starpu.texi 144 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance options:: Performance options worth knowing
  31. * Performance feedback:: Performance debugging tools
  32. * Configuring StarPU:: How to configure StarPU
  33. * StarPU API:: The API to use StarPU
  34. * Advanced Topics:: Advanced use of StarPU
  35. * Full source code for the 'Scaling a Vector' example::
  36. @end menu
  37. @c ---------------------------------------------------------------------
  38. @c Introduction to StarPU
  39. @c ---------------------------------------------------------------------
  40. @node Introduction
  41. @chapter Introduction to StarPU
  42. @menu
  43. * Motivation:: Why StarPU ?
  44. * StarPU in a Nutshell:: The Fundamentals of StarPU
  45. @end menu
  46. @node Motivation
  47. @section Motivation
  48. @c complex machines with heterogeneous cores/devices
  49. The use of specialized hardware such as accelerators or coprocessors offers an
  50. interesting approach to overcome the physical limits encountered by processor
  51. architects. As a result, many machines are now equipped with one or several
  52. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  53. efforts have been devoted to offload computation onto such accelerators, very
  54. little attention as been paid to portability concerns on the one hand, and to the
  55. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  56. StarPU is a runtime system that offers support for heterogeneous multicore
  57. architectures, it not only offers a unified view of the computational resources
  58. (i.e. CPUs and accelerators at the same time), but it also takes care of
  59. efficiently mapping and executing tasks onto an heterogeneous machine while
  60. transparently handling low-level issues such as data transfers in a portable
  61. fashion.
  62. @c this leads to a complicated distributed memory design
  63. @c which is not (easily) manageable by hand
  64. @c added value/benefits of StarPU
  65. @c - portability
  66. @c - scheduling, perf. portability
  67. @node StarPU in a Nutshell
  68. @section StarPU in a Nutshell
  69. @menu
  70. * Codelet and Tasks::
  71. * StarPU Data Management Library::
  72. * Research Papers::
  73. @end menu
  74. From a programming point of view, StarPU is not a new language but a library
  75. that executes tasks explicitly submitted by the application. The data that a
  76. task manipulates are automatically transferred onto the accelerator so that the
  77. programmer does not have to take care of complex data movements. StarPU also
  78. takes particular care of scheduling those tasks efficiently and allows
  79. scheduling experts to implement custom scheduling policies in a portable
  80. fashion.
  81. @c explain the notion of codelet and task (i.e. g(A, B)
  82. @node Codelet and Tasks
  83. @subsection Codelet and Tasks
  84. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  85. computational kernel that can possibly be implemented on multiple architectures
  86. such as a CPU, a CUDA device or a Cell's SPU.
  87. @c TODO insert illustration f : f_spu, f_cpu, ...
  88. Another important data structure is the @b{task}. Executing a StarPU task
  89. consists in applying a codelet on a data set, on one of the architectures on
  90. which the codelet is implemented. In addition to the codelet that a task
  91. useuses, it also describes which data are accessed, and how they are
  92. accessed during the computation (read and/or write).
  93. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  94. operation. The task structure can also specify a @b{callback} function that is
  95. called once StarPU has properly executed the task. It also contains optional
  96. fields that the application may use to give hints to the scheduler (such as
  97. priority levels).
  98. A task may be identified by a unique 64-bit number chosen by the application
  99. which we refer as a @b{tag}.
  100. Task dependencies can be enforced either by the means of callback functions, by
  101. expressing dependencies between explicit tasks or by expressing dependencies
  102. between tags (which can thus correspond to tasks that have not been submitted
  103. yet).
  104. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  105. @c DSM
  106. @node StarPU Data Management Library
  107. @subsection StarPU Data Management Library
  108. Because StarPU schedules tasks at runtime, data transfers have to be
  109. done automatically and ``just-in-time'' between processing units,
  110. relieving the application programmer from explicit data transfers.
  111. Moreover, to avoid unnecessary transfers, StarPU keeps data
  112. where it was last needed, even if was modified there, and it
  113. allows multiple copies of the same data to reside at the same time on
  114. several processing units as long as it is not modified.
  115. @node Research Papers
  116. @subsection Research Papers
  117. Research papers about StarPU can be found at
  118. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  119. Notably a good overview in the research report
  120. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  121. @c ---------------------------------------------------------------------
  122. @c Installing StarPU
  123. @c ---------------------------------------------------------------------
  124. @node Installing StarPU
  125. @chapter Installing StarPU
  126. @menu
  127. * Downloading StarPU::
  128. * Configuration of StarPU::
  129. * Building and Installing StarPU::
  130. @end menu
  131. StarPU can be built and installed by the standard means of the GNU
  132. autotools. The following chapter is intended to briefly remind how these tools
  133. can be used to install StarPU.
  134. @node Downloading StarPU
  135. @section Downloading StarPU
  136. @menu
  137. * Getting Sources::
  138. * Optional dependencies::
  139. @end menu
  140. @node Getting Sources
  141. @subsection Getting Sources
  142. The simplest way to get StarPU sources is to download the latest official
  143. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  144. or the latest nightly snapshot from
  145. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  146. how to get the very latest version from the subversion repository itself, it
  147. should be needed only if you need the very latest changes (i.e. less than a
  148. day!)
  149. The source code is managed by a Subversion server hosted by the
  150. InriaGforge. To get the source code, you need:
  151. @itemize
  152. @item
  153. To install the client side of the software Subversion if it is
  154. not already available on your system. The software can be obtained from
  155. @indicateurl{http://subversion.tigris.org} . If you are running
  156. on Windows, you will probably prefer to use TortoiseSVN from
  157. @indicateurl{http://tortoisesvn.tigris.org/} .
  158. @item
  159. You can check out the project's SVN repository through anonymous
  160. access. This will provide you with a read access to the
  161. repository.
  162. If you need to have write access on the StarPU project, you can also choose to
  163. become a member of the project @code{starpu}. For this, you first need to get
  164. an account to the gForge server. You can then send a request to join the project
  165. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  166. @item
  167. More information on how to get a gForge account, to become a member of
  168. a project, or on any other related task can be obtained from the
  169. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  170. thing is to upload your public SSH key on the gForge server (see the
  171. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  172. instructions).
  173. @end itemize
  174. You can now check out the latest version from the Subversion server:
  175. @itemize
  176. @item
  177. using the anonymous access via svn:
  178. @example
  179. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  180. @end example
  181. @item
  182. using the anonymous access via https:
  183. @example
  184. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. The password is @code{anonsvn}.
  187. @item
  188. using your gForge account
  189. @example
  190. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  191. @end example
  192. @end itemize
  193. These steps require to run autoconf and automake to generate the
  194. @code{./configure} script. This can be done by calling
  195. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  196. higher. You will also need makeinfo.
  197. @example
  198. % ./autogen.sh
  199. @end example
  200. If the autotools are not available on your machine or not recent
  201. enough, you can choose to download the latest nightly tarball, which
  202. is provided with a @code{configure} script.
  203. @example
  204. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  205. @end example
  206. @node Optional dependencies
  207. @subsection Optional dependencies
  208. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  209. but strongly recommended. It allows to increase performance, and to
  210. perform some topology aware scheduling.
  211. @code{hwloc} is available in major distributions and for most OSes and can be
  212. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  213. @node Configuration of StarPU
  214. @section Configuration of StarPU
  215. @menu
  216. * Generating Makefiles and configuration scripts::
  217. * Running the configuration::
  218. @end menu
  219. @node Generating Makefiles and configuration scripts
  220. @subsection Generating Makefiles and configuration scripts
  221. This step is not necessary when using the tarball releases of StarPU. If you
  222. are using the source code from the svn repository, you first need to generate
  223. the configure scripts and the Makefiles.
  224. @example
  225. % ./autogen.sh
  226. @end example
  227. @node Running the configuration
  228. @subsection Running the configuration
  229. @example
  230. % ./configure
  231. @end example
  232. Details about options that are useful to give to @code{./configure} are given in
  233. @ref{Compilation configuration}.
  234. @node Building and Installing StarPU
  235. @section Building and Installing StarPU
  236. @menu
  237. * Building::
  238. * Sanity Checks::
  239. * Installing::
  240. @end menu
  241. @node Building
  242. @subsection Building
  243. @example
  244. % make
  245. @end example
  246. @node Sanity Checks
  247. @subsection Sanity Checks
  248. In order to make sure that StarPU is working properly on the system, it is also
  249. possible to run a test suite.
  250. @example
  251. % make check
  252. @end example
  253. @node Installing
  254. @subsection Installing
  255. In order to install StarPU at the location that was specified during
  256. configuration:
  257. @example
  258. % make install
  259. @end example
  260. @c ---------------------------------------------------------------------
  261. @c Using StarPU
  262. @c ---------------------------------------------------------------------
  263. @node Using StarPU
  264. @chapter Using StarPU
  265. @menu
  266. * Setting flags for compiling and linking applications::
  267. * Running a basic StarPU application::
  268. * Kernel threads started by StarPU::
  269. * Using accelerators::
  270. @end menu
  271. @node Setting flags for compiling and linking applications
  272. @section Setting flags for compiling and linking applications
  273. Compiling and linking an application against StarPU may require to use
  274. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  275. To this end, it is possible to use the @code{pkg-config} tool.
  276. If StarPU was not installed at some standard location, the path of StarPU's
  277. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  278. that @code{pkg-config} can find it. For example if StarPU was installed in
  279. @code{$prefix_dir}:
  280. @example
  281. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  282. @end example
  283. The flags required to compile or link against StarPU are then
  284. accessible with the following commands:
  285. @example
  286. % pkg-config --cflags libstarpu # options for the compiler
  287. % pkg-config --libs libstarpu # options for the linker
  288. @end example
  289. @node Running a basic StarPU application
  290. @section Running a basic StarPU application
  291. Basic examples using StarPU have been built in the directory
  292. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  293. example @code{vector_scal}.
  294. @example
  295. % $prefix_dir/lib/starpu/examples/vector_scal
  296. BEFORE : First element was 1.000000
  297. AFTER First element is 3.140000
  298. %
  299. @end example
  300. When StarPU is used for the first time, the directory
  301. @code{$HOME/.starpu/} is created, performance models will be stored in
  302. that directory.
  303. Please note that buses are benchmarked when StarPU is launched for the
  304. first time. This may take a few minutes, or less if @code{hwloc} is
  305. installed. This step is done only once per user and per machine.
  306. @node Kernel threads started by StarPU
  307. @section Kernel threads started by StarPU
  308. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  309. them per GPU. The application is not supposed to do computations in its own
  310. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  311. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  312. worker).
  313. @node Using accelerators
  314. @section Using accelerators
  315. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  316. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  317. This design choice was necessary as OpenCL and CUDA can not run at the
  318. same time on the same NVIDIA GPU, as there is currently no interoperability
  319. between them.
  320. Details on how to specify devices running OpenCL and the ones running
  321. CUDA are given in @ref{Enabling OpenCL}.
  322. @c ---------------------------------------------------------------------
  323. @c Basic Examples
  324. @c ---------------------------------------------------------------------
  325. @node Basic Examples
  326. @chapter Basic Examples
  327. @menu
  328. * Compiling and linking options::
  329. * Hello World:: Submitting Tasks
  330. * Scaling a Vector:: Manipulating Data
  331. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  332. * Task and Worker Profiling::
  333. * Partitioning Data:: Partitioning Data
  334. * Performance model example::
  335. * Theoretical lower bound on execution time::
  336. * More examples:: More examples shipped with StarPU
  337. @end menu
  338. @node Compiling and linking options
  339. @section Compiling and linking options
  340. Let's suppose StarPU has been installed in the directory
  341. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  342. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  343. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  344. libraries at runtime.
  345. @example
  346. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  347. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  348. @end example
  349. The Makefile could for instance contain the following lines to define which
  350. options must be given to the compiler and to the linker:
  351. @cartouche
  352. @example
  353. CFLAGS += $$(pkg-config --cflags libstarpu)
  354. LDFLAGS += $$(pkg-config --libs libstarpu)
  355. @end example
  356. @end cartouche
  357. @node Hello World
  358. @section Hello World
  359. @menu
  360. * Required Headers::
  361. * Defining a Codelet::
  362. * Submitting a Task::
  363. * Execution of Hello World::
  364. @end menu
  365. In this section, we show how to implement a simple program that submits a task to StarPU.
  366. @node Required Headers
  367. @subsection Required Headers
  368. The @code{starpu.h} header should be included in any code using StarPU.
  369. @cartouche
  370. @smallexample
  371. #include <starpu.h>
  372. @end smallexample
  373. @end cartouche
  374. @node Defining a Codelet
  375. @subsection Defining a Codelet
  376. @cartouche
  377. @smallexample
  378. struct params @{
  379. int i;
  380. float f;
  381. @};
  382. void cpu_func(void *buffers[], void *cl_arg)
  383. @{
  384. struct params *params = cl_arg;
  385. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  386. @}
  387. starpu_codelet cl =
  388. @{
  389. .where = STARPU_CPU,
  390. .cpu_func = cpu_func,
  391. .nbuffers = 0
  392. @};
  393. @end smallexample
  394. @end cartouche
  395. A codelet is a structure that represents a computational kernel. Such a codelet
  396. may contain an implementation of the same kernel on different architectures
  397. (e.g. CUDA, Cell's SPU, x86, ...).
  398. The @code{nbuffers} field specifies the number of data buffers that are
  399. manipulated by the codelet: here the codelet does not access or modify any data
  400. that is controlled by our data management library. Note that the argument
  401. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  402. structure) does not count as a buffer since it is not managed by our data
  403. management library, but just contain trivial parameters.
  404. @c TODO need a crossref to the proper description of "where" see bla for more ...
  405. We create a codelet which may only be executed on the CPUs. The @code{where}
  406. field is a bitmask that defines where the codelet may be executed. Here, the
  407. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  408. (@pxref{Codelets and Tasks} for more details on this field).
  409. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  410. which @emph{must} have the following prototype:
  411. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  412. In this example, we can ignore the first argument of this function which gives a
  413. description of the input and output buffers (e.g. the size and the location of
  414. the matrices) since there is none.
  415. The second argument is a pointer to a buffer passed as an
  416. argument to the codelet by the means of the @code{cl_arg} field of the
  417. @code{starpu_task} structure.
  418. @c TODO rewrite so that it is a little clearer ?
  419. Be aware that this may be a pointer to a
  420. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  421. if the codelet modifies this buffer, there is no guarantee that the initial
  422. buffer will be modified as well: this for instance implies that the buffer
  423. cannot be used as a synchronization medium. If synchronization is needed, data
  424. has to be registered to StarPU, see @ref{Scaling a Vector}.
  425. @node Submitting a Task
  426. @subsection Submitting a Task
  427. @cartouche
  428. @smallexample
  429. void callback_func(void *callback_arg)
  430. @{
  431. printf("Callback function (arg %x)\n", callback_arg);
  432. @}
  433. int main(int argc, char **argv)
  434. @{
  435. /* @b{initialize StarPU} */
  436. starpu_init(NULL);
  437. struct starpu_task *task = starpu_task_create();
  438. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  439. struct params params = @{ 1, 2.0f @};
  440. task->cl_arg = &params;
  441. task->cl_arg_size = sizeof(params);
  442. task->callback_func = callback_func;
  443. task->callback_arg = 0x42;
  444. /* @b{starpu_task_submit will be a blocking call} */
  445. task->synchronous = 1;
  446. /* @b{submit the task to StarPU} */
  447. starpu_task_submit(task);
  448. /* @b{terminate StarPU} */
  449. starpu_shutdown();
  450. return 0;
  451. @}
  452. @end smallexample
  453. @end cartouche
  454. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  455. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  456. be submitted after the termination of StarPU by a call to
  457. @code{starpu_shutdown}.
