async_tasks_overhead.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <sys/time.h>
  18. #include <pthread.h>
  19. #include <stdio.h>
  20. #include <unistd.h>
  21. #include <starpu.h>
  22. #include <starpu_profiling.h>
  23. #include "../common/helper.h"
  24. static unsigned ntasks = 65536;
  25. //static unsigned finished = 0;
  26. static double cumulated = 0.0;
  27. static double cumulated_push = 0.0;
  28. static double cumulated_pop = 0.0;
  29. static void dummy_func(void *descr[] __attribute__ ((unused)), void *arg __attribute__ ((unused)))
  30. {
  31. }
  32. static starpu_codelet dummy_codelet =
  33. {
  34. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL|STARPU_GORDON,
  35. .cpu_func = dummy_func,
  36. .cuda_func = dummy_func,
  37. .opencl_func = dummy_func,
  38. #ifdef STARPU_USE_GORDON
  39. .gordon_func = 0, /* this will be defined later */
  40. #endif
  41. .model = NULL,
  42. .nbuffers = 0
  43. };
  44. static void init_gordon_kernel(void)
  45. {
  46. #ifdef STARPU_USE_GORDON
  47. unsigned elf_id =
  48. gordon_register_elf_plugin("./microbenchs/null_kernel_gordon.spuelf");
  49. gordon_load_plugin_on_all_spu(elf_id);
  50. unsigned gordon_null_kernel =
  51. gordon_register_kernel(elf_id, "empty_kernel");
  52. gordon_load_kernel_on_all_spu(gordon_null_kernel);
  53. dummy_codelet.gordon_func = gordon_null_kernel;
  54. #endif
  55. }
  56. //static void inject_one_task(void)
  57. //{
  58. // struct starpu_task *task = starpu_task_create();
  59. //
  60. // task->cl = &dummy_codelet;
  61. // task->cl_arg = NULL;
  62. // task->detach = 0;
  63. //
  64. // int ret = starpu_task_submit(task);
  65. // STARPU_ASSERT(!ret);
  66. //}
  67. static struct starpu_conf conf = {
  68. .sched_policy_name = NULL,
  69. .ncpus = -1,
  70. .ncuda = -1,
  71. .nopencl = -1,
  72. .nspus = -1,
  73. .use_explicit_workers_bindid = 0,
  74. .use_explicit_workers_cuda_gpuid = 0,
  75. .use_explicit_workers_opencl_gpuid = 0,
  76. .calibrate = 0
  77. };
  78. static void usage(char **argv)
  79. {
  80. fprintf(stderr, "%s [-i ntasks] [-p sched_policy] [-h]\n", argv[0]);
  81. exit(-1);
  82. }
  83. static void parse_args(int argc, char **argv)
  84. {
  85. int c;
  86. while ((c = getopt(argc, argv, "i:p:h")) != -1)
  87. switch(c) {
  88. case 'i':
  89. ntasks = atoi(optarg);
  90. break;
  91. case 'p':
  92. conf.sched_policy_name = optarg;
  93. break;
  94. case 'h':
  95. usage(argv);
  96. break;
  97. }
  98. }
  99. int main(int argc, char **argv)
  100. {
  101. int ret;
  102. unsigned i;
  103. double timing;
  104. struct timeval start;
  105. struct timeval end;
  106. parse_args(argc, argv);
  107. ret = starpu_init(&conf);
  108. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  109. init_gordon_kernel();
  110. starpu_profiling_status_set(STARPU_PROFILING_ENABLE);
  111. fprintf(stderr, "#tasks : %u\n", ntasks);
  112. /* Create an array of tasks */
  113. struct starpu_task **tasks = (struct starpu_task **) malloc(ntasks*sizeof(struct starpu_task *));
  114. for (i = 0; i < ntasks; i++)
  115. {
  116. struct starpu_task *task = starpu_task_create();
  117. task->cl = &dummy_codelet;
  118. task->cl_arg = NULL;
  119. task->detach = 0;
  120. tasks[i] = task;
  121. }
  122. gettimeofday(&start, NULL);
  123. for (i = 0; i < ntasks; i++)
  124. {
  125. int ret = starpu_task_submit(tasks[i]);
  126. if (ret == -ENODEV) goto enodev;
  127. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  128. }
  129. ret = starpu_task_wait_for_all();
  130. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_wait_for_all");
  131. gettimeofday(&end, NULL);
  132. /* Read profiling feedback */
  133. for (i = 0; i < ntasks; i++)
  134. {
  135. struct starpu_task_profiling_info *info;
  136. info = tasks[i]->profiling_info;
  137. double queued = starpu_timing_timespec_delay_us(&info->push_end_time, &info->pop_end_time);
  138. double length = starpu_timing_timespec_delay_us(&info->submit_time, &info->end_time);
  139. double push_duration = starpu_timing_timespec_delay_us(&info->push_start_time, &info->push_end_time);
  140. double pop_duration = starpu_timing_timespec_delay_us(&info->pop_start_time, &info->pop_end_time);
  141. cumulated += (length - queued);
  142. cumulated_push += push_duration;
  143. cumulated_pop += pop_duration;
  144. }
  145. timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  146. fprintf(stderr, "Total: %f secs\n", timing/1000000);
  147. fprintf(stderr, "Per task: %f usecs\n", timing/ntasks);
  148. fprintf(stderr, "Per task (except scheduler): %f usecs\n", cumulated/ntasks);
  149. fprintf(stderr, "Per task (push): %f usecs\n", cumulated_push/ntasks);
  150. fprintf(stderr, "Per task (pop): %f usecs\n", cumulated_pop/ntasks);
  151. {
  152. char *output_dir = getenv("STARPU_BENCH_DIR");
  153. char *bench_id = getenv("STARPU_BENCH_ID");
  154. if (output_dir && bench_id) {
  155. char file[1024];
  156. FILE *f;
  157. sprintf(file, "%s/async_tasks_overhead_total.dat", output_dir);
  158. f = fopen(file, "a");
  159. fprintf(f, "%s\t%f\n", bench_id, timing/1000000);
  160. fclose(f);
  161. sprintf(file, "%s/async_tasks_overhead_per_task.dat", output_dir);
  162. f = fopen(file, "a");
  163. fprintf(f, "%s\t%f\n", bench_id, timing/ntasks);
  164. fclose(f);
  165. }
  166. }
  167. starpu_shutdown();
  168. free(tasks);
  169. return 0;
  170. enodev:
  171. fprintf(stderr, "WARNING: No one can execute this task\n");
  172. /* yes, we do not perform the computation but we did detect that no one
  173. * could perform the kernel, so this is not an error from StarPU */
  174. starpu_shutdown();
  175. return 77;
  176. }