starpu_trace_state_stats.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. #!/usr/bin/python2.7
  2. ##
  3. # StarPU --- Runtime system for heterogeneous multicore architectures.
  4. #
  5. # Copyright (C) 2016 INRIA
  6. #
  7. # StarPU is free software; you can redistribute it and/or modify
  8. # it under the terms of the GNU Lesser General Public License as published by
  9. # the Free Software Foundation; either version 2.1 of the License, or (at
  10. # your option) any later version.
  11. #
  12. # StarPU is distributed in the hope that it will be useful, but
  13. # WITHOUT ANY WARRANTY; without even the implied warranty of
  14. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. #
  16. # See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. ##
  18. ##
  19. # This script parses the generated trace.rec file and reports statistics about
  20. # the number of different events/tasks and their durations. The report is
  21. # similar to the starpu_paje_state_stats.in script, except that this one
  22. # doesn't need R and pj_dump (from the pajeng repository), and it is also much
  23. # faster.
  24. ##
  25. import getopt
  26. import os
  27. import sys
  28. class Event():
  29. def __init__(self, type, name, category, start_time):
  30. self._type = type
  31. self._name = name
  32. self._category = category
  33. self._start_time = start_time
  34. class EventStats():
  35. def __init__(self, name, duration_time, category, count = 1):
  36. self._name = name
  37. self._duration_time = duration_time
  38. self._category = category
  39. self._count = count
  40. def aggregate(self, duration_time):
  41. self._duration_time += duration_time
  42. self._count += 1
  43. def show(self):
  44. if not self._name == None and not self._category == None:
  45. print "\"" + self._name + "\"," + str(self._count) + ",\"" + self._category + "\"," + str(round(self._duration_time, 6))
  46. class Worker():
  47. def __init__(self, id):
  48. self._id = id
  49. self._events = []
  50. self._stats = []
  51. self._stack = []
  52. def get_event_stats(self, name):
  53. for stat in self._stats:
  54. if stat._name == name:
  55. return stat
  56. return None
  57. def add_event(self, type, name, category, start_time):
  58. self._events.append(Event(type, name, category, start_time))
  59. def add_event_to_stats(self, curr_event, next_event):
  60. if curr_event._type == "PushState":
  61. self._stack.append(curr_event)
  62. return # Will look later to find a PopState event.
  63. elif curr_event._type == "PopState":
  64. if len(self._stack) == 0:
  65. sys.exit("ERROR: The trace is most likely corrupted "
  66. "because a PopState event has been found without "
  67. "a PushState!")
  68. next_event = curr_event
  69. curr_event = self._stack.pop()
  70. else:
  71. if curr_event._type != "SetState":
  72. sys.exit("ERROR: Invalid event type!")
  73. # Compute duration with the next event.
  74. a = curr_event._start_time
  75. b = next_event._start_time
  76. # Add the event to the list of stats.
  77. for i in xrange(len(self._stats)):
  78. if self._stats[i]._name == curr_event._name:
  79. self._stats[i].aggregate(b - a)
  80. return
  81. self._stats.append(EventStats(curr_event._name, b - a,
  82. curr_event._category))
  83. def calc_stats(self, start_profiling_times, stop_profiling_times):
  84. # For all events except the last one.
  85. num_events = len(self._events) - 1
  86. use_start_stop = len(start_profiling_times) != 0
  87. for i in xrange(0, num_events):
  88. curr_event = self._events[i]
  89. next_event = self._events[i+1]
  90. if not use_start_stop:
  91. self.add_event_to_stats(curr_event, next_event)
  92. continue
  93. # Check if the event is inbetween start/stop profiling events
  94. for t in xrange(len(start_profiling_times)):
  95. if (curr_event._start_time > start_profiling_times[t] and
  96. curr_event._start_time < stop_profiling_times[t]):
  97. self.add_event_to_stats(curr_event, next_event)
  98. break
  99. if not use_start_stop:
  100. return
  101. # Get the last event
  102. curr_event = self._events[num_events]
  103. next_event = None
  104. if curr_event._type == "SetState":
  105. for i in xrange(len(start_profiling_times)):
  106. if (curr_event._start_time > start_profiling_times[i] and
  107. curr_event._start_time < stop_profiling_times[i]):
  108. next_event = Event("SetState", "StopProfiling", "Program",
  109. stop_profiling_times[i])
  110. self.add_event_to_stats(curr_event, next_event)
  111. elif curr_event._type == "PopState":
  112. self.add_event_to_stats(curr_event, next_event)
  113. def read_blocks(input_file):
  114. empty_lines = 0
  115. first_line = 1
  116. blocks = []
  117. for line in open(input_file):
  118. if first_line:
  119. blocks.append([])
  120. blocks[-1].append(line)
  121. first_line = 0
  122. # Check for empty lines
  123. if not line or line[0] == '\n':
  124. # If 1st one: new block
  125. if empty_lines == 0:
  126. blocks.append([])
  127. empty_lines += 1
  128. else:
  129. # Non empty line: add line in current(last) block
  130. empty_lines = 0
  131. blocks[-1].append(line)
  132. return blocks
  133. def read_field(field, index):
  134. return field[index+1:-1]
  135. def insert_worker_event(workers, prog_events, block):
  136. worker_id = -1
  137. name = None
  138. start_time = 0.0
  139. category = None
  140. for line in block:
  141. key = line[:2]
  142. value = read_field(line, 2)
  143. if key == "E:": # EventType
  144. event_type = value
  145. elif key == "C:": # Category
  146. category = value
  147. elif key == "W:": # WorkerId
  148. worker_id = int(value)
  149. elif key == "N:": # Name
  150. name = value
  151. elif key == "S:": # StartTime
  152. start_time = float(value)
  153. # Program events don't belong to workers, they are globals.