  458. In the example above, a task structure is allocated by a call to
  459. @code{starpu_task_create}. This function only allocates and fills the
  460. corresponding structure with the default settings (@pxref{starpu_task_create}),
  461. but it does not submit the task to StarPU.
  462. @c not really clear ;)
  463. The @code{cl} field is a pointer to the codelet which the task will
  464. execute: in other words, the codelet structure describes which computational
  465. kernel should be offloaded on the different architectures, and the task
  466. structure is a wrapper containing a codelet and the piece of data on which the
  467. codelet should operate.
  468. The optional @code{cl_arg} field is a pointer to a buffer (of size
  469. @code{cl_arg_size}) with some parameters for the kernel
  470. described by the codelet. For instance, if a codelet implements a computational
  471. kernel that multiplies its input vector by a constant, the constant could be
  472. specified by the means of this buffer, instead of registering it as a StarPU
  473. data.
  474. Once a task has been executed, an optional callback function is be called.
  475. While the computational kernel could be offloaded on various architectures, the
  476. callback function is always executed on a CPU. The @code{callback_arg}
  477. pointer is passed as an argument of the callback. The prototype of a callback
  478. function must be:
  479. @code{void (*callback_function)(void *);}
  480. If the @code{synchronous} field is non-zero, task submission will be
  481. synchronous: the @code{starpu_task_submit} function will not return until the
  482. task was executed. Note that the @code{starpu_shutdown} method does not
  483. guarantee that asynchronous tasks have been executed before it returns,
  484. @code{starpu_task_wait_for_all} can be used to that effect..
  485. @node Execution of Hello World
  486. @subsection Execution of Hello World
  487. @smallexample
  488. % make hello_world
  489. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  490. % ./hello_world
  491. Hello world (params = @{1, 2.000000@} )
  492. Callback function (arg 42)
  493. @end smallexample
  494. @node Scaling a Vector
  495. @section Manipulating Data: Scaling a Vector
  496. The previous example has shown how to submit tasks. In this section,
  497. we show how StarPU tasks can manipulate data. The full source code for
  498. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  499. @menu
  500. * Source code of Vector Scaling::
  501. * Execution of Vector Scaling::
  502. @end menu
  503. @node Source code of Vector Scaling
  504. @subsection Source code of Vector Scaling
  505. Programmers can describe the data layout of their application so that StarPU is
  506. responsible for enforcing data coherency and availability across the machine.
  507. Instead of handling complex (and non-portable) mechanisms to perform data
  508. movements, programmers only declare which piece of data is accessed and/or
  509. modified by a task, and StarPU makes sure that when a computational kernel
  510. starts somewhere (e.g. on a GPU), its data are available locally.
  511. Before submitting those tasks, the programmer first needs to declare the
  512. different pieces of data to StarPU using the @code{starpu_*_data_register}
  513. functions. To ease the development of applications for StarPU, it is possible
  514. to describe multiple types of data layout. A type of data layout is called an
  515. @b{interface}. There are different predefined interfaces available in StarPU:
  516. here we will consider the @b{vector interface}.
  517. The following lines show how to declare an array of @code{NX} elements of type
  518. @code{float} using the vector interface:
  519. @cartouche
  520. @smallexample
  521. float vector[NX];
  522. starpu_data_handle vector_handle;
  523. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  524. sizeof(vector[0]));
  525. @end smallexample
  526. @end cartouche
  527. The first argument, called the @b{data handle}, is an opaque pointer which
  528. designates the array in StarPU. This is also the structure which is used to
  529. describe which data is used by a task. The second argument is the node number
  530. where the data originally resides. Here it is 0 since the @code{vector} array is in
  531. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  532. the number of elements in the vector and the size of each element.
  533. The following shows how to construct a StarPU task that will manipulate the
  534. vector and a constant factor.
  535. @cartouche
  536. @smallexample
  537. float factor = 3.14;
  538. struct starpu_task *task = starpu_task_create();
  539. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  540. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  541. task->buffers[0].mode = STARPU_RW;
  542. task->cl_arg = &factor;
  543. task->cl_arg_size = sizeof(factor);
  544. task->synchronous = 1;
  545. starpu_task_submit(task);
  546. @end smallexample
  547. @end cartouche
  548. Since the factor is a mere constant float value parameter,
  549. it does not need a preliminary registration, and
  550. can just be passed through the @code{cl_arg} pointer like in the previous
  551. example. The vector parameter is described by its handle.
  552. There are two fields in each element of the @code{buffers} array.
  553. @code{handle} is the handle of the data, and @code{mode} specifies how the
  554. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  555. write-only and @code{STARPU_RW} for read and write access).
  556. The definition of the codelet can be written as follows:
  557. @cartouche
  558. @smallexample
  559. void scal_cpu_func(void *buffers[], void *cl_arg)
  560. @{
  561. unsigned i;
  562. float *factor = cl_arg;
  563. /* length of the vector */
  564. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  565. /* local copy of the vector pointer */
  566. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  567. for (i = 0; i < n; i++)
  568. val[i] *= *factor;
  569. @}
  570. starpu_codelet cl = @{
  571. .where = STARPU_CPU,
  572. .cpu_func = scal_cpu_func,
  573. .nbuffers = 1
  574. @};
  575. @end smallexample
  576. @end cartouche
  577. The first argument is an array that gives
  578. a description of all the buffers passed in the @code{task->buffers}@ array. The
  579. size of this array is given by the @code{nbuffers} field of the codelet
  580. structure. For the sake of genericity, this array contains pointers to the
  581. different interfaces describing each buffer. In the case of the @b{vector
  582. interface}, the location of the vector (resp. its length) is accessible in the
  583. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  584. read-write fashion, any modification will automatically affect future accesses
  585. to this vector made by other tasks.
  586. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  587. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  588. constant factor from this pointer.
  589. @node Execution of Vector Scaling
  590. @subsection Execution of Vector Scaling
  591. @smallexample
  592. % make vector_scal
  593. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  594. % ./vector_scal
  595. 0.000000 3.000000 6.000000 9.000000 12.000000
  596. @end smallexample
  597. @node Vector Scaling on an Hybrid CPU/GPU Machine
  598. @section Vector Scaling on an Hybrid CPU/GPU Machine
  599. Contrary to the previous examples, the task submitted in this example may not
  600. only be executed by the CPUs, but also by a CUDA device.
  601. @menu
  602. * Definition of the CUDA Kernel::
  603. * Definition of the OpenCL Kernel::
  604. * Definition of the Main Code::
  605. * Execution of Hybrid Vector Scaling::
  606. @end menu
  607. @node Definition of the CUDA Kernel
  608. @subsection Definition of the CUDA Kernel
  609. The CUDA implementation can be written as follows. It needs to be
  610. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  611. driver.
  612. @cartouche
  613. @smallexample
  614. #include <starpu.h>
  615. static __global__ void vector_mult_cuda(float *val, unsigned n,
  616. float factor)
  617. @{
  618. unsigned i;
  619. if (i < n)
  620. val[i] *= factor;
  621. @}
  622. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  623. @{
  624. float *factor = (float *)_args;
  625. /* length of the vector */
  626. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  627. /* local copy of the vector pointer */
  628. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  629. unsigned threads_per_block = 64;
  630. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  631. @i{ vector_mult_cuda<<<nblocks,threads_per_block>>>(val, n, *factor);}
  632. @i{ cudaThreadSynchronize();}
  633. @}
  634. @end smallexample
  635. @end cartouche
  636. @node Definition of the OpenCL Kernel
  637. @subsection Definition of the OpenCL Kernel
  638. The OpenCL implementation can be written as follows. StarPU provides
  639. tools to compile a OpenCL kernel stored in a file.
  640. @cartouche
  641. @smallexample
  642. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  643. @{
  644. const int i = get_global_id(0);
  645. if (i < nx) @{
  646. val[i] *= factor;
  647. @}
  648. @}
  649. @end smallexample
  650. @end cartouche
  651. @cartouche
  652. @smallexample
  653. #include <starpu.h>
  654. @i{#include <starpu_opencl.h>}
  655. @i{extern struct starpu_opencl_program programs;}
  656. void scal_opencl_func(void *buffers[], void *_args)
  657. @{
  658. float *factor = _args;
  659. @i{ int id, devid, err;}
  660. @i{ cl_kernel kernel;}
  661. @i{ cl_command_queue queue;}
  662. /* length of the vector */
  663. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  664. /* local copy of the vector pointer */
  665. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  666. @i{ id = starpu_worker_get_id();}
  667. @i{ devid = starpu_worker_get_devid(id);}
  668. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  669. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  670. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  671. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  672. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  673. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  674. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  675. @i{ @{}
  676. @i{ size_t global=1;}
  677. @i{ size_t local=1;}
  678. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  679. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  680. @i{ @}}
  681. @i{ clFinish(queue);}
  682. @i{ starpu_opencl_release_kernel(kernel);}
  683. @}
  684. @end smallexample
  685. @end cartouche
  686. @node Definition of the Main Code
  687. @subsection Definition of the Main Code
  688. The CPU implementation is the same as in the previous section.
  689. Here is the source of the main application. You can notice the value of the
  690. field @code{where} for the codelet. We specify
  691. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  692. can be executed either on a CPU or on a CUDA or an OpenCL device.
  693. @cartouche
  694. @smallexample
  695. #include <starpu.h>
  696. #define NX 2048
  697. extern void scal_cuda_func(void *buffers[], void *_args);
  698. extern void scal_cpu_func(void *buffers[], void *_args);
  699. extern void scal_opencl_func(void *buffers[], void *_args);
  700. /* @b{Definition of the codelet} */
  701. static starpu_codelet cl = @{
  702. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  703. /* @b{on a CUDA device, or on an OpenCL device} */
  704. .cuda_func = scal_cuda_func;
  705. .cpu_func = scal_cpu_func;
  706. .opencl_func = scal_opencl_func;
  707. .nbuffers = 1;
  708. @}
  709. #ifdef STARPU_USE_OPENCL
  710. /* @b{The compiled version of the OpenCL program} */
  711. struct starpu_opencl_program programs;
  712. #endif
  713. int main(int argc, char **argv)
  714. @{
  715. float *vector;
  716. int i, ret;
  717. float factor=3.0;
  718. struct starpu_task *task;
  719. starpu_data_handle vector_handle;
  720. starpu_init(NULL); /* @b{Initialising StarPU} */
  721. #ifdef STARPU_USE_OPENCL
  722. starpu_opencl_load_opencl_from_file(
  723. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  724. #endif
  725. vector = malloc(NX*sizeof(vector[0]));
  726. assert(vector);
  727. for(i=0 ; i<NX ; i++) vector[i] = i;
  728. @end smallexample
  729. @end cartouche
  730. @cartouche
  731. @smallexample
  732. /* @b{Registering data within StarPU} */
  733. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  734. NX, sizeof(vector[0]));
  735. /* @b{Definition of the task} */
  736. task = starpu_task_create();
  737. task->cl = &cl;
  738. task->buffers[0].handle = vector_handle;
  739. task->buffers[0].mode = STARPU_RW;
  740. task->cl_arg = &factor;
  741. task->cl_arg_size = sizeof(factor);
  742. @end smallexample
  743. @end cartouche
  744. @cartouche
  745. @smallexample
  746. /* @b{Submitting the task} */
  747. ret = starpu_task_submit(task);
  748. if (ret == -ENODEV) @{
  749. fprintf(stderr, "No worker may execute this task\n");
  750. return 1;
  751. @}
  752. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  753. /* @b{Waiting for its termination} */
  754. starpu_task_wait_for_all();
  755. /* @b{Update the vector in RAM} */
  756. starpu_data_acquire(vector_handle, STARPU_R);
  757. @end smallexample
  758. @end cartouche
  759. @cartouche
  760. @smallexample
  761. /* @b{Access the data} */
  762. for(i=0 ; i<NX; i++) @{
  763. fprintf(stderr, "%f ", vector[i]);
  764. @}
  765. fprintf(stderr, "\n");
  766. /* @b{Release the data and shutdown StarPU} */
  767. starpu_data_release(vector_handle);
  768. starpu_shutdown();
  769. return 0;
  770. @}
  771. @end smallexample
  772. @end cartouche
  773. @node Execution of Hybrid Vector Scaling
  774. @subsection Execution of Hybrid Vector Scaling
  775. The Makefile given at the beginning of the section must be extended to
  776. give the rules to compile the CUDA source code. Note that the source
  777. file of the OpenCL kernel does not need to be compiled now, it will
  778. be compiled at run-time when calling the function
  779. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  780. @cartouche
  781. @smallexample
  782. CFLAGS += $(shell pkg-config --cflags libstarpu)
  783. LDFLAGS += $(shell pkg-config --libs libstarpu)
  784. CC = gcc
  785. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  786. %.o: %.cu
  787. nvcc $(CFLAGS) $< -c $@
  788. clean:
  789. rm -f vector_scal *.o
  790. @end smallexample
  791. @end cartouche
  792. @smallexample
  793. % make
  794. @end smallexample
  795. and to execute it, with the default configuration:
  796. @smallexample
  797. % ./vector_scal
  798. 0.000000 3.000000 6.000000 9.000000 12.000000
  799. @end smallexample
  800. or for example, by disabling CPU devices:
  801. @smallexample
  802. % STARPU_NCPUS=0 ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  806. see @ref{Using accelerators}):
  807. @smallexample
  808. % STARPU_NCUDA=0 ./vector_scal
  809. 0.000000 3.000000 6.000000 9.000000 12.000000
  810. @end smallexample
  811. @node Task and Worker Profiling
  812. @section Task and Worker Profiling
  813. A full example showing how to use the profiling API is available in
  814. the StarPU sources in the directory @code{examples/profiling/}.
