. This variant of @code{starpu_data_register} uses the vector interface,
  2466. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2467. element in the home node. @code{nx} is the number of elements in the vector.
  2468. @code{elemsize} is the size of each element.
  2469. @item @emph{Prototype}:
  2470. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2471. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2472. @item @emph{Example}:
  2473. @cartouche
  2474. @smallexample
  2475. float vector[NX];
  2476. starpu_data_handle vector_handle;
  2477. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2478. sizeof(vector[0]));
  2479. @end smallexample
  2480. @end cartouche
  2481. @end table
  2482. @node Matrix Interface
  2483. @subsection Matrix Interface
  2484. @table @asis
  2485. @item @emph{Description}:
  2486. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2487. matrices of elements. @code{ptr} is the address of the first element in the home
  2488. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2489. of elements in a row (this can be different from @code{ld} if there are extra
  2490. elements for alignment for instance). @code{ny} is the number of rows.
  2491. @code{elemsize} is the size of each element.
  2492. @item @emph{Prototype}:
  2493. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2494. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2495. uint32_t ny, size_t elemsize);}
  2496. @item @emph{Example}:
  2497. @cartouche
  2498. @smallexample
  2499. float *matrix;
  2500. starpu_data_handle matrix_handle;
  2501. matrix = (float*)malloc(width * height * sizeof(float));
  2502. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2503. width, width, height, sizeof(float));
  2504. @end smallexample
  2505. @end cartouche
  2506. @end table
  2507. @node 3D Matrix Interface
  2508. @subsection 3D Matrix Interface
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2512. @code{ptr} is the address of the array of first element in the home node.
  2513. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2514. of rows between z planes. @code{nx} is the number of elements in a row (this
  2515. can be different from @code{ldy} if there are extra elements for alignment
  2516. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2517. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2518. each element.
  2519. @item @emph{Prototype}:
  2520. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2521. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2522. uint32_t ny, uint32_t nz, size_t elemsize);}
  2523. @item @emph{Example}:
  2524. @cartouche
  2525. @smallexample
  2526. float *block;
  2527. starpu_data_handle block_handle;
  2528. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2529. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2530. nx, nx*ny, nx, ny, nz, sizeof(float));
  2531. @end smallexample
  2532. @end cartouche
  2533. @end table
  2534. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2535. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2536. @table @asis
  2537. @item @emph{Description}:
  2538. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2539. TODO
  2540. @item @emph{Prototype}:
  2541. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2542. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2543. @item @emph{Example}:
  2544. @cartouche
  2545. @smallexample
  2546. @end smallexample
  2547. @end cartouche
  2548. @end table
  2549. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2550. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2551. @table @asis
  2552. @item @emph{Description}:
  2553. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2554. TODO
  2555. @item @emph{Prototype}:
  2556. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2557. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2558. @item @emph{Example}:
  2559. @cartouche
  2560. @smallexample
  2561. @end smallexample
  2562. @end cartouche
  2563. @end table
  2564. @node Data Partition
  2565. @section Data Partition
  2566. @menu
  2567. * struct starpu_data_filter:: StarPU filter structure
  2568. * starpu_data_partition:: Partition Data
  2569. * starpu_data_unpartition:: Unpartition Data
  2570. * starpu_data_get_nb_children::
  2571. * starpu_data_get_sub_data::
  2572. * Predefined filter functions::
  2573. @end menu
  2574. @node struct starpu_data_filter
  2575. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2576. @table @asis
  2577. @item @emph{Description}:
  2578. The filter structure describes a data partitioning operation, to be given to the
  2579. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2580. @item @emph{Fields}:
  2581. @table @asis
  2582. @item @code{filter_func}:
  2583. This function fills the @code{child_interface} structure with interface
  2584. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2585. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2586. @item @code{nchildren}:
  2587. This is the number of parts to partition the data into.
  2588. @item @code{get_nchildren}:
  2589. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2590. children depends on the actual data (e.g. the number of blocks in a sparse
  2591. matrix).
  2592. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2593. @item @code{get_child_ops}:
  2594. In case the resulting children use a different data interface, this function
  2595. returns which interface is used by child number @code{id}.
  2596. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2597. @item @code{filter_arg}:
  2598. Some filters take an addition parameter, but this is usually unused.
  2599. @item @code{filter_arg_ptr}:
  2600. Some filters take an additional array parameter like the sizes of the parts, but
  2601. this is usually unused.
  2602. @end table
  2603. @end table
  2604. @node starpu_data_partition
  2605. @subsection starpu_data_partition -- Partition Data
  2606. @table @asis
  2607. @item @emph{Description}:
  2608. This requests partitioning one StarPU data @code{initial_handle} into several
  2609. subdata according to the filter @code{f}
  2610. @item @emph{Prototype}:
  2611. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2612. @item @emph{Example}:
  2613. @cartouche
  2614. @smallexample
  2615. struct starpu_data_filter f = @{
  2616. .filter_func = starpu_vertical_block_filter_func,
  2617. .nchildren = nslicesx,
  2618. .get_nchildren = NULL,
  2619. .get_child_ops = NULL
  2620. @};
  2621. starpu_data_partition(A_handle, &f);
  2622. @end smallexample
  2623. @end cartouche
  2624. @end table
  2625. @node starpu_data_unpartition
  2626. @subsection starpu_data_unpartition -- Unpartition data
  2627. @table @asis
  2628. @item @emph{Description}:
  2629. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2630. collected back into one big piece in the @code{gathering_node} (usually 0).
  2631. @item @emph{Prototype}:
  2632. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2633. @item @emph{Example}:
  2634. @cartouche
  2635. @smallexample
  2636. starpu_data_unpartition(A_handle, 0);
  2637. @end smallexample
  2638. @end cartouche
  2639. @end table
  2640. @node starpu_data_get_nb_children
  2641. @subsection starpu_data_get_nb_children
  2642. @table @asis
  2643. @item @emph{Description}:
  2644. This function returns the number of children.
  2645. @item @emph{Return value}:
  2646. The number of children.
  2647. @item @emph{Prototype}:
  2648. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2649. @end table
  2650. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2651. @node starpu_data_get_sub_data
  2652. @subsection starpu_data_get_sub_data
  2653. @table @asis
  2654. @item @emph{Description}:
  2655. After partitioning a StarPU data by applying a filter,
  2656. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2657. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2658. is the number of filters to traverse (in case several filters have been applied,
  2659. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2660. parameters are the indexes.