  154. if category == "Program":
  155. prog_events.append(Event(event_type, name, category, start_time))
  156. return
  157. for worker in workers:
  158. if worker._id == worker_id:
  159. worker.add_event(event_type, name, category, start_time)
  160. return
  161. worker = Worker(worker_id)
  162. worker.add_event(event_type, name, category, start_time)
  163. workers.append(worker)
  164. def calc_times(stats):
  165. tr = 0.0 # Runtime
  166. tt = 0.0 # Task
  167. ti = 0.0 # Idle
  168. ts = 0.0 # Scheduling
  169. for stat in stats:
  170. if stat._category == None:
  171. continue
  172. if stat._category == "Runtime":
  173. if stat._name == "Scheduling":
  174. # Scheduling time is part of runtime but we want to have
  175. # it separately.
  176. ts += stat._duration_time
  177. else:
  178. tr += stat._duration_time
  179. elif stat._category == "Task":
  180. tt += stat._duration_time
  181. elif stat._category == "Other":
  182. ti += stat._duration_time
  183. else:
  184. print "WARNING: Unknown category '" + stat._category + "'!"
  185. return (ti, tr, tt, ts)
  186. def save_times(ti, tr, tt, ts):
  187. f = open("times.csv", "w+")
  188. f.write("\"Time\",\"Duration\"\n")
  189. f.write("\"Runtime\"," + str(tr) + "\n")
  190. f.write("\"Task\"," + str(tt) + "\n")
  191. f.write("\"Idle\"," + str(ti) + "\n")
  192. f.write("\"Scheduling\"," + str(ts) + "\n")
  193. f.close()
  194. def calc_et(tt_1, tt_p):
  195. """ Compute the task efficiency (et). This measures the exploitation of
  196. data locality. """
  197. return tt_1 / tt_p
  198. def calc_es(tt_p, ts_p):
  199. """ Compute the scheduling efficiency (es). This measures time spent in
  200. the runtime scheduler. """
  201. return tt_p / (tt_p + ts_p)
  202. def calc_er(tt_p, tr_p, ts_p):
  203. """ Compute the runtime efficiency (er). This measures how the runtime
  204. overhead affects performance."""