  815. @cartouche
  816. @smallexample
  817. struct starpu_task *task = starpu_task_create();
  818. task->cl = &cl;
  819. task->synchronous = 1;
  820. /* We will destroy the task structure by hand so that we can
  821. * query the profiling info before the task is destroyed. */
  822. task->destroy = 0;
  823. /* Submit and wait for completion (since synchronous was set to 1) */
  824. starpu_task_submit(task);
  825. /* The task is finished, get profiling information */
  826. struct starpu_task_profiling_info *info = task->profiling_info;
  827. /* How much time did it take before the task started ? */
  828. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  829. /* How long was the task execution ? */
  830. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  831. /* We don't need the task structure anymore */
  832. starpu_task_destroy(task);
  833. @end smallexample
  834. @end cartouche
  835. @cartouche
  836. @smallexample
  837. /* Display the occupancy of all workers during the test */
  838. int worker;
  839. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  840. @{
  841. struct starpu_worker_profiling_info worker_info;
  842. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  843. STARPU_ASSERT(!ret);
  844. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  845. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  846. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  847. float executing_ratio = 100.0*executing_time/total_time;
  848. float sleeping_ratio = 100.0*sleeping_time/total_time;
  849. char workername[128];
  850. starpu_worker_get_name(worker, workername, 128);
  851. fprintf(stderr, "Worker %s:\n", workername);
  852. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  853. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  854. executing_ratio);
  855. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  856. sleeping_ratio);
  857. @}
  858. @end smallexample
  859. @end cartouche
  860. @node Partitioning Data
  861. @section Partitioning Data
  862. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  863. @cartouche
  864. @smallexample
  865. int vector[NX];
  866. starpu_data_handle handle;
  867. /* Declare data to StarPU */
  868. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  869. /* Partition the vector in PARTS sub-vectors */
  870. starpu_filter f =
  871. @{
  872. .filter_func = starpu_block_filter_func_vector,
  873. .nchildren = PARTS,
  874. .get_nchildren = NULL,
  875. .get_child_ops = NULL
  876. @};
  877. starpu_data_partition(handle, &f);
  878. @end smallexample
  879. @end cartouche
  880. @cartouche
  881. @smallexample
  882. /* Submit a task on each sub-vector */
  883. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  884. /* Get subdata number i (there is only 1 dimension) */
  885. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  886. struct starpu_task *task = starpu_task_create();
  887. task->buffers[0].handle = sub_handle;
  888. task->buffers[0].mode = STARPU_RW;
  889. task->cl = &cl;
  890. task->synchronous = 1;
  891. task->cl_arg = &factor;
  892. task->cl_arg_size = sizeof(factor);
  893. starpu_task_submit(task);
  894. @}
  895. @end smallexample
  896. @end cartouche
  897. Partitioning can be applied several times, see
  898. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  899. @node Performance model example
  900. @section Performance model example
  901. To achieve good scheduling, StarPU scheduling policies need to be able to
  902. estimate in advance the duration of a task. This is done by giving to codelets a
  903. performance model. There are several kinds of performance models.
  904. @itemize
  905. @item
  906. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  907. see for instance
  908. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  909. @item
  910. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  911. given set of data input/output sizes, the performance will always be about the
  912. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  913. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  914. few different sets of data input/output sizes. StarPU will then keep record of
  915. the average time of previous executions on the various processing units, and use
  916. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  917. for further executions. The following is a small code example.
  918. @cartouche
  919. @smallexample
  920. static struct starpu_perfmodel_t mult_perf_model = @{
  921. .type = STARPU_HISTORY_BASED,
  922. .symbol = "mult_perf_model"
  923. @};
  924. starpu_codelet cl = @{
  925. .where = STARPU_CPU,
  926. .cpu_func = cpu_mult,
  927. .nbuffers = 3,
  928. /* for the scheduling policy to be able to use performance models */
  929. .model = &mult_perf_model
  930. @};
  931. @end smallexample
  932. @end cartouche
  933. @item
  934. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  935. type). This still assumes performance regularity, but can work with various data
  936. input sizes, by applying a*n^b+c regression over observed execution times.
  937. @end itemize
  938. @node Theoretical lower bound on execution time
  939. @section Theoretical lower bound on execution time
  940. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  941. bound for the execution time of a whole set of tasks. See for
  942. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  943. call @code{starpu_bound_start}, and after complete execution, call
  944. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  945. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  946. problem corresponding to the schedule of your tasks. Run it through
  947. @code{lp_solve} or any other linear programming solver, and that will give you a
  948. lower bound for the total execution time of your tasks. If StarPU was compiled
  949. with the glpk library installed, @code{starpu_bound_compute} can be used to
  950. solve it immediately and get the optimized minimum. Its @code{integer}
  951. parameter allows to decide whether integer resolution should be computed
  952. and returned.
  953. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  954. dependencies into account. It must be understood that the linear programming
  955. problem size is quadratic with the number of tasks and thus the time to solve it
  956. will be very long, it could be minutes for just a few dozen tasks. You should
  957. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  958. problem to MPS format and then use a better solver, @code{glpsol} might be
  959. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  960. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  961. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  962. of @code{lp_solve}. For instance, we often just use
  963. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  964. the @code{-gr} option can also be quite useful.
  965. Setting @code{deps} to 0 will only take into account the actual computations
  966. on processing units. It however still properly takes into account the varying
  967. performances of kernels and processing units, which is quite more accurate than
  968. just comparing StarPU performances with the fastest of the kernels being used.
  969. The @code{prio} parameter tells StarPU whether to simulate taking into account
  970. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  971. tasks before less prioritized tasks, to check to which extend this results
  972. to a less optimal solution. This increases even more computation time.
  973. Note that for simplicity, all this however doesn't take into account data
  974. transfers, which are assumed to be completely overlapped.
  975. @node More examples
  976. @section More examples
  977. More examples are available in the StarPU sources in the @code{examples/}
  978. directory. Simple examples include:
  979. @table @asis
  980. @item @code{incrementer/}:
  981. Trivial incrementation test.
  982. @item @code{basic_examples/}:
  983. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  984. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  985. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  986. interface, and an example using the variable data interface.
  987. @item @code{matvecmult/}:
  988. OpenCL example from NVidia, adapted to StarPU.
  989. @item @code{axpy/}:
  990. AXPY CUBLAS operation adapted to StarPU.
  991. @item @code{fortran/}:
  992. Example of Fortran bindings.
  993. @end table
  994. More advanced examples include:
  995. @table @asis
  996. @item @code{filters/}:
  997. Examples using filters, as shown in @ref{Partitioning Data}.
  998. @item @code{lu/}:
  999. LU matrix factorization.
  1000. @end table
  1001. @c ---------------------------------------------------------------------
  1002. @c Performance feedback
  1003. @c ---------------------------------------------------------------------
  1004. @node Performance options
  1005. @chapter Performance options worth knowing
  1006. TODO: explain why execution should be tried with
  1007. @code{STARPU_PREFETCH=1 STARPU_SCHED=dmda}, when to use
  1008. @code{STARPU_CALIBRATE=2} to force re-calibration, and how to play with
  1009. @code{STARPU_BETA=2} or more.
  1010. @c ---------------------------------------------------------------------
  1011. @c Performance feedback
  1012. @c ---------------------------------------------------------------------
  1013. @node Performance feedback
  1014. @chapter Performance feedback
  1015. @menu
  1016. * On-line:: On-line performance feedback
  1017. * Off-line:: Off-line performance feedback
  1018. @end menu
  1019. @node On-line
  1020. @section On-line performance feedback
  1021. @menu
  1022. * Enabling monitoring:: Enabling on-line performance monitoring
  1023. * Task feedback:: Per-task feedback
  1024. * Codelet feedback:: Per-codelet feedback
  1025. * Worker feedback:: Per-worker feedback
  1026. * Bus feedback:: Bus-related feedback
  1027. @end menu
  1028. @node Enabling monitoring
  1029. @subsection Enabling on-line performance monitoring
  1030. In order to enable online performance monitoring, the application must call
  1031. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1032. detect whether monitoring is already enabled or not by calling
  1033. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1034. previously collected feedback.
  1035. Likewise, performance monitoring is stopped by calling
  1036. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1037. does not reset the performance counters so that the application may consult
  1038. them later on.
  1039. More details about the performance monitoring API are available in section
  1040. @ref{Profiling API}.
  1041. @node Task feedback
  1042. @subsection Per-task feedback
  1043. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1044. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1045. structure when a task terminates.
  1046. This structure is automatically destroyed when the task structure is destroyed,
  1047. either automatically or by calling @code{starpu_task_destroy}.
  1048. The @code{starpu_task_profiling_info} structure indicates the date when the
  1049. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1050. terminated (@code{end_time}), relative to the initialization of
  1051. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1052. that has executed the task (@code{workerid}).
  1053. These date are stored as @code{timespec} structures which the user may convert
  1054. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1055. function.
  1056. It it worth noting that the application may directly access this structure from
  1057. the callback executed at the end of the task. The @code{starpu_task} structure
  1058. associated to the callback currently being executed is indeed accessible with
  1059. the @code{starpu_get_current_task()} function.
  1060. @node Codelet feedback
  1061. @subsection Per-codelet feedback
  1062. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1063. an array of counters. The i-th entry of the array is incremented every time a
  1064. task implementing the codelet is executed on the i-th worker.
  1065. This array is not reinitialized when profiling is enabled or disabled.
  1066. @node Worker feedback
  1067. @subsection Per-worker feedback
  1068. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1069. function is a @code{starpu_worker_profiling_info} structure that gives
  1070. statistics about the specified worker. This structure specifies when StarPU
  1071. started collecting profiling information for that worker (@code{start_time}),
  1072. the duration of the profiling measurement interval (@code{total_time}), the
  1073. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1074. because there is no task to execute at all (@code{sleeping_time}), and the
  1075. number of tasks that were executed while profiling was enabled.
  1076. These values give an estimation of the proportion of time spent do real work,
  1077. and the time spent either sleeping because there are not enough executable
  1078. tasks or simply wasted in pure StarPU overhead.
  1079. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1080. information associated to a worker.
  1081. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1082. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1083. generate a graphic showing the evolution of these values during the time, for
  1084. the different workers.
  1085. @node Bus feedback
  1086. @subsection Bus-related feedback
  1087. TODO
  1088. @c how to enable/disable performance monitoring
  1089. @c what kind of information do we get ?
  1090. @node Off-line
  1091. @section Off-line performance feedback
  1092. @menu
  1093. * Generating traces:: Generating traces with FxT
  1094. * Gantt diagram:: Creating a Gantt Diagram
  1095. * DAG:: Creating a DAG with graphviz
  1096. * starpu-top:: Monitoring activity
  1097. @end menu
  1098. @node Generating traces
  1099. @subsection Generating traces with FxT
  1100. StarPU can use the FxT library (see
  1101. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1102. with a limited runtime overhead.
  1103. You can either get the FxT library from CVS (autotools are required):
  1104. @example
  1105. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1106. % ./bootstrap
  1107. @end example
  1108. If autotools are not available on your machine, or if you prefer to do so,
  1109. FxT's code is also available as a tarball:
  1110. @example
  1111. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1112. @end example
  1113. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1114. done following the standard procedure:
  1115. @example
  1116. % ./configure --prefix=$FXTDIR
  1117. % make
  1118. % make install
  1119. @end example
  1120. In order to have StarPU to generate traces, StarPU should be configured with
  1121. the @code{--with-fxt} option:
  1122. @example
  1123. $ ./configure --with-fxt=$FXTDIR
  1124. @end example
  1125. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1126. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1127. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1128. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1129. @code{/tmp/} directory by default, or by the directory specified by
  1130. the @code{STARPU_FXT_PREFIX} environment variable.
  1131. @node Gantt diagram
  1132. @subsection Creating a Gantt Diagram
  1133. When the FxT trace file @code{filename} has been generated, it is possible to
  1134. generate a trace in the Paje format by calling:
  1135. @example
  1136. % starpu_fxt_tool -i filename
  1137. @end example
  1138. This will create a @code{paje.trace} file in the current directory that can be
  1139. inspected with the ViTE trace visualizing open-source tool. More information
  1140. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1141. possible to open the @code{paje.trace} file with ViTE by using the following
  1142. command:
  1143. @example
  1144. % vite paje.trace
  1145. @end example
  1146. @node DAG
  1147. @subsection Creating a DAG with graphviz
  1148. When the FxT trace file @code{filename} has been generated, it is possible to
  1149. generate a task graph in the DOT format by calling:
  1150. @example
  1151. $ starpu_fxt_tool -i filename
  1152. @end example
  1153. This will create a @code{dag.dot} file in the current directory. This file is a
  1154. task graph described using the DOT language. It is possible to get a
  1155. graphical output of the graph by using the graphviz library:
  1156. @example
  1157. $ dot -Tpdf dag.dot -o output.pdf
  1158. @end example
  1159. @node starpu-top
  1160. @subsection Monitoring activity
  1161. When the FxT trace file @code{filename} has been generated, it is possible to
  1162. generate a activity trace by calling:
  1163. @example
  1164. $ starpu_fxt_tool -i filename
  1165. @end example
  1166. This will create an @code{activity.data} file in the current
  1167. directory. A profile of the application showing the activity of StarPU
  1168. during the execution of the program can be generated:
  1169. @example
  1170. $ starpu_top.sh activity.data
  1171. @end example
  1172. This will create a file named @code{activity.eps} in the current directory.
  1173. This picture is composed of two parts.
  1174. The first part shows the activity of the different workers. The green sections
  1175. indicate which proportion of the time was spent executed kernels on the
  1176. processing unit. The red sections indicate the proportion of time spent in
  1177. StartPU: an important overhead may indicate that the granularity may be too
  1178. low, and that bigger tasks may be appropriate to use the processing unit more
  1179. efficiently. The black sections indicate that the processing unit was blocked
  1180. because there was no task to process: this may indicate a lack of parallelism
  1181. which may be alleviated by creating more tasks when it is possible.
  1182. The second part of the @code{activity.eps} picture is a graph showing the
  1183. evolution of the number of tasks available in the system during the execution.
  1184. Ready tasks are shown in black, and tasks that are submitted but not
  1185. schedulable yet are shown in grey.
  1186. @c ---------------------------------------------------------------------
  1187. @c Configuration options
  1188. @c ---------------------------------------------------------------------
  1189. @node Configuring StarPU
  1190. @chapter Configuring StarPU
  1191. @menu
  1192. * Compilation configuration::
  1193. * Execution configuration through environment variables::
  1194. @end menu
  1195. @node Compilation configuration
  1196. @section Compilation configuration
  1197. The following arguments can be given to the @code{configure} script.
  1198. @menu
  1199. * Common configuration::
  1200. * Configuring workers::
  1201. * Advanced configuration::
  1202. @end menu
  1203. @node Common configuration
  1204. @subsection Common configuration
  1205. @menu
  1206. * --enable-debug::
  1207. * --enable-fast::
  1208. * --enable-verbose::
  1209. * --enable-coverage::
  1210. @end menu
  1211. @node --enable-debug
  1212. @subsubsection @code{--enable-debug}
  1213. @table @asis
  1214. @item @emph{Description}:
  1215. Enable debugging messages.
  1216. @end table
  1217. @node --enable-fast
  1218. @subsubsection @code{--enable-fast}
  1219. @table @asis
  1220. @item @emph{Description}:
  1221. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1222. @end table
  1223. @node --enable-verbose
  1224. @subsubsection @code{--enable-verbose}
  1225. @table @asis
  1226. @item @emph{Description}:
  1227. Augment the verbosity of the debugging messages.
  1228. @end table
  1229. @node --enable-coverage
  1230. @subsubsection @code{--enable-coverage}
  1231. @table @asis
  1232. @item @emph{Description}:
  1233. Enable flags for the @code{gcov} coverage tool.
  1234. @end table
  1235. @node Configuring workers
  1236. @subsection Configuring workers
  1237. @menu
  1238. * --enable-nmaxcpus::
  1239. * --disable-cpu::
  1240. * --enable-maxcudadev::
  1241. * --disable-cuda::
  1242. * --with-cuda-dir::
  1243. * --with-cuda-include-dir::
  1244. * --with-cuda-lib-dir::
  1245. * --enable-maxopencldev::
  1246. * --disable-opencl::
  1247. * --with-opencl-dir::
  1248. * --with-opencl-include-dir::
  1249. * --with-opencl-lib-dir::
  1250. * --enable-gordon::
  1251. * --with-gordon-dir::
  1252. @end menu
  1253. @node --enable-nmaxcpus
  1254. @subsubsection @code{--enable-nmaxcpus=<number>}
  1255. @table @asis
  1256. @item @emph{Description}:
  1257. Defines the maximum number of CPU cores that StarPU will support, then
  1258. available as the @code{STARPU_NMAXCPUS} macro.