  2661. @item @emph{Return value}:
  2662. A handle to the subdata.
  2663. @item @emph{Prototype}:
  2664. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2665. @item @emph{Example}:
  2666. @cartouche
  2667. @smallexample
  2668. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2669. @end smallexample
  2670. @end cartouche
  2671. @end table
  2672. @node Predefined filter functions
  2673. @subsection Predefined filter functions
  2674. @menu
  2675. * Partitioning BCSR Data::
  2676. * Partitioning BLAS interface::
  2677. * Partitioning Vector Data::
  2678. * Partitioning Block Data::
  2679. @end menu
  2680. This section gives a partial list of the predefined partitioning functions.
  2681. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2682. list can be found in @code{starpu_data_filters.h} .
  2683. @node Partitioning BCSR Data
  2684. @subsubsection Partitioning BCSR Data
  2685. @table @asis
  2686. @item @emph{Description}:
  2687. TODO
  2688. @item @emph{Prototype}:
  2689. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2690. @end table
  2691. @table @asis
  2692. @item @emph{Description}:
  2693. TODO
  2694. @item @emph{Prototype}:
  2695. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2696. @end table
  2697. @node Partitioning BLAS interface
  2698. @subsubsection Partitioning BLAS interface
  2699. @table @asis
  2700. @item @emph{Description}:
  2701. This partitions a dense Matrix into horizontal blocks.
  2702. @item @emph{Prototype}:
  2703. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2704. @end table
  2705. @table @asis
  2706. @item @emph{Description}:
  2707. This partitions a dense Matrix into vertical blocks.
  2708. @item @emph{Prototype}:
  2709. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2710. @end table
  2711. @node Partitioning Vector Data
  2712. @subsubsection Partitioning Vector Data
  2713. @table @asis
  2714. @item @emph{Description}:
  2715. This partitions a vector into blocks of the same size.
  2716. @item @emph{Prototype}:
  2717. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2718. @end table
  2719. @table @asis
  2720. @item @emph{Description}:
  2721. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2722. @item @emph{Prototype}:
  2723. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2724. @end table
  2725. @table @asis
  2726. @item @emph{Description}:
  2727. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2728. @item @emph{Prototype}:
  2729. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2730. @end table
  2731. @node Partitioning Block Data
  2732. @subsubsection Partitioning Block Data
  2733. @table @asis
  2734. @item @emph{Description}:
  2735. This partitions a 3D matrix along the X axis.
  2736. @item @emph{Prototype}:
  2737. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2738. @end table
  2739. @node Codelets and Tasks
  2740. @section Codelets and Tasks
  2741. This section describes the interface to manipulate codelets and tasks.
  2742. @deftp {Data Type} {struct starpu_codelet}
  2743. The codelet structure describes a kernel that is possibly implemented on various
  2744. targets. For compatibility, make sure to initialize the whole structure to zero.
  2745. @table @asis
  2746. @item @code{where}
  2747. Indicates which types of processing units are able to execute the codelet.
  2748. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2749. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2750. indicates that it is only available on Cell SPUs.
  2751. @item @code{cpu_func} (optional)
  2752. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2753. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2754. argument being the array of data managed by the data management library, and
  2755. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2756. field of the @code{starpu_task} structure.
  2757. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2758. the @code{where} field, it must be non-null otherwise.
  2759. @item @code{cuda_func} (optional)
  2760. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2761. must be a host-function written in the CUDA runtime API}. Its prototype must
  2762. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2763. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2764. field, it must be non-null otherwise.
  2765. @item @code{opencl_func} (optional)
  2766. Is a function pointer to the OpenCL implementation of the codelet. Its
  2767. prototype must be:
  2768. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2769. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2770. @code{where} field, it must be non-null otherwise.
  2771. @item @code{gordon_func} (optional)
  2772. This is the index of the Cell SPU implementation within the Gordon library.
  2773. See Gordon documentation for more details on how to register a kernel and
  2774. retrieve its index.
  2775. @item @code{nbuffers}
  2776. Specifies the number of arguments taken by the codelet. These arguments are
  2777. managed by the DSM and are accessed from the @code{void *buffers[]}
  2778. array. The constant argument passed with the @code{cl_arg} field of the
  2779. @code{starpu_task} structure is not counted in this number. This value should
  2780. not be above @code{STARPU_NMAXBUFS}.
  2781. @item @code{model} (optional)
  2782. This is a pointer to the task duration performance model associated to this
  2783. codelet. This optional field is ignored when set to @code{NULL}.
  2784. TODO
  2785. @item @code{power_model} (optional)
  2786. This is a pointer to the task power consumption performance model associated
  2787. to this codelet. This optional field is ignored when set to @code{NULL}.
  2788. In the case of parallel codelets, this has to account for all processing units
  2789. involved in the parallel execution.
  2790. TODO
  2791. @end table
  2792. @end deftp
  2793. @deftp {Data Type} {struct starpu_task}
  2794. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2795. processing units managed by StarPU. It instantiates a codelet. It can either be
  2796. allocated dynamically with the @code{starpu_task_create} method, or declared
  2797. statically. In the latter case, the programmer has to zero the
  2798. @code{starpu_task} structure and to fill the different fields properly. The
  2799. indicated default values correspond to the configuration of a task allocated
  2800. with @code{starpu_task_create}.
  2801. @table @asis
  2802. @item @code{cl}
  2803. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2804. describes where the kernel should be executed, and supplies the appropriate
  2805. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2806. such empty tasks can be useful for synchronization purposes.
  2807. @item @code{buffers}
  2808. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2809. different pieces of data accessed by the task, and how they should be accessed.