  205. return (tt_p + ts_p) / (tt_p + tr_p + ts_p)
  206. def calc_ep(tt_p, tr_p, ti_p, ts_p):
  207. """ Compute the pipeline efficiency (et). This measures how much
  208. concurrency is available and how well it's exploited. """
  209. return (tt_p + tr_p + ts_p) / (tt_p + tr_p + ti_p + ts_p)
  210. def calc_e(et, er, ep, es):
  211. """ Compute the parallel efficiency. """
  212. return et * er * ep * es
  213. def save_efficiencies(e, ep, er, et, es):
  214. f = open("efficiencies.csv", "w+")
  215. f.write("\"Efficiency\",\"Value\"\n")
  216. f.write("\"Parallel\"," + str(e) + "\n")
  217. f.write("\"Task\"," + str(et) + "\n")
  218. f.write("\"Runtime\"," + str(er) + "\n")
  219. f.write("\"Scheduling\"," + str(es) + "\n")
  220. f.write("\"Pipeline\"," + str(ep) + "\n")
  221. f.close()
  222. def usage():
  223. print "USAGE:"
  224. print "starpu_trace_state_stats.py [ -te -s=<time> ] <trace.rec>"
  225. print
  226. print "OPTIONS:"
  227. print " -t or --time Compute and dump times to times.csv"
  228. print
  229. print " -e or --efficiency Compute and dump efficiencies to efficiencies.csv"
  230. print
  231. print " -s or --seq_task_time Used to compute task efficiency between sequential and parallel times"
  232. print " (if not set, task efficiency will be 1.0)"
  233. print
  234. print "EXAMPLES:"
  235. print "# Compute event statistics and report them to stdout:"
  236. print "python starpu_trace_state_stats.py trace.rec"
  237. print
  238. print "# Compute event stats, times and efficiencies:"
  239. print "python starpu_trace_state_stats.py -te trace.rec"
  240. print
  241. print "# Compute correct task efficiency with the sequential task time:"
  242. print "python starpu_trace_state_stats.py -s=60093.950614 trace.rec"
  243. def main():
  244. try:
  245. opts, args = getopt.getopt(sys.argv[1:], "hets:",
  246. ["help", "time", "efficiency", "seq_task_time="])
  247. except getopt.GetoptError as err:
  248. usage()
  249. sys.exit(1)
  250. dump_time = False
  251. dump_efficiency = False
  252. tt_1 = 0.0
  253. for o, a in opts:
  254. if o in ("-h", "--help"):
  255. usage()
  256. sys.exit()
  257. elif o in ("-t", "--time"):
  258. dump_time = True
  259. elif o in ("-e", "--efficiency"):
  260. dump_efficiency = True
  261. elif o in ("-s", "--seq_task_time"):
  262. tt_1 = float(a)
  263. if len(args) < 1:
  264. usage()
  265. sys.exit()
  266. recfile = args[0]
  267. if not os.path.isfile(recfile):
  268. sys.exit("File does not exist!")
  269. # Declare a list for all workers.
  270. workers = []
  271. # Declare a list for program events
  272. prog_events = []
  273. # Read the recutils file format per blocks.
  274. blocks = read_blocks(recfile)
  275. for block in blocks:
  276. if not len(block) == 0:
  277. first_line = block[0]
  278. if first_line[:2] == "E:":
  279. insert_worker_event(workers, prog_events, block)
  280. # Find allowed range times between start/stop profiling events.
  281. start_profiling_times = []
  282. stop_profiling_times = []
  283. for prog_event in prog_events:
  284. if prog_event._name == "start_profiling":
  285. start_profiling_times.append(prog_event._start_time)
  286. if prog_event._name == "stop_profiling":
  287. stop_profiling_times.append(prog_event._start_time)
  288. if len(start_profiling_times) != len(stop_profiling_times):
  289. sys.exit("Mismatch number of start/stop profiling events!")
  290. # Compute worker statistics.
  291. stats = []
  292. for worker in workers:
  293. worker.calc_stats(start_profiling_times, stop_profiling_times)
  294. for stat in worker._stats:
  295. found = False
  296. for s in stats:
  297. if stat._name == s._name:
  298. found = True
  299. break
  300. if not found == True:
  301. stats.append(EventStats(stat._name, 0.0, stat._category, 0))
  302. # Compute global statistics for all workers.
  303. for i in xrange(0, len(workers)):
  304. for stat in stats:
  305. s = workers[i].get_event_stats(stat._name)
  306. if not s == None:
  307. # A task might not be executed on all workers.
  308. stat._duration_time += s._duration_time
  309. stat._count += s._count
  310. # Output statistics.
  311. print "\"Name\",\"Count\",\"Type\",\"Duration\""
  312. for stat in stats:
  313. stat.show()
  314. # Compute runtime, task, idle, scheduling times and dump them to times.csv
  315. ti_p = tr_p = tt_p = ts_p = 0.0
  316. if dump_time == True:
  317. ti_p, tr_p, tt_p, ts_p = calc_times(stats)
  318. save_times(ti_p, tr_p, tt_p, ts_p)
  319. # Compute runtime, task, idle efficiencies and dump them to
  320. # efficiencies.csv.
  321. if dump_efficiency == True or not tt_1 == 0.0:
  322. if dump_time == False:
  323. ti_p, tr_p, tt_p = ts_p = calc_times(stats)
  324. if tt_1 == 0.0:
  325. sys.stderr.write("WARNING: Task efficiency will be 1.0 because -s is not set!\n")
  326. tt_1 = tt_p
  327. # Compute efficiencies.
  328. et = round(calc_et(tt_1, tt_p), 6)
  329. es = round(calc_es(tt_p, ts_p), 6)
  330. er = round(calc_er(tt_p, tr_p, ts_p), 6)
  331. ep = round(calc_ep(tt_p, tr_p, ti_p, ts_p), 6)
  332. e = round(calc_e(et, er, ep, es), 6)
  333. save_efficiencies(e, ep, er, et, es)
  334. if __name__ == "__main__":
  335. main()