  1259. @end table
  1260. @node --disable-cpu
  1261. @subsubsection @code{--disable-cpu}
  1262. @table @asis
  1263. @item @emph{Description}:
  1264. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1265. @end table
  1266. @node --enable-maxcudadev
  1267. @subsubsection @code{--enable-maxcudadev=<number>}
  1268. @table @asis
  1269. @item @emph{Description}:
  1270. Defines the maximum number of CUDA devices that StarPU will support, then
  1271. available as the @code{STARPU_MAXCUDADEVS} macro.
  1272. @end table
  1273. @node --disable-cuda
  1274. @subsubsection @code{--disable-cuda}
  1275. @table @asis
  1276. @item @emph{Description}:
  1277. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1278. @end table
  1279. @node --with-cuda-dir
  1280. @subsubsection @code{--with-cuda-dir=<path>}
  1281. @table @asis
  1282. @item @emph{Description}:
  1283. Specify the directory where CUDA is installed. This directory should notably contain
  1284. @code{include/cuda.h}.
  1285. @end table
  1286. @node --with-cuda-include-dir
  1287. @subsubsection @code{--with-cuda-include-dir=<path>}
  1288. @table @asis
  1289. @item @emph{Description}:
  1290. Specify the directory where CUDA headers are installed. This directory should
  1291. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1292. value given to @code{--with-cuda-dir}.
  1293. @end table
  1294. @node --with-cuda-lib-dir
  1295. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1296. @table @asis
  1297. @item @emph{Description}:
  1298. Specify the directory where the CUDA library is installed. This directory should
  1299. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1300. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1301. @end table
  1302. @node --enable-maxopencldev
  1303. @subsubsection @code{--enable-maxopencldev=<number>}
  1304. @table @asis
  1305. @item @emph{Description}:
  1306. Defines the maximum number of OpenCL devices that StarPU will support, then
  1307. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1308. @end table
  1309. @node --disable-opencl
  1310. @subsubsection @code{--disable-opencl}
  1311. @table @asis
  1312. @item @emph{Description}:
  1313. Disable the use of OpenCL, even if the SDK is detected.
  1314. @end table
  1315. @node --with-opencl-dir
  1316. @subsubsection @code{--with-opencl-dir=<path>}
  1317. @table @asis
  1318. @item @emph{Description}:
  1319. Specify the location of the OpenCL SDK. This directory should notably contain
  1320. @code{include/CL/cl.h}.
  1321. @end table
  1322. @node --with-opencl-include-dir
  1323. @subsubsection @code{--with-opencl-include-dir=<path>}
  1324. @table @asis
  1325. @item @emph{Description}:
  1326. Specify the location of OpenCL headers. This directory should notably contain
  1327. @code{CL/cl.h}. This defaults to
  1328. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1329. @end table
  1330. @node --with-opencl-lib-dir
  1331. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1332. @table @asis
  1333. @item @emph{Description}:
  1334. Specify the location of the OpenCL library. This directory should notably
  1335. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1336. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1337. @end table
  1338. @node --enable-gordon
  1339. @subsubsection @code{--enable-gordon}
  1340. @table @asis
  1341. @item @emph{Description}:
  1342. Enable the use of the Gordon runtime for Cell SPUs.
  1343. @c TODO: rather default to enabled when detected
  1344. @end table
  1345. @node --with-gordon-dir
  1346. @subsubsection @code{--with-gordon-dir=<path>}
  1347. @table @asis
  1348. @item @emph{Description}:
  1349. Specify the location of the Gordon SDK.
  1350. @end table
  1351. @node Advanced configuration
  1352. @subsection Advanced configuration
  1353. @menu
  1354. * --enable-perf-debug::
  1355. * --enable-model-debug::
  1356. * --enable-stats::
  1357. * --enable-maxbuffers::
  1358. * --enable-allocation-cache::
  1359. * --enable-opengl-render::
  1360. * --enable-blas-lib::
  1361. * --with-magma::
  1362. * --with-fxt::
  1363. * --with-perf-model-dir::
  1364. * --with-mpicc::
  1365. * --with-goto-dir::
  1366. * --with-atlas-dir::
  1367. * --with-mkl-cflags::
  1368. * --with-mkl-ldflags::
  1369. @end menu
  1370. @node --enable-perf-debug
  1371. @subsubsection @code{--enable-perf-debug}
  1372. @table @asis
  1373. @item @emph{Description}:
  1374. Enable performance debugging.
  1375. @end table
  1376. @node --enable-model-debug
  1377. @subsubsection @code{--enable-model-debug}
  1378. @table @asis
  1379. @item @emph{Description}:
  1380. Enable performance model debugging.
  1381. @end table
  1382. @node --enable-stats
  1383. @subsubsection @code{--enable-stats}
  1384. @table @asis
  1385. @item @emph{Description}:
  1386. Enable statistics.
  1387. @end table
  1388. @node --enable-maxbuffers
  1389. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1390. @table @asis
  1391. @item @emph{Description}:
  1392. Define the maximum number of buffers that tasks will be able to take
  1393. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1394. @end table
  1395. @node --enable-allocation-cache
  1396. @subsubsection @code{--enable-allocation-cache}
  1397. @table @asis
  1398. @item @emph{Description}:
  1399. Enable the use of a data allocation cache to avoid the cost of it with
  1400. CUDA. Still experimental.
  1401. @end table
  1402. @node --enable-opengl-render
  1403. @subsubsection @code{--enable-opengl-render}
  1404. @table @asis
  1405. @item @emph{Description}:
  1406. Enable the use of OpenGL for the rendering of some examples.
  1407. @c TODO: rather default to enabled when detected
  1408. @end table
  1409. @node --enable-blas-lib
  1410. @subsubsection @code{--enable-blas-lib=<name>}
  1411. @table @asis
  1412. @item @emph{Description}:
  1413. Specify the blas library to be used by some of the examples. The
  1414. library has to be 'atlas' or 'goto'.
  1415. @end table
  1416. @node --with-magma
  1417. @subsubsection @code{--with-magma=<path>}
  1418. @table @asis
  1419. @item @emph{Description}:
  1420. Specify where magma is installed. This directory should notably contain
  1421. @code{include/magmablas.h}.
  1422. @end table
  1423. @node --with-fxt
  1424. @subsubsection @code{--with-fxt=<path>}
  1425. @table @asis
  1426. @item @emph{Description}:
  1427. Specify the location of FxT (for generating traces and rendering them
  1428. using ViTE). This directory should notably contain
  1429. @code{include/fxt/fxt.h}.
  1430. @c TODO add ref to other section
  1431. @end table
  1432. @node --with-perf-model-dir
  1433. @subsubsection @code{--with-perf-model-dir=<dir>}
  1434. @table @asis
  1435. @item @emph{Description}:
  1436. Specify where performance models should be stored (instead of defaulting to the
  1437. current user's home).
  1438. @end table
  1439. @node --with-mpicc
  1440. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1441. @table @asis
  1442. @item @emph{Description}:
  1443. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1444. @end table
  1445. @node --with-goto-dir
  1446. @subsubsection @code{--with-goto-dir=<dir>}
  1447. @table @asis
  1448. @item @emph{Description}:
  1449. Specify the location of GotoBLAS.
  1450. @end table
  1451. @node --with-atlas-dir
  1452. @subsubsection @code{--with-atlas-dir=<dir>}
  1453. @table @asis
  1454. @item @emph{Description}:
  1455. Specify the location of ATLAS. This directory should notably contain
  1456. @code{include/cblas.h}.
  1457. @end table
  1458. @node --with-mkl-cflags
  1459. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1460. @table @asis
  1461. @item @emph{Description}:
  1462. Specify the compilation flags for the MKL Library.
  1463. @end table
  1464. @node --with-mkl-ldflags
  1465. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1466. @table @asis
  1467. @item @emph{Description}:
  1468. Specify the linking flags for the MKL Library. Note that the
  1469. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1470. website provides a script to determine the linking flags.
  1471. @end table
  1472. @c ---------------------------------------------------------------------
  1473. @c Environment variables
  1474. @c ---------------------------------------------------------------------
  1475. @node Execution configuration through environment variables
  1476. @section Execution configuration through environment variables
  1477. @menu
  1478. * Workers:: Configuring workers
  1479. * Scheduling:: Configuring the Scheduling engine
  1480. * Misc:: Miscellaneous and debug
  1481. @end menu
  1482. Note: the values given in @code{starpu_conf} structure passed when
  1483. calling @code{starpu_init} will override the values of the environment
  1484. variables.
  1485. @node Workers
  1486. @subsection Configuring workers
  1487. @menu
  1488. * STARPU_NCPUS:: Number of CPU workers
  1489. * STARPU_NCUDA:: Number of CUDA workers
  1490. * STARPU_NOPENCL:: Number of OpenCL workers
  1491. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1492. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1493. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1494. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1495. @end menu
  1496. @node STARPU_NCPUS
  1497. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1498. @table @asis
  1499. @item @emph{Description}:
  1500. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1501. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1502. the accelerators.
  1503. @end table
  1504. @node STARPU_NCUDA
  1505. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1506. @table @asis
  1507. @item @emph{Description}:
  1508. Specify the number of CUDA devices that StarPU can use. If
  1509. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1510. possible to select which CUDA devices should be used by the means of the
  1511. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1512. create as many CUDA workers as there are CUDA devices.
  1513. @end table
  1514. @node STARPU_NOPENCL
  1515. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1516. @table @asis
  1517. @item @emph{Description}:
  1518. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1519. @end table
  1520. @node STARPU_NGORDON
  1521. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1522. @table @asis
  1523. @item @emph{Description}:
  1524. Specify the number of SPUs that StarPU can use.
  1525. @end table
  1526. @node STARPU_WORKERS_CPUID
  1527. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1528. @table @asis
  1529. @item @emph{Description}:
  1530. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1531. specifies on which logical CPU the different workers should be
  1532. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1533. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1534. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1535. determined by the OS, or provided by the @code{hwloc} library in case it is
  1536. available.
  1537. Note that the first workers correspond to the CUDA workers, then come the
  1538. OpenCL and the SPU, and finally the CPU workers. For example if
  1539. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1540. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1541. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1542. the logical CPUs #1 and #3 will be used by the CPU workers.
  1543. If the number of workers is larger than the array given in
  1544. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1545. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1546. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1547. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1548. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1549. @end table
  1550. @node STARPU_WORKERS_CUDAID
  1551. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1552. @table @asis
  1553. @item @emph{Description}:
  1554. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1555. possible to select which CUDA devices should be used by StarPU. On a machine
  1556. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1557. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1558. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1559. the one reported by CUDA).
  1560. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1561. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1562. @end table
  1563. @node STARPU_WORKERS_OPENCLID
  1564. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1565. @table @asis
  1566. @item @emph{Description}:
  1567. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1568. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1569. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1570. @end table
  1571. @node Scheduling
  1572. @subsection Configuring the Scheduling engine
  1573. @menu
  1574. * STARPU_SCHED:: Scheduling policy
  1575. * STARPU_CALIBRATE:: Calibrate performance models
  1576. * STARPU_PREFETCH:: Use data prefetch
  1577. * STARPU_SCHED_ALPHA:: Computation factor
  1578. * STARPU_SCHED_BETA:: Communication factor
  1579. @end menu
  1580. @node STARPU_SCHED
  1581. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1582. @table @asis
  1583. @item @emph{Description}:
  1584. This chooses between the different scheduling policies proposed by StarPU: work
  1585. random, stealing, greedy, with performance models, etc.
  1586. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1587. @end table
  1588. @node STARPU_CALIBRATE
  1589. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1590. @table @asis
  1591. @item @emph{Description}:
  1592. If this variable is set to 1, the performance models are calibrated during
  1593. the execution. If it is set to 2, the previous values are dropped to restart
  1594. calibration from scratch.
  1595. Note: this currently only applies to dm and dmda scheduling policies.
  1596. @end table
  1597. @node STARPU_PREFETCH
  1598. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1599. @table @asis
  1600. @item @emph{Description}:
  1601. This variable indicates whether data prefetching should be enabled (0 means
  1602. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1603. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1604. advance, so that data is already present on the GPU when the task starts. As a
  1605. result, computation and data transfers are overlapped.
  1606. @end table
  1607. @node STARPU_SCHED_ALPHA
  1608. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1609. @table @asis
  1610. @item @emph{Description}:
  1611. To estimate the cost of a task StarPU takes into account the estimated
  1612. computation time (obtained thanks to performance models). The alpha factor is
  1613. the coefficient to be applied to it before adding it to the communication part.
  1614. @end table
  1615. @node STARPU_SCHED_BETA
  1616. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1617. @table @asis
  1618. @item @emph{Description}:
  1619. To estimate the cost of a task StarPU takes into account the estimated
  1620. data transfer time (obtained thanks to performance models). The beta factor is
  1621. the coefficient to be applied to it before adding it to the computation part.
  1622. @end table
  1623. @node Misc
  1624. @subsection Miscellaneous and debug
  1625. @menu
  1626. * STARPU_LOGFILENAME:: Select debug file name
  1627. * STARPU_FXT_PREFIX:: FxT trace location
  1628. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1629. @end menu
  1630. @node STARPU_LOGFILENAME
  1631. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1632. @table @asis
  1633. @item @emph{Description}:
  1634. This variable specifies in which file the debugging output should be saved to.
  1635. @end table
  1636. @node STARPU_FXT_PREFIX
  1637. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1638. @table @asis
  1639. @item @emph{Description}
  1640. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1641. @end table
  1642. @node STARPU_LIMIT_GPU_MEM
  1643. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1644. @table @asis
  1645. @item @emph{Description}
  1646. This variable specifies the maximum number of megabytes that should be
  1647. available to the application on each GPUs. In case this value is smaller than
  1648. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1649. on the device. This variable is intended to be used for experimental purposes
  1650. as it emulates devices that have a limited amount of memory.
  1651. @end table
  1652. @c ---------------------------------------------------------------------
  1653. @c StarPU API
  1654. @c ---------------------------------------------------------------------
  1655. @node StarPU API
  1656. @chapter StarPU API
  1657. @menu
  1658. * Initialization and Termination:: Initialization and Termination methods
  1659. * Workers' Properties:: Methods to enumerate workers' properties
  1660. * Data Library:: Methods to manipulate data
  1661. * Data Interfaces::
  1662. * Data Partition::
  1663. * Codelets and Tasks:: Methods to construct tasks
  1664. * Explicit Dependencies:: Explicit Dependencies
  1665. * Implicit Data Dependencies:: Implicit Data Dependencies
  1666. * Performance Model API::
  1667. * Profiling API:: Profiling API
  1668. * CUDA extensions:: CUDA extensions
  1669. * OpenCL extensions:: OpenCL extensions
  1670. * Cell extensions:: Cell extensions
  1671. * Miscellaneous helpers::
  1672. @end menu
  1673. @node Initialization and Termination
  1674. @section Initialization and Termination
  1675. @menu
  1676. * starpu_init:: Initialize StarPU
  1677. * struct starpu_conf:: StarPU runtime configuration
  1678. * starpu_conf_init:: Initialize starpu_conf structure
  1679. * starpu_shutdown:: Terminate StarPU
  1680. @end menu
  1681. @node starpu_init
  1682. @subsection @code{starpu_init} -- Initialize StarPU
  1683. @table @asis
  1684. @item @emph{Description}:
  1685. This is StarPU initialization method, which must be called prior to any other
  1686. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1687. policy, number of cores, ...) by passing a non-null argument. Default
  1688. configuration is used if the passed argument is @code{NULL}.