  2810. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2811. @code{handle} field specifies the handle of the piece of data, and the
  2812. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2813. of entries in this array must be specified in the @code{nbuffers} field of the
  2814. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2815. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2816. option when configuring StarPU.
  2817. @item @code{cl_arg} (optional; default: @code{NULL})
  2818. This pointer is passed to the codelet through the second argument
  2819. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2820. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2821. argument.
  2822. @item @code{cl_arg_size} (optional, Cell-specific)
  2823. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2824. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2825. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2826. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2827. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2828. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2829. codelets, where the @code{cl_arg} pointer is given as such.
  2830. @item @code{callback_func} (optional) (default: @code{NULL})
  2831. This is a function pointer of prototype @code{void (*f)(void *)} which
  2832. specifies a possible callback. If this pointer is non-null, the callback
  2833. function is executed @emph{on the host} after the execution of the task. The
  2834. callback is passed the value contained in the @code{callback_arg} field. No
  2835. callback is executed if the field is set to @code{NULL}.
  2836. @item @code{callback_arg} (optional) (default: @code{NULL})
  2837. This is the pointer passed to the callback function. This field is ignored if
  2838. the @code{callback_func} is set to @code{NULL}.
  2839. @item @code{use_tag} (optional) (default: @code{0})
  2840. If set, this flag indicates that the task should be associated with the tag
  2841. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2842. with the task and to express task dependencies easily.
  2843. @item @code{tag_id}
  2844. This fields contains the tag associated to the task if the @code{use_tag} field
  2845. was set, it is ignored otherwise.
  2846. @item @code{synchronous}
  2847. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2848. returns only when the task has been executed (or if no worker is able to
  2849. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2850. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  2851. This field indicates a level of priority for the task. This is an integer value
  2852. that must be set between the return values of the
  2853. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2854. and that of the @code{starpu_sched_get_max_priority} for the most important
  2855. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2856. are provided for convenience and respectively returns value of
  2857. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2858. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2859. order to allow static task initialization. Scheduling strategies that take
  2860. priorities into account can use this parameter to take better scheduling
  2861. decisions, but the scheduling policy may also ignore it.
  2862. @item @code{execute_on_a_specific_worker} (default: @code{0})
  2863. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2864. task to the worker specified by the @code{workerid} field.
  2865. @item @code{workerid} (optional)
  2866. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2867. which is the identifier of the worker that should process this task (as
  2868. returned by @code{starpu_worker_get_id}). This field is ignored if
  2869. @code{execute_on_a_specific_worker} field is set to 0.
  2870. @item @code{detach} (optional) (default: @code{1})
  2871. If this flag is set, it is not possible to synchronize with the task
  2872. by the means of @code{starpu_task_wait} later on. Internal data structures
  2873. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2874. flag is not set.
  2875. @item @code{destroy} (optional) (default: @code{1})
  2876. If this flag is set, the task structure will automatically be freed, either
  2877. after the execution of the callback if the task is detached, or during
  2878. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2879. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2880. called explicitly. Setting this flag for a statically allocated task structure
  2881. will result in undefined behaviour.
  2882. @item @code{predicted} (output field)
  2883. Predicted duration of the task. This field is only set if the scheduling
  2884. strategy used performance models.
  2885. @end table
  2886. @end deftp
  2887. @deftypefun void starpu_task_init (struct starpu_task *@var{task})
  2888. Initialize @var{task} with default values. This function is implicitly
  2889. called by @code{starpu_task_create}. By default, tasks initialized with
  2890. @code{starpu_task_init} must be deinitialized explicitly with
  2891. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2892. constant @code{STARPU_TASK_INITIALIZER}.
  2893. @end deftypefun
  2894. @deftypefun {struct starpu_task *} starpu_task_create ()
  2895. Allocate a task structure and initialize it with default values. Tasks
  2896. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2897. task is terminated. If the destroy flag is explicitly unset, the resources used
  2898. by the task are freed by calling
  2899. @code{starpu_task_destroy}.
  2900. @end deftypefun
  2901. @deftypefun void starpu_task_deinit (struct starpu_task *@var{task})
  2902. Release all the structures automatically allocated to execute @var{task}. This is
  2903. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2904. freed. This should be used for statically allocated tasks for instance.
  2905. @end deftypefun
  2906. @deftypefun void starpu_task_destroy (struct starpu_task *@var{task})
  2907. Free the resource allocated during @code{starpu_task_create} and
  2908. associated with @var{task}. This function can be called automatically
  2909. after the execution of a task by setting the @code{destroy} flag of the
  2910. @code{starpu_task} structure (default behaviour). Calling this function
  2911. on a statically allocated task results in an undefined behaviour.
  2912. @end deftypefun
  2913. @deftypefun int starpu_task_wait (struct starpu_task *@var{task})
  2914. This function blocks until @var{task} has been executed. It is not possible to
  2915. synchronize with a task more than once. It is not possible to wait for
  2916. synchronous or detached tasks.
  2917. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2918. indicates that the specified task was either synchronous or detached.
  2919. @end deftypefun
  2920. @deftypefun int starpu_task_submit (struct starpu_task *@var{task})
  2921. This function submits @var{task} to StarPU. Calling this function does
  2922. not mean that the task will be executed immediately as there can be data or task
  2923. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2924. scheduling this task with respect to such dependencies.
  2925. This function returns immediately if the @code{synchronous} field of the
  2926. @code{starpu_task} structure was set to 0, and block until the termination of
  2927. the task otherwise. It is also possible to synchronize the application with
  2928. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2929. function for instance.
  2930. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2931. means that there is no worker able to process this task (e.g. there is no GPU
  2932. available and this task is only implemented for CUDA devices).
  2933. @end deftypefun
  2934. @deftypefun int starpu_task_wait_for_all ()
  2935. This function blocks until all the tasks that were submitted are terminated.
  2936. @end deftypefun
  2937. @deftypefun {struct starpu_task *} starpu_get_current_task ()
  2938. This function returns the task currently executed by the worker, or
  2939. NULL if it is called either from a thread that is not a task or simply
  2940. because there is no task being executed at the moment.
