xlu_pivot.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include "xlu.h"
  18. #include "xlu_kernels.h"
  19. #define TAG11(k) ((starpu_tag_t)( (1ULL<<60) | (unsigned long long)(k)))
  20. #define TAG12(k,i) ((starpu_tag_t)(((2ULL<<60) | (((unsigned long long)(k))<<32) \
  21. | (unsigned long long)(i))))
  22. #define TAG21(k,j) ((starpu_tag_t)(((3ULL<<60) | (((unsigned long long)(k))<<32) \
  23. | (unsigned long long)(j))))
  24. #define TAG22(k,i,j) ((starpu_tag_t)(((4ULL<<60) | ((unsigned long long)(k)<<32) \
  25. | ((unsigned long long)(i)<<16) \
  26. | (unsigned long long)(j))))
  27. #define PIVOT(k,i) ((starpu_tag_t)(((5ULL<<60) | (((unsigned long long)(k))<<32) \
  28. | (unsigned long long)(i))))
  29. static unsigned no_prio = 0;
  30. /*
  31. * Construct the DAG
  32. */
  33. static struct starpu_task *create_task(starpu_tag_t id)
  34. {
  35. struct starpu_task *task = starpu_task_create();
  36. task->cl_arg = NULL;
  37. task->use_tag = 1;
  38. task->tag_id = id;
  39. return task;
  40. }
  41. static void create_task_pivot(starpu_data_handle_t *dataAp, unsigned nblocks,
  42. struct piv_s *piv_description,
  43. unsigned k, unsigned i,
  44. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  45. {
  46. struct starpu_task *task = create_task(PIVOT(k, i));
  47. task->cl = &cl_pivot;
  48. /* which sub-data is manipulated ? */
  49. task->buffers[0].handle = get_block(dataAp, nblocks, k, i);
  50. task->buffers[0].mode = STARPU_RW;
  51. task->cl_arg = &piv_description[k];
  52. /* this is an important task */
  53. if (!no_prio && (i == k+1))
  54. task->priority = STARPU_MAX_PRIO;
  55. /* enforce dependencies ... */
  56. if (k == 0) {
  57. starpu_tag_declare_deps(PIVOT(k, i), 1, TAG11(k));
  58. }
  59. else
  60. {
  61. if (i > k) {
  62. starpu_tag_declare_deps(PIVOT(k, i), 2, TAG11(k), TAG22(k-1, i, k));
  63. }
  64. else {
  65. starpu_tag_t *tags = malloc((nblocks - k)*sizeof(starpu_tag_t));
  66. tags[0] = TAG11(k);
  67. unsigned ind, ind2;
  68. for (ind = k + 1, ind2 = 0; ind < nblocks; ind++, ind2++)
  69. {
  70. tags[1 + ind2] = TAG22(k-1, ind, k);
  71. }
  72. /* perhaps we could do better ... :/ */
  73. starpu_tag_declare_deps_array(PIVOT(k, i), (nblocks-k), tags);
  74. }
  75. }
  76. starpu_task_submit(task);
  77. }
  78. static struct starpu_task *create_task_11_pivot(starpu_data_handle_t *dataAp, unsigned nblocks,
  79. unsigned k, struct piv_s *piv_description,
  80. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  81. {
  82. struct starpu_task *task = create_task(TAG11(k));
  83. task->cl = &cl11_pivot;
  84. task->cl_arg = &piv_description[k];
  85. /* which sub-data is manipulated ? */
  86. task->buffers[0].handle = get_block(dataAp, nblocks, k, k);
  87. task->buffers[0].mode = STARPU_RW;
  88. /* this is an important task */
  89. if (!no_prio)
  90. task->priority = STARPU_MAX_PRIO;
  91. /* enforce dependencies ... */
  92. if (k > 0) {
  93. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  94. }
  95. return task;
  96. }
  97. static void create_task_12(starpu_data_handle_t *dataAp, unsigned nblocks, unsigned k, unsigned j,
  98. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  99. {
  100. /* printf("task 12 k,i = %d,%d TAG = %llx\n", k,i, TAG12(k,i)); */
  101. struct starpu_task *task = create_task(TAG12(k, j));
  102. task->cl = &cl12;
  103. task->cl_arg = (void *)(task->tag_id);
  104. /* which sub-data is manipulated ? */
  105. task->buffers[0].handle = get_block(dataAp, nblocks, k, k);
  106. task->buffers[0].mode = STARPU_R;
  107. task->buffers[1].handle = get_block(dataAp, nblocks, j, k);
  108. task->buffers[1].mode = STARPU_RW;
  109. if (!no_prio && (j == k+1)) {
  110. task->priority = STARPU_MAX_PRIO;
  111. }
  112. /* enforce dependencies ... */
  113. #if 0
  114. starpu_tag_declare_deps(TAG12(k, i), 1, PIVOT(k, i));
  115. #endif
  116. if (k > 0) {
  117. starpu_tag_declare_deps(TAG12(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  118. }
  119. else {
  120. starpu_tag_declare_deps(TAG12(k, j), 1, TAG11(k));
  121. }
  122. starpu_task_submit(task);
  123. }