  1689. @item @emph{Return value}:
  1690. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1691. indicates that no worker was available (so that StarPU was not initialized).
  1692. @item @emph{Prototype}:
  1693. @code{int starpu_init(struct starpu_conf *conf);}
  1694. @end table
  1695. @node struct starpu_conf
  1696. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1697. @table @asis
  1698. @item @emph{Description}:
  1699. This structure is passed to the @code{starpu_init} function in order
  1700. to configure StarPU.
  1701. When the default value is used, StarPU automatically selects the number
  1702. of processing units and takes the default scheduling policy. This parameter
  1703. overwrites the equivalent environment variables.
  1704. @item @emph{Fields}:
  1705. @table @asis
  1706. @item @code{sched_policy_name} (default = NULL):
  1707. This is the name of the scheduling policy. This can also be specified with the
  1708. @code{STARPU_SCHED} environment variable.
  1709. @item @code{sched_policy} (default = NULL):
  1710. This is the definition of the scheduling policy. This field is ignored
  1711. if @code{sched_policy_name} is set.
  1712. @item @code{ncpus} (default = -1):
  1713. This is the number of CPU cores that StarPU can use. This can also be
  1714. specified with the @code{STARPU_NCPUS} environment variable.
  1715. @item @code{ncuda} (default = -1):
  1716. This is the number of CUDA devices that StarPU can use. This can also be
  1717. specified with the @code{STARPU_NCUDA} environment variable.
  1718. @item @code{nopencl} (default = -1):
  1719. This is the number of OpenCL devices that StarPU can use. This can also be
  1720. specified with the @code{STARPU_NOPENCL} environment variable.
  1721. @item @code{nspus} (default = -1):
  1722. This is the number of Cell SPUs that StarPU can use. This can also be
  1723. specified with the @code{STARPU_NGORDON} environment variable.
  1724. @item @code{use_explicit_workers_bindid} (default = 0)
  1725. If this flag is set, the @code{workers_bindid} array indicates where the
  1726. different workers are bound, otherwise StarPU automatically selects where to
  1727. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1728. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1729. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1730. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1731. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1732. where to bind the different workers. The i-th entry of the
  1733. @code{workers_bindid} indicates the logical identifier of the processor which
  1734. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1735. either determined by the OS, or provided by the @code{hwloc} library in case it
  1736. is available.
  1737. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1738. ignored.
  1739. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1740. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1741. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1742. CUDA devices in a round-robin fashion.
  1743. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1744. ignored.
  1745. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1746. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1747. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1748. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1749. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1750. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1751. OpenCL devices in a round-robin fashion.
  1752. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1753. @item @code{calibrate} (default = 0):
  1754. If this flag is set, StarPU will calibrate the performance models when
  1755. executing tasks. If this value is equal to -1, the default value is used. The
  1756. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1757. variable when it is set.
  1758. @end table
  1759. @end table
  1760. @node starpu_conf_init
  1761. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1762. @table @asis
  1763. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1764. @item @emph{Return value}:
  1765. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1766. indicates that the argument was NULL.
  1767. @item @emph{Prototype}:
  1768. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1769. @end table
  1770. @node starpu_shutdown
  1771. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1772. @table @asis
  1773. @item @emph{Description}:
  1774. This is StarPU termination method. It must be called at the end of the
  1775. application: statistics and other post-mortem debugging information are not
  1776. guaranteed to be available until this method has been called.
  1777. @item @emph{Prototype}:
  1778. @code{void starpu_shutdown(void);}
  1779. @end table
  1780. @node Workers' Properties
  1781. @section Workers' Properties
  1782. @menu
  1783. * starpu_worker_get_count:: Get the number of processing units
  1784. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1785. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1786. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1787. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1788. * starpu_worker_get_id:: Get the identifier of the current worker
  1789. * starpu_worker_get_devid:: Get the device identifier of a worker
  1790. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1791. * starpu_worker_get_name:: Get the name of a worker
  1792. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1793. @end menu
  1794. @node starpu_worker_get_count
  1795. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1796. @table @asis
  1797. @item @emph{Description}:
  1798. This function returns the number of workers (i.e. processing units executing
  1799. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1800. @item @emph{Prototype}:
  1801. @code{unsigned starpu_worker_get_count(void);}
  1802. @end table
  1803. @node starpu_cpu_worker_get_count
  1804. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1805. @table @asis
  1806. @item @emph{Description}:
  1807. This function returns the number of CPUs controlled by StarPU. The returned
  1808. value should be at most @code{STARPU_NMAXCPUS}.
  1809. @item @emph{Prototype}:
  1810. @code{unsigned starpu_cpu_worker_get_count(void);}
  1811. @end table
  1812. @node starpu_cuda_worker_get_count
  1813. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1814. @table @asis
  1815. @item @emph{Description}:
  1816. This function returns the number of CUDA devices controlled by StarPU. The returned
  1817. value should be at most @code{STARPU_MAXCUDADEVS}.
  1818. @item @emph{Prototype}:
  1819. @code{unsigned starpu_cuda_worker_get_count(void);}
  1820. @end table
  1821. @node starpu_opencl_worker_get_count
  1822. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1823. @table @asis
  1824. @item @emph{Description}:
  1825. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1826. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1827. @item @emph{Prototype}:
  1828. @code{unsigned starpu_opencl_worker_get_count(void);}
  1829. @end table
  1830. @node starpu_spu_worker_get_count
  1831. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1832. @table @asis
  1833. @item @emph{Description}:
  1834. This function returns the number of Cell SPUs controlled by StarPU.
  1835. @item @emph{Prototype}:
  1836. @code{unsigned starpu_opencl_worker_get_count(void);}
  1837. @end table
  1838. @node starpu_worker_get_id
  1839. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1840. @table @asis
  1841. @item @emph{Description}:
  1842. This function returns the identifier of the worker associated to the calling
  1843. thread. The returned value is either -1 if the current context is not a StarPU
  1844. worker (i.e. when called from the application outside a task or a callback), or
  1845. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1846. @item @emph{Prototype}:
  1847. @code{int starpu_worker_get_id(void);}
  1848. @end table
  1849. @node starpu_worker_get_devid
  1850. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1851. @table @asis
  1852. @item @emph{Description}:
  1853. This functions returns the device id of the worker associated to an identifier
  1854. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1855. CUDA worker, this device identifier is the logical device identifier exposed by
  1856. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1857. identifier of a CPU worker is the logical identifier of the core on which the
  1858. worker was bound; this identifier is either provided by the OS or by the
  1859. @code{hwloc} library in case it is available.
  1860. @item @emph{Prototype}:
  1861. @code{int starpu_worker_get_devid(int id);}
  1862. @end table
  1863. @node starpu_worker_get_type
  1864. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1865. @table @asis
  1866. @item @emph{Description}:
  1867. This function returns the type of worker associated to an identifier (as
  1868. returned by the @code{starpu_worker_get_id} function). The returned value
  1869. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1870. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1871. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1872. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1873. identifier is unspecified.
  1874. @item @emph{Prototype}:
  1875. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1876. @end table
  1877. @node starpu_worker_get_name
  1878. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1879. @table @asis
  1880. @item @emph{Description}:
  1881. StarPU associates a unique human readable string to each processing unit. This
  1882. function copies at most the @code{maxlen} first bytes of the unique string
  1883. associated to a worker identified by its identifier @code{id} into the
  1884. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1885. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1886. function on an invalid identifier results in an unspecified behaviour.
  1887. @item @emph{Prototype}:
  1888. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1889. @end table
  1890. @node starpu_worker_get_memory_node
  1891. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1892. @table @asis
  1893. @item @emph{Description}:
  1894. This function returns the identifier of the memory node associated to the
  1895. worker identified by @code{workerid}.
  1896. @item @emph{Prototype}:
  1897. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1898. @end table
  1899. @node Data Library
  1900. @section Data Library
  1901. This section describes the data management facilities provided by StarPU.
  1902. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1903. design their own data interfaces if required.
  1904. @menu
  1905. * starpu_access_mode:: starpu_access_mode
  1906. * unsigned memory_node:: Memory node
  1907. * starpu_data_handle:: StarPU opaque data handle
  1908. * void *interface:: StarPU data interface
  1909. * starpu_data_register:: Register a piece of data to StarPU
  1910. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1911. * starpu_data_invalidate:: Invalidate all data replicates
  1912. * starpu_data_acquire:: Access registered data from the application
  1913. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1914. * starpu_data_release:: Release registered data from the application
  1915. @end menu
  1916. @node starpu_access_mode
  1917. @subsection @code{starpu_access_mode} -- Data access mode
  1918. This datatype describes a data access mode. The different available modes are:
  1919. @table @asis
  1920. @table @asis
  1921. @item @code{STARPU_R} read-only mode.
  1922. @item @code{STARPU_W} write-only mode.
  1923. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1924. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1925. @end table
  1926. @end table
  1927. @node unsigned memory_node
  1928. @subsection @code{unsigned memory_node} -- Memory node
  1929. @table @asis
  1930. @item @emph{Description}:
  1931. Every worker is associated to a memory node which is a logical abstraction of
  1932. the address space from which the processing unit gets its data. For instance,
  1933. the memory node associated to the different CPU workers represents main memory
  1934. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1935. Every memory node is identified by a logical index which is accessible from the
  1936. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1937. to StarPU, the specified memory node indicates where the piece of data
  1938. initially resides (we also call this memory node the home node of a piece of
  1939. data).
  1940. @end table
  1941. @node starpu_data_handle
  1942. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1943. @table @asis
  1944. @item @emph{Description}:
  1945. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1946. data. Once a piece of data has been registered to StarPU, it is associated to a
  1947. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1948. over the entire machine, so that we can maintain data consistency and locate
  1949. data replicates for instance.
  1950. @end table
  1951. @node void *interface
  1952. @subsection @code{void *interface} -- StarPU data interface
  1953. @table @asis
  1954. @item @emph{Description}:
  1955. Data management is done at a high-level in StarPU: rather than accessing a mere
  1956. list of contiguous buffers, the tasks may manipulate data that are described by
  1957. a high-level construct which we call data interface.
  1958. An example of data interface is the "vector" interface which describes a
  1959. contiguous data array on a spefic memory node. This interface is a simple
  1960. structure containing the number of elements in the array, the size of the
  1961. elements, and the address of the array in the appropriate address space (this
  1962. address may be invalid if there is no valid copy of the array in the memory
  1963. node). More informations on the data interfaces provided by StarPU are
  1964. given in @ref{Data Interfaces}.
  1965. When a piece of data managed by StarPU is used by a task, the task
  1966. implementation is given a pointer to an interface describing a valid copy of
  1967. the data that is accessible from the current processing unit.
  1968. @end table
  1969. @node starpu_data_register
  1970. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1971. @table @asis
  1972. @item @emph{Description}:
  1973. Register a piece of data into the handle located at the @code{handleptr}
  1974. address. The @code{interface} buffer contains the initial description of the
  1975. data in the home node. The @code{ops} argument is a pointer to a structure
  1976. describing the different methods used to manipulate this type of interface. See
  1977. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1978. If @code{home_node} is -1, StarPU will automatically
  1979. allocate the memory when it is used for the
  1980. first time in write-only mode. Once such data handle has been automatically
  1981. allocated, it is possible to access it using any access mode.
  1982. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1983. matrix) which can be registered by the means of helper functions (e.g.
  1984. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1985. @item @emph{Prototype}:
  1986. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1987. uint32_t home_node,
  1988. void *interface,
  1989. struct starpu_data_interface_ops_t *ops);}
  1990. @end table
  1991. @node starpu_data_unregister
  1992. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1993. @table @asis
  1994. @item @emph{Description}:
  1995. This function unregisters a data handle from StarPU. If the data was
  1996. automatically allocated by StarPU because the home node was -1, all
  1997. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1998. is put back into the home node in the buffer that was initially registered.
  1999. Using a data handle that has been unregistered from StarPU results in an
  2000. undefined behaviour.
  2001. @item @emph{Prototype}:
  2002. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2003. @end table
  2004. @node starpu_data_invalidate
  2005. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2006. @table @asis
  2007. @item @emph{Description}:
  2008. Destroy all replicates of the data handle. After data invalidation, the first
  2009. access to the handle must be performed in write-only mode. Accessing an
  2010. invalidated data in read-mode results in undefined behaviour.
  2011. @item @emph{Prototype}:
  2012. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2013. @end table
  2014. @c TODO create a specific sections about user interaction with the DSM ?
  2015. @node starpu_data_acquire
  2016. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2017. @table @asis
  2018. @item @emph{Description}:
  2019. The application must call this function prior to accessing registered data from
  2020. main memory outside tasks. StarPU ensures that the application will get an
  2021. up-to-date copy of the data in main memory located where the data was
  2022. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2023. be consistent with the access mode specified in the @code{mode} argument.
  2024. @code{starpu_data_release} must be called once the application does not need to
  2025. access the piece of data anymore.
  2026. Note that implicit data dependencies are also enforced by
  2027. @code{starpu_data_acquire} in case they are enabled.
  2028. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2029. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2030. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2031. @item @emph{Prototype}:
  2032. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2033. @end table
  2034. @node starpu_data_acquire_cb
  2035. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2036. @table @asis
  2037. @item @emph{Description}:
  2038. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2039. @code{starpu_data_release}. When the data specified in the first argument is
  2040. available in the appropriate access mode, the callback function is executed.
  2041. The application may access the requested data during the execution of this
  2042. callback. The callback function must call @code{starpu_data_release} once the
  2043. application does not need to access the piece of data anymore.
  2044. Note that implicit data dependencies are also enforced by
  2045. @code{starpu_data_acquire_cb} in case they are enabled.
  2046. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2047. be called from task callbacks. Upon successful completion, this function
  2048. returns 0.
  2049. @item @emph{Prototype}:
  2050. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2051. @end table
  2052. @node starpu_data_release
  2053. @subsection @code{starpu_data_release} -- Release registered data from the application
  2054. @table @asis
  2055. @item @emph{Description}:
  2056. This function releases the piece of data acquired by the application either by
  2057. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2058. @item @emph{Prototype}:
  2059. @code{void starpu_data_release(starpu_data_handle handle);}
  2060. @end table
  2061. @node Data Interfaces
  2062. @section Data Interfaces
  2063. @menu
  2064. * Variable Interface::
  2065. * Vector Interface::
  2066. * Matrix Interface::
  2067. * 3D Matrix Interface::
  2068. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2069. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2070. @end menu
  2071. @node Variable Interface
  2072. @subsection Variable Interface
  2073. @table @asis
  2074. @item @emph{Description}:
  2075. This variant of @code{starpu_data_register} uses the variable interface,
  2076. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2077. and @code{elemsize} is the size of the variable.
  2078. @item @emph{Prototype}:
  2079. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2080. uint32_t home_node,
  2081. uintptr_t ptr, size_t elemsize);}
  2082. @item @emph{Example}:
  2083. @cartouche
  2084. @smallexample
  2085. float var;
  2086. starpu_data_handle var_handle;
  2087. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2088. @end smallexample
  2089. @end cartouche
  2090. @end table
  2091. @node Vector Interface
  2092. @subsection Vector Interface
  2093. @table @asis
  2094. @item @emph{Description}:
  2095. This variant of @code{starpu_data_register} uses the vector interface,
  2096. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2097. element in the home node. @code{nx} is the number of elements in the vector.