  2941. @end deftypefun
  2942. @deftypefun void starpu_display_codelet_stats (struct starpu_codelet_t *@var{cl})
  2943. Output on @code{stderr} some statistics on the codelet @var{cl}.
  2944. @end deftypefun
  2945. @c Callbacks : what can we put in callbacks ?
  2946. @node Explicit Dependencies
  2947. @section Explicit Dependencies
  2948. @menu
  2949. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2950. * starpu_tag_t:: Task logical identifier
  2951. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2952. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2953. * starpu_tag_wait:: Block until a Tag is terminated
  2954. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2955. * starpu_tag_remove:: Destroy a Tag
  2956. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2957. @end menu
  2958. @node starpu_task_declare_deps_array
  2959. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2960. @table @asis
  2961. @item @emph{Description}:
  2962. Declare task dependencies between a @code{task} and an array of tasks of length
  2963. @code{ndeps}. This function must be called prior to the submission of the task,
  2964. but it may called after the submission or the execution of the tasks in the
  2965. array provided the tasks are still valid (ie. they were not automatically
  2966. destroyed). Calling this function on a task that was already submitted or with
  2967. an entry of @code{task_array} that is not a valid task anymore results in an
  2968. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2969. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2970. same task, in this case, the dependencies are added. It is possible to have
  2971. redundancy in the task dependencies.
  2972. @item @emph{Prototype}:
  2973. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2974. @end table
  2975. @node starpu_tag_t
  2976. @subsection @code{starpu_tag_t} -- Task logical identifier
  2977. @table @asis
  2978. @item @emph{Description}:
  2979. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2980. dependencies between tasks by the means of those tags. To do so, fill the
  2981. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2982. be arbitrary) and set the @code{use_tag} field to 1.
  2983. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2984. not be started until the tasks which holds the declared dependency tags are
  2985. completed.
  2986. @end table
  2987. @node starpu_tag_declare_deps
  2988. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2989. @table @asis
  2990. @item @emph{Description}:
  2991. Specify the dependencies of the task identified by tag @code{id}. The first
  2992. argument specifies the tag which is configured, the second argument gives the
  2993. number of tag(s) on which @code{id} depends. The following arguments are the
  2994. tags which have to be terminated to unlock the task.
  2995. This function must be called before the associated task is submitted to StarPU
  2996. with @code{starpu_task_submit}.
  2997. @item @emph{Remark}
  2998. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2999. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3000. typically need to be explicitly casted. Using the
  3001. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3002. @item @emph{Prototype}:
  3003. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3004. @item @emph{Example}:
  3005. @cartouche
  3006. @example
  3007. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3008. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3009. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3010. @end example
  3011. @end cartouche
  3012. @end table
  3013. @node starpu_tag_declare_deps_array
  3014. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3015. @table @asis
  3016. @item @emph{Description}:
  3017. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3018. does not take a variable number of arguments but an array of tags of size
  3019. @code{ndeps}.
  3020. @item @emph{Prototype}:
  3021. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3022. @item @emph{Example}:
  3023. @cartouche
  3024. @example
  3025. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3026. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3027. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3028. @end example
  3029. @end cartouche
  3030. @end table
  3031. @node starpu_tag_wait
  3032. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3033. @table @asis
  3034. @item @emph{Description}:
  3035. This function blocks until the task associated to tag @code{id} has been
  3036. executed. This is a blocking call which must therefore not be called within
  3037. tasks or callbacks, but only from the application directly. It is possible to
  3038. synchronize with the same tag multiple times, as long as the
  3039. @code{starpu_tag_remove} function is not called. Note that it is still
  3040. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3041. data structure was freed (e.g. if the @code{destroy} flag of the
  3042. @code{starpu_task} was enabled).
  3043. @item @emph{Prototype}:
  3044. @code{void starpu_tag_wait(starpu_tag_t id);}
  3045. @end table
  3046. @node starpu_tag_wait_array
  3047. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3048. @table @asis
  3049. @item @emph{Description}:
  3050. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3051. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3052. terminated.
  3053. @item @emph{Prototype}:
  3054. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3055. @end table
  3056. @node starpu_tag_remove
  3057. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3058. @table @asis
  3059. @item @emph{Description}:
  3060. This function releases the resources associated to tag @code{id}. It can be
  3061. called once the corresponding task has been executed and when there is
  3062. no other tag that depend on this tag anymore.
  3063. @item @emph{Prototype}:
  3064. @code{void starpu_tag_remove(starpu_tag_t id);}
  3065. @end table
  3066. @node starpu_tag_notify_from_apps
  3067. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3068. @table @asis
  3069. @item @emph{Description}:
  3070. This function explicitly unlocks tag @code{id}. It may be useful in the
  3071. case of applications which execute part of their computation outside StarPU
  3072. tasks (e.g. third-party libraries). It is also provided as a
  3073. convenient tool for the programmer, for instance to entirely construct the task
  3074. DAG before actually giving StarPU the opportunity to execute the tasks.
  3075. @item @emph{Prototype}:
  3076. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3077. @end table
  3078. @node Implicit Data Dependencies
  3079. @section Implicit Data Dependencies
  3080. @menu
  3081. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3082. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3083. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3084. @end menu
  3085. In this section, we describe how StarPU makes it possible to insert implicit
  3086. task dependencies in order to enforce sequential data consistency. When this
  3087. data consistency is enabled on a specific data handle, any data access will
  3088. appear as sequentially consistent from the application. For instance, if the
  3089. application submits two tasks that access the same piece of data in read-only
  3090. mode, and then a third task that access it in write mode, dependencies will be
  3091. added between the two first tasks and the third one. Implicit data dependencies
  3092. are also inserted in the case of data accesses from the application.