  124. static void create_task_21(starpu_data_handle_t *dataAp, unsigned nblocks, unsigned k, unsigned i,
  125. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  126. {
  127. struct starpu_task *task = create_task(TAG21(k, i));
  128. task->cl = &cl21;
  129. /* which sub-data is manipulated ? */
  130. task->buffers[0].handle = get_block(dataAp, nblocks, k, k);
  131. task->buffers[0].mode = STARPU_R;
  132. task->buffers[1].handle = get_block(dataAp, nblocks, k, i);
  133. task->buffers[1].mode = STARPU_RW;
  134. if (!no_prio && (i == k+1)) {
  135. task->priority = STARPU_MAX_PRIO;
  136. }
  137. task->cl_arg = (void *)(task->tag_id);
  138. /* enforce dependencies ... */
  139. starpu_tag_declare_deps(TAG21(k, i), 1, PIVOT(k, i));
  140. starpu_task_submit(task);
  141. }
  142. static void create_task_22(starpu_data_handle_t *dataAp, unsigned nblocks, unsigned k, unsigned i, unsigned j,
  143. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  144. {
  145. /* printf("task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  146. struct starpu_task *task = create_task(TAG22(k, i, j));
  147. task->cl = &cl22;
  148. task->cl_arg = (void *)(task->tag_id);
  149. /* which sub-data is manipulated ? */
  150. task->buffers[0].handle = get_block(dataAp, nblocks, k, i); /* produced by TAG21(k, i) */
  151. task->buffers[0].mode = STARPU_R;
  152. task->buffers[1].handle = get_block(dataAp, nblocks, j, k); /* produced by TAG12(k, j) */
  153. task->buffers[1].mode = STARPU_R;
  154. task->buffers[2].handle = get_block(dataAp, nblocks, j, i); /* produced by TAG22(k-1, i, j) */
  155. task->buffers[2].mode = STARPU_RW;
  156. if (!no_prio && (i == k + 1) && (j == k +1) ) {
  157. task->priority = STARPU_MAX_PRIO;
  158. }
  159. /* enforce dependencies ... */
  160. if (k > 0) {
  161. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG12(k, j), TAG21(k, i));
  162. }
  163. else {
  164. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG12(k, j), TAG21(k, i));
  165. }
  166. starpu_task_submit(task);
  167. }
  168. /*
  169. * code to bootstrap the factorization
  170. */
  171. static double dw_codelet_facto_pivot(starpu_data_handle_t *dataAp,
  172. struct piv_s *piv_description,
  173. unsigned nblocks,
  174. starpu_data_handle_t (* get_block)(starpu_data_handle_t *, unsigned, unsigned, unsigned))
  175. {
  176. struct timeval start;
  177. struct timeval end;
  178. struct starpu_task *entry_task = NULL;
  179. /* create all the DAG nodes */
  180. unsigned i,j,k;
  181. for (k = 0; k < nblocks; k++)
  182. {
  183. struct starpu_task *task = create_task_11_pivot(dataAp, nblocks, k, piv_description, get_block);
  184. /* we defer the launch of the first task */
  185. if (k == 0) {
  186. entry_task = task;
  187. }
  188. else {
  189. starpu_task_submit(task);
  190. }
  191. for (i = 0; i < nblocks; i++)
  192. {
  193. if (i != k)
  194. create_task_pivot(dataAp, nblocks, piv_description, k, i, get_block);
  195. }
  196. for (i = k+1; i<nblocks; i++)
  197. {
  198. create_task_12(dataAp, nblocks, k, i, get_block);
  199. create_task_21(dataAp, nblocks, k, i, get_block);
  200. }
  201. for (i = k+1; i<nblocks; i++)
  202. {
  203. for (j = k+1; j<nblocks; j++)
  204. {
  205. create_task_22(dataAp, nblocks, k, i, j, get_block);
  206. }
  207. }
  208. }
  209. /* we wait the last task (TAG11(nblocks - 1)) and all the pivot tasks */
  210. starpu_tag_t *tags = malloc(nblocks*nblocks*sizeof(starpu_tag_t));
  211. unsigned ndeps = 0;
  212. tags[ndeps++] = TAG11(nblocks - 1);
  213. for (j = 0; j < nblocks; j++)
  214. {
  215. for (i = 0; i < j; i++)
  216. {
  217. tags[ndeps++] = PIVOT(j, i);
  218. }
  219. }
  220. /* schedule the codelet */
  221. gettimeofday(&start, NULL);
  222. int ret = starpu_task_submit(entry_task);
  223. if (STARPU_UNLIKELY(ret == -ENODEV))
  224. {
  225. FPRINTF(stderr, "No worker may execute this task\n");
  226. exit(-1);
  227. }
  228. /* stall the application until the end of computations */
  229. starpu_tag_wait_array(ndeps, tags);
  230. /* starpu_task_wait_for_all(); */
  231. gettimeofday(&end, NULL);