  2098. @code{elemsize} is the size of each element.
  2099. @item @emph{Prototype}:
  2100. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2101. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2102. @item @emph{Example}:
  2103. @cartouche
  2104. @smallexample
  2105. float vector[NX];
  2106. starpu_data_handle vector_handle;
  2107. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2108. sizeof(vector[0]));
  2109. @end smallexample
  2110. @end cartouche
  2111. @end table
  2112. @node Matrix Interface
  2113. @subsection Matrix Interface
  2114. @table @asis
  2115. @item @emph{Description}:
  2116. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2117. matrices of elements. @code{ptr} is the address of the first element in the home
  2118. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2119. of elements in a row (this can be different from @code{ld} if there are extra
  2120. elements for alignment for instance). @code{ny} is the number of rows.
  2121. @code{elemsize} is the size of each element.
  2122. @item @emph{Prototype}:
  2123. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2124. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2125. uint32_t ny, size_t elemsize);}
  2126. @item @emph{Example}:
  2127. @cartouche
  2128. @smallexample
  2129. float *matrix;
  2130. starpu_data_handle matrix_handle;
  2131. matrix = (float*)malloc(width * height * sizeof(float));
  2132. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2133. width, width, height, sizeof(float));
  2134. @end smallexample
  2135. @end cartouche
  2136. @end table
  2137. @node 3D Matrix Interface
  2138. @subsection 3D Matrix Interface
  2139. @table @asis
  2140. @item @emph{Description}:
  2141. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2142. @code{ptr} is the address of the array of first element in the home node.
  2143. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2144. of rows between z planes. @code{nx} is the number of elements in a row (this
  2145. can be different from @code{ldy} if there are extra elements for alignment
  2146. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2147. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2148. each element.
  2149. @item @emph{Prototype}:
  2150. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2151. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2152. uint32_t ny, uint32_t nz, size_t elemsize);}
  2153. @item @emph{Example}:
  2154. @cartouche
  2155. @smallexample
  2156. float *block;
  2157. starpu_data_handle block_handle;
  2158. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2159. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2160. nx, nx*ny, nx, ny, nz, sizeof(float));
  2161. @end smallexample
  2162. @end cartouche
  2163. @end table
  2164. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2165. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2166. @table @asis
  2167. @item @emph{Description}:
  2168. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2169. TODO
  2170. @item @emph{Prototype}:
  2171. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2172. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2173. @item @emph{Example}:
  2174. @cartouche
  2175. @smallexample
  2176. @end smallexample
  2177. @end cartouche
  2178. @end table
  2179. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2180. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2181. @table @asis
  2182. @item @emph{Description}:
  2183. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2184. TODO
  2185. @item @emph{Prototype}:
  2186. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2187. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2188. @item @emph{Example}:
  2189. @cartouche
  2190. @smallexample
  2191. @end smallexample
  2192. @end cartouche
  2193. @end table
  2194. @node Data Partition
  2195. @section Data Partition
  2196. @menu
  2197. * struct starpu_data_filter:: StarPU filter structure
  2198. * starpu_data_partition:: Partition Data
  2199. * starpu_data_unpartition:: Unpartition Data
  2200. * starpu_data_get_nb_children::
  2201. * starpu_data_get_sub_data::
  2202. * Predefined filter functions::
  2203. @end menu
  2204. @node struct starpu_data_filter
  2205. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2206. @table @asis
  2207. @item @emph{Description}:
  2208. The filter structure describes a data partitioning operation, to be given to the
  2209. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2210. @item @emph{Fields}:
  2211. @table @asis
  2212. @item @code{filter_func}:
  2213. This function fills the @code{child_interface} structure with interface
  2214. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2215. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2216. @item @code{nchildren}:
  2217. This is the number of parts to partition the data into.
  2218. @item @code{get_nchildren}:
  2219. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2220. children depends on the actual data (e.g. the number of blocks in a sparse
  2221. matrix).
  2222. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2223. @item @code{get_child_ops}:
  2224. In case the resulting children use a different data interface, this function
  2225. returns which interface is used by child number @code{id}.
  2226. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2227. @item @code{filter_arg}:
  2228. Some filters take an addition parameter, but this is usually unused.
  2229. @item @code{filter_arg_ptr}:
  2230. Some filters take an additional array parameter like the sizes of the parts, but
  2231. this is usually unused.
  2232. @end table
  2233. @end table
  2234. @node starpu_data_partition
  2235. @subsection starpu_data_partition -- Partition Data
  2236. @table @asis
  2237. @item @emph{Description}:
  2238. This requests partitioning one StarPU data @code{initial_handle} into several
  2239. subdata according to the filter @code{f}
  2240. @item @emph{Prototype}:
  2241. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2242. @item @emph{Example}:
  2243. @cartouche
  2244. @smallexample
  2245. struct starpu_data_filter f = @{
  2246. .filter_func = starpu_vertical_block_filter_func,
  2247. .nchildren = nslicesx,
  2248. .get_nchildren = NULL,
  2249. .get_child_ops = NULL
  2250. @};
  2251. starpu_data_partition(A_handle, &f);
  2252. @end smallexample
  2253. @end cartouche
  2254. @end table
  2255. @node starpu_data_unpartition
  2256. @subsection starpu_data_unpartition -- Unpartition data
  2257. @table @asis
  2258. @item @emph{Description}:
  2259. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2260. collected back into one big piece in the @code{gathering_node} (usually 0).
  2261. @item @emph{Prototype}:
  2262. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2263. @item @emph{Example}:
  2264. @cartouche
  2265. @smallexample
  2266. starpu_data_unpartition(A_handle, 0);
  2267. @end smallexample
  2268. @end cartouche
  2269. @end table
  2270. @node starpu_data_get_nb_children
  2271. @subsection starpu_data_get_nb_children
  2272. @table @asis
  2273. @item @emph{Description}:
  2274. This function returns the number of children.
  2275. @item @emph{Return value}:
  2276. The number of children.
  2277. @item @emph{Prototype}:
  2278. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2279. @end table
  2280. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2281. @node starpu_data_get_sub_data
  2282. @subsection starpu_data_get_sub_data
  2283. @table @asis
  2284. @item @emph{Description}:
  2285. After partitioning a StarPU data by applying a filter,
  2286. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2287. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2288. is the number of filters to traverse (in case several filters have been applied,
  2289. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2290. parameters are the indexes.
  2291. @item @emph{Return value}:
  2292. A handle to the subdata.
  2293. @item @emph{Prototype}:
  2294. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2295. @item @emph{Example}:
  2296. @cartouche
  2297. @smallexample
  2298. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2299. @end smallexample
  2300. @end cartouche
  2301. @end table
  2302. @node Predefined filter functions
  2303. @subsection Predefined filter functions
  2304. @menu
  2305. * Partitioning BCSR Data::
  2306. * Partitioning BLAS interface::
  2307. * Partitioning Vector Data::
  2308. * Partitioning Block Data::
  2309. @end menu
  2310. This section gives a partial list of the predefined partitioning functions.
  2311. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2312. list can be found in @code{starpu_data_filters.h} .
  2313. @node Partitioning BCSR Data
  2314. @subsubsection Partitioning BCSR Data
  2315. @table @asis
  2316. @item @emph{Description}:
  2317. TODO
  2318. @item @emph{Prototype}:
  2319. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2320. @end table
  2321. @table @asis
  2322. @item @emph{Description}:
  2323. TODO
  2324. @item @emph{Prototype}:
  2325. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2326. @end table
  2327. @node Partitioning BLAS interface
  2328. @subsubsection Partitioning BLAS interface
  2329. @table @asis
  2330. @item @emph{Description}:
  2331. This partitions a dense Matrix into horizontal blocks.
  2332. @item @emph{Prototype}:
  2333. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2334. @end table
  2335. @table @asis
  2336. @item @emph{Description}:
  2337. This partitions a dense Matrix into vertical blocks.
  2338. @item @emph{Prototype}:
  2339. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2340. @end table
  2341. @node Partitioning Vector Data
  2342. @subsubsection Partitioning Vector Data
  2343. @table @asis
  2344. @item @emph{Description}:
  2345. This partitions a vector into blocks of the same size.
  2346. @item @emph{Prototype}:
  2347. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2348. @end table
  2349. @table @asis
  2350. @item @emph{Description}:
  2351. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2352. @item @emph{Prototype}:
  2353. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2354. @end table
  2355. @table @asis
  2356. @item @emph{Description}:
  2357. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2358. @item @emph{Prototype}:
  2359. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2360. @end table
  2361. @node Partitioning Block Data
  2362. @subsubsection Partitioning Block Data
  2363. @table @asis
  2364. @item @emph{Description}:
  2365. This partitions a 3D matrix along the X axis.
  2366. @item @emph{Prototype}:
  2367. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2368. @end table
  2369. @node Codelets and Tasks
  2370. @section Codelets and Tasks
  2371. @menu
  2372. * struct starpu_codelet:: StarPU codelet structure
  2373. * struct starpu_task:: StarPU task structure
  2374. * starpu_task_init:: Initialize a Task
  2375. * starpu_task_create:: Allocate and Initialize a Task
  2376. * starpu_task_deinit:: Release all the resources used by a Task
  2377. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2378. * starpu_task_wait:: Wait for the termination of a Task
  2379. * starpu_task_submit:: Submit a Task
  2380. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2381. * starpu_get_current_task:: Return the task currently executed by the worker
  2382. * starpu_display_codelet_stats:: Display statistics
  2383. @end menu
  2384. @node struct starpu_codelet
  2385. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2386. @table @asis
  2387. @item @emph{Description}:
  2388. The codelet structure describes a kernel that is possibly implemented on
  2389. various targets.
  2390. @item @emph{Fields}:
  2391. @table @asis
  2392. @item @code{where}:
  2393. Indicates which types of processing units are able to execute the codelet.
  2394. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2395. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2396. indicates that it is only available on Cell SPUs.
  2397. @item @code{cpu_func} (optional):
  2398. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2399. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2400. argument being the array of data managed by the data management library, and
  2401. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2402. field of the @code{starpu_task} structure.
  2403. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2404. the @code{where} field, it must be non-null otherwise.
  2405. @item @code{cuda_func} (optional):
  2406. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2407. must be a host-function written in the CUDA runtime API}. Its prototype must
  2408. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2409. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2410. field, it must be non-null otherwise.
  2411. @item @code{opencl_func} (optional):
  2412. Is a function pointer to the OpenCL implementation of the codelet. Its
  2413. prototype must be:
  2414. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2415. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2416. @code{where} field, it must be non-null otherwise.
  2417. @item @code{gordon_func} (optional):
  2418. This is the index of the Cell SPU implementation within the Gordon library.
  2419. See Gordon documentation for more details on how to register a kernel and
  2420. retrieve its index.
  2421. @item @code{nbuffers}:
  2422. Specifies the number of arguments taken by the codelet. These arguments are
  2423. managed by the DSM and are accessed from the @code{void *buffers[]}
  2424. array. The constant argument passed with the @code{cl_arg} field of the
  2425. @code{starpu_task} structure is not counted in this number. This value should
  2426. not be above @code{STARPU_NMAXBUFS}.
  2427. @item @code{model} (optional):
  2428. This is a pointer to the performance model associated to this codelet. This
  2429. optional field is ignored when set to @code{NULL}. TODO
  2430. @end table
  2431. @end table
  2432. @node struct starpu_task
  2433. @subsection @code{struct starpu_task} -- StarPU task structure
  2434. @table @asis
  2435. @item @emph{Description}:
  2436. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2437. processing units managed by StarPU. It instantiates a codelet. It can either be
  2438. allocated dynamically with the @code{starpu_task_create} method, or declared
  2439. statically. In the latter case, the programmer has to zero the
  2440. @code{starpu_task} structure and to fill the different fields properly. The
  2441. indicated default values correspond to the configuration of a task allocated
  2442. with @code{starpu_task_create}.
  2443. @item @emph{Fields}:
  2444. @table @asis
  2445. @item @code{cl}:
  2446. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2447. describes where the kernel should be executed, and supplies the appropriate
  2448. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2449. such empty tasks can be useful for synchronization purposes.
  2450. @item @code{buffers}:
  2451. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2452. different pieces of data accessed by the task, and how they should be accessed.
  2453. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2454. @code{handle} field specifies the handle of the piece of data, and the
  2455. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2456. of entries in this array must be specified in the @code{nbuffers} field of the
  2457. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2458. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2459. option when configuring StarPU.
  2460. @item @code{cl_arg} (optional) (default = NULL):
  2461. This pointer is passed to the codelet through the second argument
  2462. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2463. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2464. argument.
  2465. @item @code{cl_arg_size} (optional, Cell specific):
  2466. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2467. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2468. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2469. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2470. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2471. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2472. codelets.
  2473. @item @code{callback_func} (optional) (default = @code{NULL}):
  2474. This is a function pointer of prototype @code{void (*f)(void *)} which
  2475. specifies a possible callback. If this pointer is non-null, the callback
  2476. function is executed @emph{on the host} after the execution of the task. The
  2477. callback is passed the value contained in the @code{callback_arg} field. No
  2478. callback is executed if the field is set to @code{NULL}.
  2479. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2480. This is the pointer passed to the callback function. This field is ignored if
  2481. the @code{callback_func} is set to @code{NULL}.
  2482. @item @code{use_tag} (optional) (default = 0):
  2483. If set, this flag indicates that the task should be associated with the tag
  2484. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2485. with the task and to express task dependencies easily.
  2486. @item @code{tag_id}:
  2487. This fields contains the tag associated to the task if the @code{use_tag} field
  2488. was set, it is ignored otherwise.
  2489. @item @code{synchronous}:
  2490. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2491. returns only when the task has been executed (or if no worker is able to
  2492. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2493. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2494. This field indicates a level of priority for the task. This is an integer value
  2495. that must be set between the return values of the
  2496. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2497. and that of the @code{starpu_sched_get_max_priority} for the most important
  2498. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2499. are provided for convenience and respectively returns value of
  2500. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2501. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2502. order to allow static task initialization. Scheduling strategies that take
  2503. priorities into account can use this parameter to take better scheduling
  2504. decisions, but the scheduling policy may also ignore it.
  2505. @item @code{execute_on_a_specific_worker} (default = 0):
  2506. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2507. task to the worker specified by the @code{workerid} field.
  2508. @item @code{workerid} (optional):
  2509. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2510. which is the identifier of the worker that should process this task (as
  2511. returned by @code{starpu_worker_get_id}). This field is ignored if
  2512. @code{execute_on_a_specific_worker} field is set to 0.
  2513. @item @code{detach} (optional) (default = 1):
  2514. If this flag is set, it is not possible to synchronize with the task
  2515. by the means of @code{starpu_task_wait} later on. Internal data structures
  2516. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2517. flag is not set.
  2518. @item @code{destroy} (optional) (default = 1):
  2519. If this flag is set, the task structure will automatically be freed, either
  2520. after the execution of the callback if the task is detached, or during
  2521. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2522. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2523. called explicitly. Setting this flag for a statically allocated task structure
  2524. will result in undefined behaviour.
  2525. @item @code{predicted} (output field):
  2526. Predicted duration of the task. This field is only set if the scheduling
  2527. strategy used performance models.
  2528. @end table
  2529. @end table
  2530. @node starpu_task_init
  2531. @subsection @code{starpu_task_init} -- Initialize a Task
  2532. @table @asis
  2533. @item @emph{Description}:
  2534. Initialize a task structure with default values. This function is implicitly
  2535. called by @code{starpu_task_create}. By default, tasks initialized with
  2536. @code{starpu_task_init} must be deinitialized explicitly with
  2537. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2538. constant @code{STARPU_TASK_INITIALIZER}.