  3093. @node starpu_data_set_default_sequential_consistency_flag
  3094. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3095. @table @asis
  3096. @item @emph{Description}:
  3097. Set the default sequential consistency flag. If a non-zero value is passed, a
  3098. sequential data consistency will be enforced for all handles registered after
  3099. this function call, otherwise it is disabled. By default, StarPU enables
  3100. sequential data consistency. It is also possible to select the data consistency
  3101. mode of a specific data handle with the
  3102. @code{starpu_data_set_sequential_consistency_flag} function.
  3103. @item @emph{Prototype}:
  3104. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3105. @end table
  3106. @node starpu_data_get_default_sequential_consistency_flag
  3107. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3108. @table @asis
  3109. @item @emph{Description}:
  3110. This function returns the current default sequential consistency flag.
  3111. @item @emph{Prototype}:
  3112. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3113. @end table
  3114. @node starpu_data_set_sequential_consistency_flag
  3115. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3116. @table @asis
  3117. @item @emph{Description}:
  3118. Select the data consistency mode associated to a data handle. The consistency
  3119. mode set using this function has the priority over the default mode which can
  3120. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3121. @item @emph{Prototype}:
  3122. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3123. @end table
  3124. @node Performance Model API
  3125. @section Performance Model API
  3126. @menu
  3127. * starpu_load_history_debug::
  3128. * starpu_perfmodel_debugfilepath::
  3129. * starpu_perfmodel_get_arch_name::
  3130. * starpu_force_bus_sampling::
  3131. @end menu
  3132. @node starpu_load_history_debug
  3133. @subsection @code{starpu_load_history_debug}
  3134. @table @asis
  3135. @item @emph{Description}:
  3136. TODO
  3137. @item @emph{Prototype}:
  3138. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3139. @end table
  3140. @node starpu_perfmodel_debugfilepath
  3141. @subsection @code{starpu_perfmodel_debugfilepath}
  3142. @table @asis
  3143. @item @emph{Description}:
  3144. TODO
  3145. @item @emph{Prototype}:
  3146. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3147. @end table
  3148. @node starpu_perfmodel_get_arch_name
  3149. @subsection @code{starpu_perfmodel_get_arch_name}
  3150. @table @asis
  3151. @item @emph{Description}:
  3152. TODO
  3153. @item @emph{Prototype}:
  3154. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3155. @end table
  3156. @node starpu_force_bus_sampling
  3157. @subsection @code{starpu_force_bus_sampling}
  3158. @table @asis
  3159. @item @emph{Description}:
  3160. This forces sampling the bus performance model again.
  3161. @item @emph{Prototype}:
  3162. @code{void starpu_force_bus_sampling(void);}
  3163. @end table
  3164. @node Profiling API
  3165. @section Profiling API
  3166. @menu
  3167. * starpu_profiling_status_set:: starpu_profiling_status_set
  3168. * starpu_profiling_status_get:: starpu_profiling_status_get
  3169. * struct starpu_task_profiling_info:: task profiling information
  3170. * struct starpu_worker_profiling_info:: worker profiling information
  3171. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3172. * struct starpu_bus_profiling_info:: bus profiling information
  3173. * starpu_bus_get_count::
  3174. * starpu_bus_get_id::
  3175. * starpu_bus_get_src::
  3176. * starpu_bus_get_dst::
  3177. * starpu_timing_timespec_delay_us::
  3178. * starpu_timing_timespec_to_us::
  3179. * starpu_bus_profiling_helper_display_summary::
  3180. * starpu_worker_profiling_helper_display_summary::
  3181. @end menu
  3182. @node starpu_profiling_status_set
  3183. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3184. @table @asis
  3185. @item @emph{Description}:
  3186. Thie function sets the profiling status. Profiling is activated by passing
  3187. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3188. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3189. resets all profiling measurements. When profiling is enabled, the
  3190. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3191. to a valid @code{struct starpu_task_profiling_info} structure containing
  3192. information about the execution of the task.
  3193. @item @emph{Return value}:
  3194. Negative return values indicate an error, otherwise the previous status is
  3195. returned.
  3196. @item @emph{Prototype}:
  3197. @code{int starpu_profiling_status_set(int status);}
  3198. @end table
  3199. @node starpu_profiling_status_get
  3200. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3201. @table @asis
  3202. @item @emph{Description}:
  3203. Return the current profiling status or a negative value in case there was an error.
  3204. @item @emph{Prototype}:
  3205. @code{int starpu_profiling_status_get(void);}
  3206. @end table
  3207. @node struct starpu_task_profiling_info
  3208. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3209. @table @asis
  3210. @item @emph{Description}:
  3211. This structure contains information about the execution of a task. It is
  3212. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3213. structure if profiling was enabled.
  3214. @item @emph{Fields}:
  3215. @table @asis
  3216. @item @code{submit_time}:
  3217. Date of task submission (relative to the initialization of StarPU).
  3218. @item @code{start_time}:
  3219. Date of task execution beginning (relative to the initialization of StarPU).
  3220. @item @code{end_time}:
  3221. Date of task execution termination (relative to the initialization of StarPU).
  3222. @item @code{workerid}:
  3223. Identifier of the worker which has executed the task.
  3224. @end table
  3225. @end table
  3226. @node struct starpu_worker_profiling_info
  3227. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3228. @table @asis
  3229. @item @emph{Description}:
  3230. This structure contains the profiling information associated to a worker.
  3231. @item @emph{Fields}:
  3232. @table @asis
  3233. @item @code{start_time}:
  3234. Starting date for the reported profiling measurements.
  3235. @item @code{total_time}:
  3236. Duration of the profiling measurement interval.
  3237. @item @code{executing_time}:
  3238. Time spent by the worker to execute tasks during the profiling measurement interval.
  3239. @item @code{sleeping_time}:
  3240. Time spent idling by the worker during the profiling measurement interval.
  3241. @item @code{executed_tasks}:
  3242. Number of tasks executed by the worker during the profiling measurement interval.
  3243. @end table
  3244. @end table
  3245. @node starpu_worker_get_profiling_info
  3246. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3247. @table @asis
  3248. @item @emph{Description}:
  3249. Get the profiling info associated to the worker identified by @code{workerid},
  3250. and reset the profiling measurements. If the @code{worker_info} argument is
  3251. NULL, only reset the counters associated to worker @code{workerid}.
  3252. @item @emph{Return value}:
  3253. Upon successful completion, this function returns 0. Otherwise, a negative
  3254. value is returned.