  232. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  233. return timing;
  234. }
  235. starpu_data_handle_t get_block_with_striding(starpu_data_handle_t *dataAp,
  236. unsigned nblocks __attribute__((unused)), unsigned j, unsigned i)
  237. {
  238. /* we use filters */
  239. return starpu_data_get_sub_data(*dataAp, 2, j, i);
  240. }
  241. void STARPU_LU(lu_decomposition_pivot)(TYPE *matA, unsigned *ipiv, unsigned size, unsigned ld, unsigned nblocks)
  242. {
  243. starpu_data_handle_t dataA;
  244. /* monitor and partition the A matrix into blocks :
  245. * one block is now determined by 2 unsigned (i,j) */
  246. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(TYPE));
  247. /* We already enforce deps by hand */
  248. starpu_data_set_sequential_consistency_flag(dataA, 0);
  249. struct starpu_data_filter f = {
  250. .filter_func = starpu_vertical_block_filter_func,
  251. .nchildren = nblocks
  252. };
  253. struct starpu_data_filter f2 = {
  254. .filter_func = starpu_block_filter_func,
  255. .nchildren = nblocks
  256. };
  257. starpu_data_map_filters(dataA, 2, &f, &f2);
  258. unsigned i;
  259. for (i = 0; i < size; i++)
  260. ipiv[i] = i;
  261. struct piv_s *piv_description = malloc(nblocks*sizeof(struct piv_s));
  262. unsigned block;
  263. for (block = 0; block < nblocks; block++)
  264. {
  265. piv_description[block].piv = ipiv;
  266. piv_description[block].first = block * (size / nblocks);
  267. piv_description[block].last = (block + 1) * (size / nblocks);
  268. }
  269. #if 0
  270. unsigned j;
  271. for (j = 0; j < nblocks; j++)
  272. for (i = 0; i < nblocks; i++)
  273. {
  274. printf("BLOCK %d %d %p\n", i, j, &matA[i*(size/nblocks) + j * (size/nblocks)*ld]);
  275. }
  276. #endif
  277. double timing;
  278. timing = dw_codelet_facto_pivot(&dataA, piv_description, nblocks, get_block_with_striding);
  279. FPRINTF(stderr, "Computation took (in ms)\n");
  280. FPRINTF(stderr, "%2.2f\n", timing/1000);
  281. unsigned n = starpu_matrix_get_nx(dataA);
  282. double flop = (2.0f*n*n*n)/3.0f;
  283. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  284. /* gather all the data */
  285. starpu_data_unpartition(dataA, 0);
  286. }
  287. starpu_data_handle_t get_block_with_no_striding(starpu_data_handle_t *dataAp, unsigned nblocks, unsigned j, unsigned i)
  288. {
  289. /* dataAp is an array of data handle */
  290. return dataAp[i+j*nblocks];
  291. }
  292. void STARPU_LU(lu_decomposition_pivot_no_stride)(TYPE **matA, unsigned *ipiv, unsigned size, unsigned ld, unsigned nblocks)
  293. {
  294. starpu_data_handle_t *dataAp = malloc(nblocks*nblocks*sizeof(starpu_data_handle_t));
  295. /* monitor and partition the A matrix into blocks :
  296. * one block is now determined by 2 unsigned (i,j) */
  297. unsigned bi, bj;
  298. for (bj = 0; bj < nblocks; bj++)
  299. for (bi = 0; bi < nblocks; bi++)
  300. {
  301. starpu_matrix_data_register(&dataAp[bi+nblocks*bj], 0,
  302. (uintptr_t)matA[bi+nblocks*bj], size/nblocks,
  303. size/nblocks, size/nblocks, sizeof(TYPE));
  304. /* We already enforce deps by hand */
  305. starpu_data_set_sequential_consistency_flag(dataAp[bi+nblocks*bj], 0);
  306. }
  307. unsigned i;
  308. for (i = 0; i < size; i++)
  309. ipiv[i] = i;
  310. struct piv_s *piv_description = malloc(nblocks*sizeof(struct piv_s));
  311. unsigned block;
  312. for (block = 0; block < nblocks; block++)
  313. {
  314. piv_description[block].piv = ipiv;
  315. piv_description[block].first = block * (size / nblocks);
  316. piv_description[block].last = (block + 1) * (size / nblocks);
  317. }
  318. double timing;
  319. timing = dw_codelet_facto_pivot(dataAp, piv_description, nblocks, get_block_with_no_striding);
  320. FPRINTF(stderr, "Computation took (in ms)\n");
  321. FPRINTF(stderr, "%2.2f\n", timing/1000);
  322. unsigned n = starpu_matrix_get_nx(dataAp[0])*nblocks;
  323. double flop = (2.0f*n*n*n)/3.0f;
  324. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  325. for (bj = 0; bj < nblocks; bj++)
  326. for (bi = 0; bi < nblocks; bi++)
  327. {
  328. starpu_data_unregister(dataAp[bi+nblocks*bj]);
  329. }
  330. }