  2539. @item @emph{Prototype}:
  2540. @code{void starpu_task_init(struct starpu_task *task);}
  2541. @end table
  2542. @node starpu_task_create
  2543. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2544. @table @asis
  2545. @item @emph{Description}:
  2546. Allocate a task structure and initialize it with default values. Tasks
  2547. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2548. task is terminated. If the destroy flag is explicitly unset, the resources used
  2549. by the task are freed by calling
  2550. @code{starpu_task_destroy}.
  2551. @item @emph{Prototype}:
  2552. @code{struct starpu_task *starpu_task_create(void);}
  2553. @end table
  2554. @node starpu_task_deinit
  2555. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2556. @table @asis
  2557. @item @emph{Description}:
  2558. Release all the structures automatically allocated to execute the task. This is
  2559. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2560. freed. This should be used for statically allocated tasks for instance.
  2561. @item @emph{Prototype}:
  2562. @code{void starpu_task_deinit(struct starpu_task *task);}
  2563. @end table
  2564. @node starpu_task_destroy
  2565. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2566. @table @asis
  2567. @item @emph{Description}:
  2568. Free the resource allocated during @code{starpu_task_create}. This function can be
  2569. called automatically after the execution of a task by setting the
  2570. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2571. Calling this function on a statically allocated task results in an undefined
  2572. behaviour.
  2573. @item @emph{Prototype}:
  2574. @code{void starpu_task_destroy(struct starpu_task *task);}
  2575. @end table
  2576. @node starpu_task_wait
  2577. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2578. @table @asis
  2579. @item @emph{Description}:
  2580. This function blocks until the task has been executed. It is not possible to
  2581. synchronize with a task more than once. It is not possible to wait for
  2582. synchronous or detached tasks.
  2583. @item @emph{Return value}:
  2584. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2585. indicates that the specified task was either synchronous or detached.
  2586. @item @emph{Prototype}:
  2587. @code{int starpu_task_wait(struct starpu_task *task);}
  2588. @end table
  2589. @node starpu_task_submit
  2590. @subsection @code{starpu_task_submit} -- Submit a Task
  2591. @table @asis
  2592. @item @emph{Description}:
  2593. This function submits a task to StarPU. Calling this function does
  2594. not mean that the task will be executed immediately as there can be data or task
  2595. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2596. scheduling this task with respect to such dependencies.
  2597. This function returns immediately if the @code{synchronous} field of the
  2598. @code{starpu_task} structure was set to 0, and block until the termination of
  2599. the task otherwise. It is also possible to synchronize the application with
  2600. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2601. function for instance.
  2602. @item @emph{Return value}:
  2603. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2604. means that there is no worker able to process this task (e.g. there is no GPU
  2605. available and this task is only implemented for CUDA devices).
  2606. @item @emph{Prototype}:
  2607. @code{int starpu_task_submit(struct starpu_task *task);}
  2608. @end table
  2609. @node starpu_task_wait_for_all
  2610. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2611. @table @asis
  2612. @item @emph{Description}:
  2613. This function blocks until all the tasks that were submitted are terminated.
  2614. @item @emph{Prototype}:
  2615. @code{void starpu_task_wait_for_all(void);}
  2616. @end table
  2617. @node starpu_get_current_task
  2618. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2619. @table @asis
  2620. @item @emph{Description}:
  2621. This function returns the task currently executed by the worker, or
  2622. NULL if it is called either from a thread that is not a task or simply
  2623. because there is no task being executed at the moment.
  2624. @item @emph{Prototype}:
  2625. @code{struct starpu_task *starpu_get_current_task(void);}
  2626. @end table
  2627. @node starpu_display_codelet_stats
  2628. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2629. @table @asis
  2630. @item @emph{Description}:
  2631. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2632. @item @emph{Prototype}:
  2633. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2634. @end table
  2635. @c Callbacks : what can we put in callbacks ?
  2636. @node Explicit Dependencies
  2637. @section Explicit Dependencies
  2638. @menu
  2639. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2640. * starpu_tag_t:: Task logical identifier
  2641. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2642. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2643. * starpu_tag_wait:: Block until a Tag is terminated
  2644. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2645. * starpu_tag_remove:: Destroy a Tag
  2646. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2647. @end menu
  2648. @node starpu_task_declare_deps_array
  2649. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2650. @table @asis
  2651. @item @emph{Description}:
  2652. Declare task dependencies between a @code{task} and an array of tasks of length
  2653. @code{ndeps}. This function must be called prior to the submission of the task,
  2654. but it may called after the submission or the execution of the tasks in the
  2655. array provided the tasks are still valid (ie. they were not automatically
  2656. destroyed). Calling this function on a task that was already submitted or with
  2657. an entry of @code{task_array} that is not a valid task anymore results in an
  2658. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2659. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2660. same task, in this case, the dependencies are added. It is possible to have
  2661. redundancy in the task dependencies.
  2662. @item @emph{Prototype}:
  2663. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2664. @end table
  2665. @node starpu_tag_t
  2666. @subsection @code{starpu_tag_t} -- Task logical identifier
  2667. @table @asis
  2668. @item @emph{Description}:
  2669. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2670. dependencies between tasks by the means of those tags. To do so, fill the
  2671. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2672. be arbitrary) and set the @code{use_tag} field to 1.
  2673. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2674. not be started until the tasks which holds the declared dependency tags are
  2675. completed.
  2676. @end table
  2677. @node starpu_tag_declare_deps
  2678. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2679. @table @asis
  2680. @item @emph{Description}:
  2681. Specify the dependencies of the task identified by tag @code{id}. The first
  2682. argument specifies the tag which is configured, the second argument gives the
  2683. number of tag(s) on which @code{id} depends. The following arguments are the
  2684. tags which have to be terminated to unlock the task.
  2685. This function must be called before the associated task is submitted to StarPU
  2686. with @code{starpu_task_submit}.
  2687. @item @emph{Remark}
  2688. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2689. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2690. typically need to be explicitly casted. Using the
  2691. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2692. @item @emph{Prototype}:
  2693. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2694. @item @emph{Example}:
  2695. @cartouche
  2696. @example
  2697. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2698. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2699. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2700. @end example
  2701. @end cartouche
  2702. @end table
  2703. @node starpu_tag_declare_deps_array
  2704. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2705. @table @asis
  2706. @item @emph{Description}:
  2707. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2708. does not take a variable number of arguments but an array of tags of size
  2709. @code{ndeps}.
  2710. @item @emph{Prototype}:
  2711. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2712. @item @emph{Example}:
  2713. @cartouche
  2714. @example
  2715. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2716. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2717. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2718. @end example
  2719. @end cartouche
  2720. @end table
  2721. @node starpu_tag_wait
  2722. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2723. @table @asis
  2724. @item @emph{Description}:
  2725. This function blocks until the task associated to tag @code{id} has been
  2726. executed. This is a blocking call which must therefore not be called within
  2727. tasks or callbacks, but only from the application directly. It is possible to
  2728. synchronize with the same tag multiple times, as long as the
  2729. @code{starpu_tag_remove} function is not called. Note that it is still
  2730. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2731. data structure was freed (e.g. if the @code{destroy} flag of the
  2732. @code{starpu_task} was enabled).
  2733. @item @emph{Prototype}:
  2734. @code{void starpu_tag_wait(starpu_tag_t id);}
  2735. @end table
  2736. @node starpu_tag_wait_array
  2737. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2738. @table @asis
  2739. @item @emph{Description}:
  2740. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2741. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2742. terminated.
  2743. @item @emph{Prototype}:
  2744. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2745. @end table
  2746. @node starpu_tag_remove
  2747. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2748. @table @asis
  2749. @item @emph{Description}:
  2750. This function releases the resources associated to tag @code{id}. It can be
  2751. called once the corresponding task has been executed and when there is
  2752. no other tag that depend on this tag anymore.
  2753. @item @emph{Prototype}:
  2754. @code{void starpu_tag_remove(starpu_tag_t id);}
  2755. @end table
  2756. @node starpu_tag_notify_from_apps
  2757. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2758. @table @asis
  2759. @item @emph{Description}:
  2760. This function explicitly unlocks tag @code{id}. It may be useful in the
  2761. case of applications which execute part of their computation outside StarPU
  2762. tasks (e.g. third-party libraries). It is also provided as a
  2763. convenient tool for the programmer, for instance to entirely construct the task
  2764. DAG before actually giving StarPU the opportunity to execute the tasks.
  2765. @item @emph{Prototype}:
  2766. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2767. @end table
  2768. @node Implicit Data Dependencies
  2769. @section Implicit Data Dependencies
  2770. @menu
  2771. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2772. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2773. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2774. @end menu
  2775. In this section, we describe how StarPU makes it possible to insert implicit
  2776. task dependencies in order to enforce sequential data consistency. When this
  2777. data consistency is enabled on a specific data handle, any data access will
  2778. appear as sequentially consistent from the application. For instance, if the
  2779. application submits two tasks that access the same piece of data in read-only
  2780. mode, and then a third task that access it in write mode, dependencies will be
  2781. added between the two first tasks and the third one. Implicit data dependencies
  2782. are also inserted in the case of data accesses from the application.
  2783. @node starpu_data_set_default_sequential_consistency_flag
  2784. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2785. @table @asis
  2786. @item @emph{Description}:
  2787. Set the default sequential consistency flag. If a non-zero value is passed, a
  2788. sequential data consistency will be enforced for all handles registered after
  2789. this function call, otherwise it is disabled. By default, StarPU enables
  2790. sequential data consistency. It is also possible to select the data consistency
  2791. mode of a specific data handle with the
  2792. @code{starpu_data_set_sequential_consistency_flag} function.
  2793. @item @emph{Prototype}:
  2794. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2795. @end table
  2796. @node starpu_data_get_default_sequential_consistency_flag
  2797. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2798. @table @asis
  2799. @item @emph{Description}:
  2800. This function returns the current default sequential consistency flag.
  2801. @item @emph{Prototype}:
  2802. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2803. @end table
  2804. @node starpu_data_set_sequential_consistency_flag
  2805. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2806. @table @asis
  2807. @item @emph{Description}:
  2808. Select the data consistency mode associated to a data handle. The consistency
  2809. mode set using this function has the priority over the default mode which can
  2810. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2811. @item @emph{Prototype}:
  2812. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2813. @end table
  2814. @node Performance Model API
  2815. @section Performance Model API
  2816. @menu
  2817. * starpu_load_history_debug::
  2818. * starpu_perfmodel_debugfilepath::
  2819. * starpu_perfmodel_get_arch_name::
  2820. * starpu_force_bus_sampling::
  2821. @end menu
  2822. @node starpu_load_history_debug
  2823. @subsection @code{starpu_load_history_debug}
  2824. @table @asis
  2825. @item @emph{Description}:
  2826. TODO
  2827. @item @emph{Prototype}:
  2828. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2829. @end table
  2830. @node starpu_perfmodel_debugfilepath
  2831. @subsection @code{starpu_perfmodel_debugfilepath}
  2832. @table @asis
  2833. @item @emph{Description}:
  2834. TODO
  2835. @item @emph{Prototype}:
  2836. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2837. @end table
  2838. @node starpu_perfmodel_get_arch_name
  2839. @subsection @code{starpu_perfmodel_get_arch_name}
  2840. @table @asis
  2841. @item @emph{Description}:
  2842. TODO
  2843. @item @emph{Prototype}:
  2844. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2845. @end table
  2846. @node starpu_force_bus_sampling
  2847. @subsection @code{starpu_force_bus_sampling}
  2848. @table @asis
  2849. @item @emph{Description}:
  2850. This forces sampling the bus performance model again.
  2851. @item @emph{Prototype}:
  2852. @code{void starpu_force_bus_sampling(void);}
  2853. @end table
  2854. @node Profiling API
  2855. @section Profiling API
  2856. @menu
  2857. * starpu_profiling_status_set:: starpu_profiling_status_set
  2858. * starpu_profiling_status_get:: starpu_profiling_status_get
  2859. * struct starpu_task_profiling_info:: task profiling information
  2860. * struct starpu_worker_profiling_info:: worker profiling information
  2861. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2862. * struct starpu_bus_profiling_info:: bus profiling information
  2863. * starpu_bus_get_count::
  2864. * starpu_bus_get_id::
  2865. * starpu_bus_get_src::
  2866. * starpu_bus_get_dst::
  2867. * starpu_timing_timespec_delay_us::
  2868. * starpu_timing_timespec_to_us::
  2869. * starpu_bus_profiling_helper_display_summary::
  2870. @end menu
  2871. @node starpu_profiling_status_set
  2872. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2873. @table @asis
  2874. @item @emph{Description}:
  2875. Thie function sets the profiling status. Profiling is activated by passing
  2876. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2877. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2878. resets all profiling measurements. When profiling is enabled, the
  2879. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2880. to a valid @code{struct starpu_task_profiling_info} structure containing
  2881. information about the execution of the task.
  2882. @item @emph{Return value}:
  2883. Negative return values indicate an error, otherwise the previous status is
  2884. returned.
  2885. @item @emph{Prototype}:
  2886. @code{int starpu_profiling_status_set(int status);}
  2887. @end table
  2888. @node starpu_profiling_status_get
  2889. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2890. @table @asis
  2891. @item @emph{Description}:
  2892. Return the current profiling status or a negative value in case there was an error.
  2893. @item @emph{Prototype}:
  2894. @code{int starpu_profiling_status_get(void);}
  2895. @end table
  2896. @node struct starpu_task_profiling_info
  2897. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2898. @table @asis
  2899. @item @emph{Description}:
  2900. This structure contains information about the execution of a task. It is
  2901. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2902. structure if profiling was enabled.
  2903. @item @emph{Fields}:
  2904. @table @asis
  2905. @item @code{submit_time}:
  2906. Date of task submission (relative to the initialization of StarPU).
  2907. @item @code{start_time}:
  2908. Date of task execution beginning (relative to the initialization of StarPU).
  2909. @item @code{end_time}:
  2910. Date of task execution termination (relative to the initialization of StarPU).
  2911. @item @code{workerid}:
  2912. Identifier of the worker which has executed the task.
  2913. @end table
  2914. @end table
  2915. @node struct starpu_worker_profiling_info
  2916. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2917. @table @asis
  2918. @item @emph{Description}:
  2919. This structure contains the profiling information associated to a worker.
  2920. @item @emph{Fields}:
  2921. @table @asis
  2922. @item @code{start_time}:
  2923. Starting date for the reported profiling measurements.
  2924. @item @code{total_time}:
  2925. Duration of the profiling measurement interval.
  2926. @item @code{executing_time}:
  2927. Time spent by the worker to execute tasks during the profiling measurement interval.
  2928. @item @code{sleeping_time}:
  2929. Time spent idling by the worker during the profiling measurement interval.
  2930. @item @code{executed_tasks}:
  2931. Number of tasks executed by the worker during the profiling measurement interval.
  2932. @end table
  2933. @end table
  2934. @node starpu_worker_get_profiling_info
  2935. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2936. @table @asis
  2937. @item @emph{Description}:
  2938. Get the profiling info associated to the worker identified by @code{workerid},
  2939. and reset the profiling measurements. If the @code{worker_info} argument is
  2940. NULL, only reset the counters associated to worker @code{workerid}.
  2941. @item @emph{Return value}:
  2942. Upon successful completion, this function returns 0. Otherwise, a negative
  2943. value is returned.