  3255. @item @emph{Prototype}:
  3256. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3257. @end table
  3258. @node struct starpu_bus_profiling_info
  3259. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3260. @table @asis
  3261. @item @emph{Description}:
  3262. TODO
  3263. @item @emph{Fields}:
  3264. @table @asis
  3265. @item @code{start_time}:
  3266. TODO
  3267. @item @code{total_time}:
  3268. TODO
  3269. @item @code{transferred_bytes}:
  3270. TODO
  3271. @item @code{transfer_count}:
  3272. TODO
  3273. @end table
  3274. @end table
  3275. @node starpu_bus_get_count
  3276. @subsection @code{starpu_bus_get_count}
  3277. @table @asis
  3278. @item @emph{Description}:
  3279. TODO
  3280. @item @emph{Prototype}:
  3281. @code{int starpu_bus_get_count(void);}
  3282. @end table
  3283. @node starpu_bus_get_id
  3284. @subsection @code{starpu_bus_get_id}
  3285. @table @asis
  3286. @item @emph{Description}:
  3287. TODO
  3288. @item @emph{Prototype}:
  3289. @code{int starpu_bus_get_id(int src, int dst);}
  3290. @end table
  3291. @node starpu_bus_get_src
  3292. @subsection @code{starpu_bus_get_src}
  3293. @table @asis
  3294. @item @emph{Description}:
  3295. TODO
  3296. @item @emph{Prototype}:
  3297. @code{int starpu_bus_get_src(int busid);}
  3298. @end table
  3299. @node starpu_bus_get_dst
  3300. @subsection @code{starpu_bus_get_dst}
  3301. @table @asis
  3302. @item @emph{Description}:
  3303. TODO
  3304. @item @emph{Prototype}:
  3305. @code{int starpu_bus_get_dst(int busid);}
  3306. @end table
  3307. @node starpu_timing_timespec_delay_us
  3308. @subsection @code{starpu_timing_timespec_delay_us}
  3309. @table @asis
  3310. @item @emph{Description}:
  3311. TODO
  3312. @item @emph{Prototype}:
  3313. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3314. @end table
  3315. @node starpu_timing_timespec_to_us
  3316. @subsection @code{starpu_timing_timespec_to_us}
  3317. @table @asis
  3318. @item @emph{Description}:
  3319. TODO
  3320. @item @emph{Prototype}:
  3321. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3322. @end table
  3323. @node starpu_bus_profiling_helper_display_summary
  3324. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3325. @table @asis
  3326. @item @emph{Description}:
  3327. TODO
  3328. @item @emph{Prototype}:
  3329. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3330. @end table
  3331. @node starpu_worker_profiling_helper_display_summary
  3332. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3333. @table @asis
  3334. @item @emph{Description}:
  3335. TODO
  3336. @item @emph{Prototype}:
  3337. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3338. @end table
  3339. @node CUDA extensions
  3340. @section CUDA extensions
  3341. @c void starpu_malloc(float **A, size_t dim);
  3342. @menu
  3343. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3344. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3345. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3346. @end menu
  3347. @node starpu_cuda_get_local_stream
  3348. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3349. @table @asis
  3350. @item @emph{Description}:
  3351. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3352. function is only provided for convenience so that programmers can easily use
  3353. asynchronous operations within codelets without having to create a stream by
  3354. hand. Note that the application is not forced to use the stream provided by
  3355. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3356. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3357. the likelihood of having all transfers overlapped.
  3358. @item @emph{Prototype}:
  3359. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3360. @end table
  3361. @node starpu_helper_cublas_init
  3362. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3363. @table @asis
  3364. @item @emph{Description}:
  3365. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3366. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3367. controlled by StarPU. This call blocks until CUBLAS has been properly
  3368. initialized on every device.
  3369. @item @emph{Prototype}:
  3370. @code{void starpu_helper_cublas_init(void);}
  3371. @end table
  3372. @node starpu_helper_cublas_shutdown
  3373. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3374. @table @asis
  3375. @item @emph{Description}:
  3376. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3377. @item @emph{Prototype}:
  3378. @code{void starpu_helper_cublas_shutdown(void);}
  3379. @end table
  3380. @node OpenCL extensions
  3381. @section OpenCL extensions
  3382. @menu
  3383. * Enabling OpenCL:: Enabling OpenCL
  3384. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3385. * Loading OpenCL kernels:: Loading OpenCL kernels
  3386. * OpenCL statistics:: Collecting statistics from OpenCL
  3387. @end menu
  3388. @node Enabling OpenCL
  3389. @subsection Enabling OpenCL
  3390. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3391. enabled by default. To enable OpenCL, you need either to disable CUDA
  3392. when configuring StarPU:
  3393. @example
  3394. % ./configure --disable-cuda
  3395. @end example
  3396. or when running applications:
  3397. @example
  3398. % STARPU_NCUDA=0 ./application
  3399. @end example
  3400. OpenCL will automatically be started on any device not yet used by
  3401. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3402. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3403. so:
  3404. @example
  3405. % STARPU_NCUDA=2 ./application
  3406. @end example
  3407. @node Compiling OpenCL kernels
  3408. @subsection Compiling OpenCL kernels
  3409. Source codes for OpenCL kernels can be stored in a file or in a
  3410. string. StarPU provides functions to build the program executable for
  3411. each available OpenCL device as a @code{cl_program} object. This
  3412. program executable can then be loaded within a specific queue as
  3413. explained in the next section. These are only helpers, Applications
  3414. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3415. use (e.g. different programs on the different OpenCL devices, for
  3416. relocation purpose for instance).