  2944. @item @emph{Prototype}:
  2945. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2946. @end table
  2947. @node struct starpu_bus_profiling_info
  2948. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2949. @table @asis
  2950. @item @emph{Description}:
  2951. TODO
  2952. @item @emph{Fields}:
  2953. @table @asis
  2954. @item @code{start_time}:
  2955. TODO
  2956. @item @code{total_time}:
  2957. TODO
  2958. @item @code{transferred_bytes}:
  2959. TODO
  2960. @item @code{transfer_count}:
  2961. TODO
  2962. @end table
  2963. @end table
  2964. @node starpu_bus_get_count
  2965. @subsection @code{starpu_bus_get_count}
  2966. @table @asis
  2967. @item @emph{Description}:
  2968. TODO
  2969. @item @emph{Prototype}:
  2970. @code{int starpu_bus_get_count(void);}
  2971. @end table
  2972. @node starpu_bus_get_id
  2973. @subsection @code{starpu_bus_get_id}
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. TODO
  2977. @item @emph{Prototype}:
  2978. @code{int starpu_bus_get_id(int src, int dst);}
  2979. @end table
  2980. @node starpu_bus_get_src
  2981. @subsection @code{starpu_bus_get_src}
  2982. @table @asis
  2983. @item @emph{Description}:
  2984. TODO
  2985. @item @emph{Prototype}:
  2986. @code{int starpu_bus_get_src(int busid);}
  2987. @end table
  2988. @node starpu_bus_get_dst
  2989. @subsection @code{starpu_bus_get_dst}
  2990. @table @asis
  2991. @item @emph{Description}:
  2992. TODO
  2993. @item @emph{Prototype}:
  2994. @code{int starpu_bus_get_dst(int busid);}
  2995. @end table
  2996. @node starpu_timing_timespec_delay_us
  2997. @subsection @code{starpu_timing_timespec_delay_us}
  2998. @table @asis
  2999. @item @emph{Description}:
  3000. TODO
  3001. @item @emph{Prototype}:
  3002. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3003. @end table
  3004. @node starpu_timing_timespec_to_us
  3005. @subsection @code{starpu_timing_timespec_to_us}
  3006. @table @asis
  3007. @item @emph{Description}:
  3008. TODO
  3009. @item @emph{Prototype}:
  3010. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3011. @end table
  3012. @node starpu_bus_profiling_helper_display_summary
  3013. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3014. @table @asis
  3015. @item @emph{Description}:
  3016. TODO
  3017. @item @emph{Prototype}:
  3018. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3019. @end table
  3020. @node CUDA extensions
  3021. @section CUDA extensions
  3022. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3023. @menu
  3024. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3025. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3026. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3027. @end menu
  3028. @node starpu_cuda_get_local_stream
  3029. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3030. @table @asis
  3031. @item @emph{Description}:
  3032. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3033. function is only provided for convenience so that programmers can easily use
  3034. asynchronous operations within codelets without having to create a stream by
  3035. hand. Note that the application is not forced to use the stream provided by
  3036. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3037. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3038. the likelihood of having all transfers overlapped.
  3039. @item @emph{Prototype}:
  3040. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3041. @end table
  3042. @node starpu_helper_cublas_init
  3043. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3044. @table @asis
  3045. @item @emph{Description}:
  3046. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3047. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3048. controlled by StarPU. This call blocks until CUBLAS has been properly
  3049. initialized on every device.
  3050. @item @emph{Prototype}:
  3051. @code{void starpu_helper_cublas_init(void);}
  3052. @end table
  3053. @node starpu_helper_cublas_shutdown
  3054. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3055. @table @asis
  3056. @item @emph{Description}:
  3057. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3058. @item @emph{Prototype}:
  3059. @code{void starpu_helper_cublas_shutdown(void);}
  3060. @end table
  3061. @node OpenCL extensions
  3062. @section OpenCL extensions
  3063. @menu
  3064. * Enabling OpenCL:: Enabling OpenCL
  3065. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3066. * Loading OpenCL kernels:: Loading OpenCL kernels
  3067. @end menu
  3068. @node Enabling OpenCL
  3069. @subsection Enabling OpenCL
  3070. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3071. enabled by default. To enable OpenCL, you need either to disable CUDA
  3072. when configuring StarPU:
  3073. @example
  3074. % ./configure --disable-cuda
  3075. @end example
  3076. or when running applications:
  3077. @example
  3078. % STARPU_NCUDA=0 ./application
  3079. @end example
  3080. OpenCL will automatically be started on any device not yet used by
  3081. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3082. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3083. so:
  3084. @example
  3085. % STARPU_NCUDA=2 ./application
  3086. @end example
  3087. @node Compiling OpenCL kernels
  3088. @subsection Compiling OpenCL kernels
  3089. Source codes for OpenCL kernels can be stored in a file or in a
  3090. string. StarPU provides functions to build the program executable for
  3091. each available OpenCL device as a @code{cl_program} object. This
  3092. program executable can then be loaded within a specific queue as
  3093. explained in the next section. These are only helpers, Applications
  3094. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3095. use (e.g. different programs on the different OpenCL devices, for
  3096. relocation purpose for instance).
  3097. @menu
  3098. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3099. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3100. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3101. @end menu
  3102. @node starpu_opencl_load_opencl_from_file
  3103. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3104. @table @asis
  3105. @item @emph{Description}:
  3106. TODO
  3107. @item @emph{Prototype}:
  3108. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3109. @end table
  3110. @node starpu_opencl_load_opencl_from_string
  3111. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3112. @table @asis
  3113. @item @emph{Description}:
  3114. TODO
  3115. @item @emph{Prototype}:
  3116. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3117. @end table
  3118. @node starpu_opencl_unload_opencl
  3119. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3120. @table @asis
  3121. @item @emph{Description}:
  3122. TODO
  3123. @item @emph{Prototype}:
  3124. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3125. @end table
  3126. @node Loading OpenCL kernels
  3127. @subsection Loading OpenCL kernels
  3128. @menu
  3129. * starpu_opencl_load_kernel:: Loading a kernel
  3130. * starpu_opencl_relase_kernel:: Releasing a kernel
  3131. @end menu
  3132. @node starpu_opencl_load_kernel
  3133. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3134. @table @asis
  3135. @item @emph{Description}:
  3136. TODO
  3137. @item @emph{Prototype}:
  3138. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3139. }
  3140. @end table
  3141. @node starpu_opencl_relase_kernel
  3142. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3143. @table @asis
  3144. @item @emph{Description}:
  3145. TODO
  3146. @item @emph{Prototype}:
  3147. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3148. @end table
  3149. @node Cell extensions
  3150. @section Cell extensions
  3151. nothing yet.
  3152. @node Miscellaneous helpers
  3153. @section Miscellaneous helpers
  3154. @menu
  3155. * starpu_data_cpy:: Copy a data handle into another data handle
  3156. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3157. @end menu
  3158. @node starpu_data_cpy
  3159. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3160. @table @asis
  3161. @item @emph{Description}:
  3162. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3163. The @code{asynchronous} parameter indicates whether the function should
  3164. block or not. In the case of an asynchronous call, it is possible to
  3165. synchronize with the termination of this operation either by the means of
  3166. implicit dependencies (if enabled) or by calling
  3167. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3168. this callback function is executed after the handle has been copied, and it is
  3169. given the @code{callback_arg} pointer as argument.
  3170. @item @emph{Prototype}:
  3171. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3172. @end table
  3173. @node starpu_execute_on_each_worker
  3174. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3175. @table @asis
  3176. @item @emph{Description}:
  3177. When calling this method, the offloaded function specified by the first argument is
  3178. executed by every StarPU worker that may execute the function.
  3179. The second argument is passed to the offloaded function.
  3180. The last argument specifies on which types of processing units the function
  3181. should be executed. Similarly to the @code{where} field of the
  3182. @code{starpu_codelet} structure, it is possible to specify that the function
  3183. should be executed on every CUDA device and every CPU by passing
  3184. @code{STARPU_CPU|STARPU_CUDA}.
  3185. This function blocks until the function has been executed on every appropriate
  3186. processing units, so that it may not be called from a callback function for
  3187. instance.
  3188. @item @emph{Prototype}:
  3189. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3190. @end table
  3191. @c ---------------------------------------------------------------------
  3192. @c Advanced Topics
  3193. @c ---------------------------------------------------------------------
  3194. @node Advanced Topics
  3195. @chapter Advanced Topics
  3196. @menu
  3197. * Defining a new data interface::
  3198. * Defining a new scheduling policy::
  3199. @end menu
  3200. @node Defining a new data interface
  3201. @section Defining a new data interface
  3202. @menu
  3203. * struct starpu_data_interface_ops_t:: Per-interface methods
  3204. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3205. * An example of data interface:: An example of data interface
  3206. @end menu
  3207. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3208. @node struct starpu_data_interface_ops_t
  3209. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3210. @table @asis
  3211. @item @emph{Description}:
  3212. TODO describe all the different fields
  3213. @end table
  3214. @node struct starpu_data_copy_methods
  3215. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3216. @table @asis
  3217. @item @emph{Description}:
  3218. TODO describe all the different fields
  3219. @end table
  3220. @node An example of data interface
  3221. @subsection An example of data interface
  3222. @table @asis
  3223. TODO
  3224. @end table
  3225. @node Defining a new scheduling policy
  3226. @section Defining a new scheduling policy
  3227. TODO
  3228. A full example showing how to define a new scheduling policy is available in
  3229. the StarPU sources in the directory @code{examples/scheduler/}.
  3230. @menu
  3231. * struct starpu_sched_policy_s::
  3232. * starpu_worker_set_sched_condition::
  3233. * starpu_sched_set_min_priority:: Set the minimum priority level
  3234. * starpu_sched_set_max_priority:: Set the maximum priority level
  3235. * Source code::
  3236. @end menu
  3237. @node struct starpu_sched_policy_s
  3238. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3239. @table @asis
  3240. @item @emph{Description}:
  3241. This structure contains all the methods that implement a scheduling policy. An
  3242. application may specify which scheduling strategy in the @code{sched_policy}
  3243. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3244. function.
  3245. @item @emph{Fields}:
  3246. @table @asis
  3247. @item @code{init_sched}:
  3248. Initialize the scheduling policy.
  3249. @item @code{deinit_sched}:
  3250. Cleanup the scheduling policy.
  3251. @item @code{push_task}:
  3252. Insert a task into the scheduler.
  3253. @item @code{push_prio_task}:
  3254. Insert a priority task into the scheduler.
  3255. @item @code{pop_task}:
  3256. Get a task from the scheduler. The mutex associated to the worker is already
  3257. taken when this method is called.
  3258. @item @code{pop_every_task}:
  3259. Remove all available tasks from the scheduler (tasks are chained by the means
  3260. of the prev and next fields of the starpu_task structure). The mutex associated
  3261. to the worker is already taken when this method is called.
  3262. @item @code{post_exec_hook} (optionnal):
  3263. This method is called every time a task has been executed.
  3264. @item @code{policy_name}:
  3265. Name of the policy (optionnal).
  3266. @item @code{policy_description}:
  3267. Description of the policy (optionnal).
  3268. @end table
  3269. @end table
  3270. @node starpu_worker_set_sched_condition
  3271. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3272. @table @asis
  3273. @item @emph{Description}:
  3274. When there is no available task for a worker, StarPU blocks this worker on a
  3275. condition variable. This function specifies which condition variable (and the
  3276. associated mutex) should be used to block (and to wake up) a worker. Note that
  3277. multiple workers may use the same condition variable. For instance, in the case
  3278. of a scheduling strategy with a single task queue, the same condition variable
  3279. would be used to block and wake up all workers.
  3280. The initialization method of a scheduling strategy (@code{init_sched}) must
  3281. call this function once per worker.
  3282. @item @emph{Prototype}:
  3283. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3284. @end table
  3285. @node starpu_sched_set_min_priority
  3286. @subsection @code{starpu_sched_set_min_priority}
  3287. @table @asis
  3288. @item @emph{Description}:
  3289. Defines the minimum priority level supported by the scheduling policy. The
  3290. default minimum priority level is the same as the default priority level which
  3291. is 0 by convention. The application may access that value by calling the
  3292. @code{starpu_sched_get_min_priority} function. This function should only be
  3293. called from the initialization method of the scheduling policy, and should not
  3294. be used directly from the application.
  3295. @item @emph{Prototype}:
  3296. @code{void starpu_sched_set_min_priority(int min_prio)}
  3297. @end table
  3298. @node starpu_sched_set_max_priority
  3299. @subsection @code{starpu_sched_set_max_priority}
  3300. @table @asis
  3301. @item @emph{Description}:
  3302. Defines the maximum priority level supported by the scheduling policy. The
  3303. default maximum priority level is 1. The application may access that value by
  3304. calling the @code{starpu_sched_get_max_priority} function. This function should
  3305. only be called from the initialization method of the scheduling policy, and
  3306. should not be used directly from the application.
  3307. @item @emph{Prototype}:
  3308. @code{void starpu_sched_set_min_priority(int max_prio)}
  3309. @end table
  3310. @node Source code
  3311. @subsection Source code
  3312. @cartouche
  3313. @smallexample
  3314. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3315. .init_sched = init_dummy_sched,
  3316. .deinit_sched = deinit_dummy_sched,
  3317. .push_task = push_task_dummy,
  3318. .push_prio_task = NULL,
  3319. .pop_task = pop_task_dummy,
  3320. .post_exec_hook = NULL,
  3321. .pop_every_task = NULL,
  3322. .policy_name = "dummy",
  3323. .policy_description = "dummy scheduling strategy"
  3324. @};
  3325. @end smallexample
  3326. @end cartouche
  3327. @c ---------------------------------------------------------------------
  3328. @c Appendices
  3329. @c ---------------------------------------------------------------------
  3330. @c ---------------------------------------------------------------------
  3331. @c Full source code for the 'Scaling a Vector' example
  3332. @c ---------------------------------------------------------------------
  3333. @node Full source code for the 'Scaling a Vector' example
  3334. @appendix Full source code for the 'Scaling a Vector' example
  3335. @menu
  3336. * Main application::
  3337. * CPU Kernel::
  3338. * CUDA Kernel::
  3339. * OpenCL Kernel::
  3340. @end menu
  3341. @node Main application
  3342. @section Main application
  3343. @smallexample
  3344. @include vector_scal_c.texi
  3345. @end smallexample
  3346. @node CPU Kernel
  3347. @section CPU Kernel
  3348. @smallexample
  3349. @include vector_scal_cpu.texi
  3350. @end smallexample
  3351. @node CUDA Kernel
  3352. @section CUDA Kernel
  3353. @smallexample
  3354. @include vector_scal_cuda.texi
  3355. @end smallexample
  3356. @node OpenCL Kernel
  3357. @section OpenCL Kernel
  3358. @menu
  3359. * Invoking the kernel::
  3360. * Source of the kernel::
  3361. @end menu
  3362. @node Invoking the kernel
  3363. @subsection Invoking the kernel
  3364. @smallexample
  3365. @include vector_scal_opencl.texi
  3366. @end smallexample
  3367. @node Source of the kernel
  3368. @subsection Source of the kernel
  3369. @smallexample
  3370. @include vector_scal_opencl_codelet.texi
  3371. @end smallexample
  3372. @bye