  3417. @menu
  3418. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3419. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3420. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3421. @end menu
  3422. @node starpu_opencl_load_opencl_from_file
  3423. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3424. @table @asis
  3425. @item @emph{Description}:
  3426. TODO
  3427. @item @emph{Prototype}:
  3428. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3429. @end table
  3430. @node starpu_opencl_load_opencl_from_string
  3431. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3432. @table @asis
  3433. @item @emph{Description}:
  3434. TODO
  3435. @item @emph{Prototype}:
  3436. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3437. @end table
  3438. @node starpu_opencl_unload_opencl
  3439. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3440. @table @asis
  3441. @item @emph{Description}:
  3442. TODO
  3443. @item @emph{Prototype}:
  3444. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3445. @end table
  3446. @node Loading OpenCL kernels
  3447. @subsection Loading OpenCL kernels
  3448. @menu
  3449. * starpu_opencl_load_kernel:: Loading a kernel
  3450. * starpu_opencl_relase_kernel:: Releasing a kernel
  3451. @end menu
  3452. @node starpu_opencl_load_kernel
  3453. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3454. @table @asis
  3455. @item @emph{Description}:
  3456. TODO
  3457. @item @emph{Prototype}:
  3458. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3459. }
  3460. @end table
  3461. @node starpu_opencl_relase_kernel
  3462. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3463. @table @asis
  3464. @item @emph{Description}:
  3465. TODO
  3466. @item @emph{Prototype}:
  3467. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3468. @end table
  3469. @node OpenCL statistics
  3470. @subsection OpenCL statistics
  3471. @menu
  3472. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3473. @end menu
  3474. @node starpu_opencl_collect_stats
  3475. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3476. @table @asis
  3477. @item @emph{Description}:
  3478. After termination of the kernels, the OpenCL codelet should call this function
  3479. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3480. collect statistics about the kernel execution (used cycles, consumed power).
  3481. @item @emph{Prototype}:
  3482. @code{int starpu_opencl_collect_stats(cl_event event);}
  3483. @end table
  3484. @node Cell extensions
  3485. @section Cell extensions
  3486. nothing yet.
  3487. @node Miscellaneous helpers
  3488. @section Miscellaneous helpers
  3489. @menu
  3490. * starpu_data_cpy:: Copy a data handle into another data handle
  3491. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3492. @end menu
  3493. @node starpu_data_cpy
  3494. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3495. @table @asis
  3496. @item @emph{Description}:
  3497. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3498. The @code{asynchronous} parameter indicates whether the function should
  3499. block or not. In the case of an asynchronous call, it is possible to
  3500. synchronize with the termination of this operation either by the means of
  3501. implicit dependencies (if enabled) or by calling
  3502. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3503. this callback function is executed after the handle has been copied, and it is
  3504. given the @code{callback_arg} pointer as argument.
  3505. @item @emph{Prototype}:
  3506. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3507. @end table
  3508. @node starpu_execute_on_each_worker
  3509. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3510. @table @asis
  3511. @item @emph{Description}:
  3512. When calling this method, the offloaded function specified by the first argument is
  3513. executed by every StarPU worker that may execute the function.
  3514. The second argument is passed to the offloaded function.
  3515. The last argument specifies on which types of processing units the function
  3516. should be executed. Similarly to the @code{where} field of the
  3517. @code{starpu_codelet} structure, it is possible to specify that the function
  3518. should be executed on every CUDA device and every CPU by passing
  3519. @code{STARPU_CPU|STARPU_CUDA}.
  3520. This function blocks until the function has been executed on every appropriate
  3521. processing units, so that it may not be called from a callback function for
  3522. instance.
  3523. @item @emph{Prototype}:
  3524. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3525. @end table
  3526. @c ---------------------------------------------------------------------
  3527. @c Advanced Topics
  3528. @c ---------------------------------------------------------------------
  3529. @node Advanced Topics
  3530. @chapter Advanced Topics
  3531. @menu
  3532. * Defining a new data interface::
  3533. * Defining a new scheduling policy::
  3534. @end menu
  3535. @node Defining a new data interface
  3536. @section Defining a new data interface
  3537. @menu
  3538. * struct starpu_data_interface_ops_t:: Per-interface methods
  3539. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3540. * An example of data interface:: An example of data interface
  3541. @end menu
  3542. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3543. @node struct starpu_data_interface_ops_t
  3544. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3545. @table @asis
  3546. @item @emph{Description}:
  3547. TODO describe all the different fields
  3548. @end table
  3549. @node struct starpu_data_copy_methods
  3550. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3551. @table @asis
  3552. @item @emph{Description}:
  3553. TODO describe all the different fields
  3554. @end table
  3555. @node An example of data interface
  3556. @subsection An example of data interface
  3557. @table @asis
  3558. TODO
  3559. @end table
  3560. @node Defining a new scheduling policy
  3561. @section Defining a new scheduling policy
  3562. TODO
  3563. A full example showing how to define a new scheduling policy is available in
  3564. the StarPU sources in the directory @code{examples/scheduler/}.
  3565. @menu
  3566. * struct starpu_sched_policy_s::
  3567. * starpu_worker_set_sched_condition::
  3568. * starpu_sched_set_min_priority:: Set the minimum priority level
  3569. * starpu_sched_set_max_priority:: Set the maximum priority level
  3570. * starpu_push_local_task:: Assign a task to a worker
  3571. * Source code::
  3572. @end menu
  3573. @node struct starpu_sched_policy_s
  3574. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3575. @table @asis
  3576. @item @emph{Description}:
  3577. This structure contains all the methods that implement a scheduling policy. An
  3578. application may specify which scheduling strategy in the @code{sched_policy}
  3579. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3580. function.
  3581. @item @emph{Fields}:
  3582. @table @asis
  3583. @item @code{init_sched}:
  3584. Initialize the scheduling policy.
  3585. @item @code{deinit_sched}:
  3586. Cleanup the scheduling policy.
  3587. @item @code{push_task}:
  3588. Insert a task into the scheduler.
  3589. @item @code{push_prio_task}:
  3590. Insert a priority task into the scheduler.
  3591. @item @code{push_prio_notify}:
  3592. Notify the scheduler that a task was pushed on the worker. This method is
  3593. called when a task that was explicitely assigned to a worker is scheduled. This
  3594. method therefore permits to keep the state of of the scheduler coherent even
  3595. when StarPU bypasses the scheduling strategy.
  3596. @item @code{pop_task}:
  3597. Get a task from the scheduler. The mutex associated to the worker is already
  3598. taken when this method is called. If this method is defined as @code{NULL}, the
  3599. worker will only execute tasks from its local queue. In this case, the
  3600. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3601. assign tasks to the different workers.
  3602. @item @code{pop_every_task}:
  3603. Remove all available tasks from the scheduler (tasks are chained by the means
  3604. of the prev and next fields of the starpu_task structure). The mutex associated
  3605. to the worker is already taken when this method is called.
  3606. @item @code{post_exec_hook} (optionnal):
  3607. This method is called every time a task has been executed.
  3608. @item @code{policy_name}:
  3609. Name of the policy (optionnal).
  3610. @item @code{policy_description}:
  3611. Description of the policy (optionnal).
  3612. @end table
  3613. @end table
  3614. @node starpu_worker_set_sched_condition
  3615. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3616. @table @asis
  3617. @item @emph{Description}:
  3618. When there is no available task for a worker, StarPU blocks this worker on a
  3619. condition variable. This function specifies which condition variable (and the
  3620. associated mutex) should be used to block (and to wake up) a worker. Note that
  3621. multiple workers may use the same condition variable. For instance, in the case
  3622. of a scheduling strategy with a single task queue, the same condition variable
  3623. would be used to block and wake up all workers.
  3624. The initialization method of a scheduling strategy (@code{init_sched}) must
  3625. call this function once per worker.
  3626. @item @emph{Prototype}:
  3627. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3628. @end table
  3629. @node starpu_sched_set_min_priority
  3630. @subsection @code{starpu_sched_set_min_priority}
  3631. @table @asis
  3632. @item @emph{Description}:
  3633. Defines the minimum priority level supported by the scheduling policy. The
  3634. default minimum priority level is the same as the default priority level which
  3635. is 0 by convention. The application may access that value by calling the
  3636. @code{starpu_sched_get_min_priority} function. This function should only be
  3637. called from the initialization method of the scheduling policy, and should not
  3638. be used directly from the application.
  3639. @item @emph{Prototype}:
  3640. @code{void starpu_sched_set_min_priority(int min_prio);}
  3641. @end table
  3642. @node starpu_sched_set_max_priority
  3643. @subsection @code{starpu_sched_set_max_priority}
  3644. @table @asis
  3645. @item @emph{Description}:
  3646. Defines the maximum priority level supported by the scheduling policy. The
  3647. default maximum priority level is 1. The application may access that value by
  3648. calling the @code{starpu_sched_get_max_priority} function. This function should
  3649. only be called from the initialization method of the scheduling policy, and
  3650. should not be used directly from the application.
  3651. @item @emph{Prototype}:
  3652. @code{void starpu_sched_set_min_priority(int max_prio);}
  3653. @end table
  3654. @node starpu_push_local_task
  3655. @subsection @code{starpu_push_local_task}
  3656. @table @asis
  3657. @item @emph{Description}:
  3658. The scheduling policy may put tasks directly into a worker's local queue so
  3659. that it is not always necessary to create its own queue when the local queue
  3660. is sufficient. If "back" not null, the task is put at the back of the queue
  3661. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3662. a FIFO ordering.
  3663. @item @emph{Prototype}:
  3664. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3665. @end table
  3666. @node Source code
  3667. @subsection Source code
  3668. @cartouche
  3669. @smallexample
  3670. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3671. .init_sched = init_dummy_sched,
  3672. .deinit_sched = deinit_dummy_sched,
  3673. .push_task = push_task_dummy,
  3674. .push_prio_task = NULL,
  3675. .pop_task = pop_task_dummy,
  3676. .post_exec_hook = NULL,
  3677. .pop_every_task = NULL,
  3678. .policy_name = "dummy",
  3679. .policy_description = "dummy scheduling strategy"
  3680. @};
  3681. @end smallexample
  3682. @end cartouche
  3683. @c ---------------------------------------------------------------------
  3684. @c Appendices
  3685. @c ---------------------------------------------------------------------
  3686. @c ---------------------------------------------------------------------
  3687. @c Full source code for the 'Scaling a Vector' example
  3688. @c ---------------------------------------------------------------------
  3689. @node Full source code for the 'Scaling a Vector' example
  3690. @appendix Full source code for the 'Scaling a Vector' example
  3691. @menu
  3692. * Main application::
  3693. * CPU Kernel::
  3694. * CUDA Kernel::
  3695. * OpenCL Kernel::
  3696. @end menu
  3697. @node Main application
  3698. @section Main application
  3699. @smallexample
  3700. @include vector_scal_c.texi
  3701. @end smallexample
  3702. @node CPU Kernel
  3703. @section CPU Kernel
  3704. @smallexample
  3705. @include vector_scal_cpu.texi
  3706. @end smallexample
  3707. @node CUDA Kernel
  3708. @section CUDA Kernel
  3709. @smallexample
  3710. @include vector_scal_cuda.texi
  3711. @end smallexample
  3712. @node OpenCL Kernel
  3713. @section OpenCL Kernel
  3714. @menu
  3715. * Invoking the kernel::
  3716. * Source of the kernel::
  3717. @end menu
  3718. @node Invoking the kernel
  3719. @subsection Invoking the kernel
  3720. @smallexample
  3721. @include vector_scal_opencl.texi
  3722. @end smallexample
  3723. @node Source of the kernel
  3724. @subsection Source of the kernel
  3725. @smallexample
  3726. @include vector_scal_opencl_codelet.texi
  3727. @end smallexample
  3728. @c
  3729. @c Indices.
  3730. @c
  3731. @node Function Index
  3732. @unnumbered Function Index
  3733. @printindex fn
  3734. @bye