mm.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016 Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * This example illustrates how to distribute a pre-existing data structure to
  18. * a set of computing nodes using StarPU-MPI routines.
  19. */
  20. #include <stdlib.h>
  21. #include <stdio.h>
  22. #include <assert.h>
  23. #include <math.h>
  24. #include <starpu.h>
  25. #include <starpu_mpi.h>
  26. #define VERBOSE 0
  27. static int N = 16; /* Matrix size */
  28. static int BS = 4; /* Block size */
  29. #define NB ((N)/(BS)) /* Number of blocks */
  30. /* Matrices. Will be allocated as regular, linearized C arrays */
  31. static double *A = NULL; /* A will be partitioned as BS rows x N cols blocks */
  32. static double *B = NULL; /* B will be partitioned as N rows x BS cols blocks */
  33. static double *C = NULL; /* C will be partitioned as BS rows x BS cols blocks */
  34. /* Arrays of data handles for managing matrix blocks */
  35. static starpu_data_handle_t *A_h;
  36. static starpu_data_handle_t *B_h;
  37. static starpu_data_handle_t *C_h;
  38. static int comm_rank; /* mpi rank of the process */
  39. static int comm_size; /* size of the mpi session */
  40. static void alloc_matrices(void)
  41. {
  42. /* Regular 'malloc' can also be used instead, however, starpu_malloc make sure that
  43. * the area is allocated in suitably pinned memory to improve data transfers, especially
  44. * with CUDA */
  45. starpu_malloc((void **)&A, N*N*sizeof(double));
  46. starpu_malloc((void **)&B, N*N*sizeof(double));
  47. starpu_malloc((void **)&C, N*N*sizeof(double));
  48. }
  49. static void free_matrices(void)
  50. {
  51. starpu_free(A);
  52. starpu_free(B);
  53. starpu_free(C);
  54. }
  55. static void init_matrices(void)
  56. {
  57. int row,col;
  58. for (row = 0; row < N; row++)
  59. {
  60. for (col = 0; col < N; col++)
  61. {
  62. A[row*N+col] = (row==col)?2:0;
  63. B[row*N+col] = row*N+col;
  64. C[row*N+col] = 0;
  65. }
  66. }
  67. }
  68. #if VERBOSE
  69. static void disp_matrix(double *m)
  70. {
  71. int row,col;
  72. for (row = 0; row < N; row++)
  73. {
  74. for (col = 0; col < N; col++)
  75. {
  76. printf("\t%.2lf", m[row*N+col]);
  77. }
  78. printf("\n");
  79. }
  80. }
  81. #endif
  82. static void check_result(void) {
  83. int row,col;
  84. for (row = 0; row < N; row++)
  85. {
  86. for (col = 0; col < N; col++)
  87. {
  88. if (fabs(C[row*N+col] - 2*(row*N+col)) > 1.0)
  89. {
  90. fprintf(stderr, "check failed\n");
  91. exit(1);
  92. }
  93. }
  94. }
  95. #if VERBOSE
  96. printf("success\n");
  97. #endif
  98. }
  99. /* Register the matrix blocks to StarPU and to StarPU-MPI */
  100. static void register_matrices()
  101. {
  102. A_h = calloc(NB, sizeof(starpu_data_handle_t));
  103. B_h = calloc(NB, sizeof(starpu_data_handle_t));
  104. C_h = calloc(NB*NB, sizeof(starpu_data_handle_t));
  105. /* Memory region, where the data being registered resides.
  106. * In this example, all blocks are allocated by node 0, thus
  107. * - node 0 specifies STARPU_MAIN_RAM to indicate that it owns the block in its main memory
  108. * - nodes !0 specify -1 to indicate that they don't have a copy of the block initially
  109. */
  110. int mr = (comm_rank == 0) ? STARPU_MAIN_RAM : -1;
  111. /* mpi tag used for the block */
  112. int tag = 0;
  113. int b_row,b_col;
  114. for (b_row = 0; b_row < NB; b_row++) {
  115. /* Register a block to StarPU */
  116. starpu_matrix_data_register(&A_h[b_row],
  117. mr,
  118. (comm_rank == 0)?(uintptr_t)(A+b_row*BS*N):0, N, N, BS,
  119. sizeof(double));
  120. /* Register a block to StarPU-MPI, specifying the mpi tag to use for transfering the block
  121. * and the rank of the owner node.
  122. *
  123. * Note: StarPU-MPI is an autonomous layer built on top of StarPU, hence the two separate
  124. * registration steps.
  125. */
  126. starpu_mpi_data_register(A_h[b_row], tag++, 0);
  127. }
  128. for (b_col = 0; b_col < NB; b_col++) {
  129. starpu_matrix_data_register(&B_h[b_col],
  130. mr,
  131. (comm_rank == 0)?(uintptr_t)(B+b_col*BS):0, N, BS, N,
  132. sizeof(double));
  133. starpu_mpi_data_register(B_h[b_col], tag++, 0);
  134. }
  135. for (b_row = 0; b_row < NB; b_row++) {
  136. for (b_col = 0; b_col < NB; b_col++) {
  137. starpu_matrix_data_register(&C_h[b_row*NB+b_col],
  138. mr,
  139. (comm_rank == 0)?(uintptr_t)(C+b_row*BS*N+b_col*BS):0, N, BS, BS,
  140. sizeof(double));
  141. starpu_mpi_data_register(C_h[b_row*NB+b_col], tag++, 0);
  142. }
  143. }
  144. }
  145. /* Transfer ownership of the C matrix blocks following some user-defined distribution over the nodes.
  146. * Note: since C will be Write-accessed, it will implicitly define which node perform the task
  147. * associated to a given block. */
  148. static void distribute_matrix_C(void)
  149. {
  150. int b_row,b_col;
  151. for (b_row = 0; b_row < NB; b_row++)
  152. {
  153. for (b_col = 0; b_col < NB; b_col++)
  154. {
  155. starpu_data_handle_t h = C_h[b_row*NB+b_col];
  156. /* Select the node where the block should be computed. */
  157. int target_rank = (b_row+b_col)%comm_size;
  158. /* Move the block on to its new owner. */
  159. starpu_mpi_get_data_on_node(MPI_COMM_WORLD, h, target_rank);
  160. starpu_mpi_data_set_rank(h, target_rank);
  161. }
  162. }
  163. }
  164. /* Transfer ownership of the C matrix blocks back to node 0, for display purpose. This is not mandatory. */
  165. static void undistribute_matrix_C(void)
  166. {
  167. int b_row,b_col;
  168. for (b_row = 0; b_row < NB; b_row++) {
  169. for (b_col = 0; b_col < NB; b_col++) {
  170. starpu_data_handle_t h = C_h[b_row*NB+b_col];
  171. starpu_mpi_get_data_on_node(MPI_COMM_WORLD, h, 0);
  172. starpu_mpi_data_set_rank(h, 0);
  173. }
  174. }
  175. }
  176. /* Unregister matrices from the StarPU management. */
  177. static void unregister_matrices()
  178. {
  179. int b_row,b_col;
  180. for (b_row = 0; b_row < NB; b_row++) {
  181. starpu_data_unregister(A_h[b_row]);
  182. }
  183. for (b_col = 0; b_col < NB; b_col++) {
  184. starpu_data_unregister(B_h[b_col]);
  185. }
  186. for (b_row = 0; b_row < NB; b_row++) {
  187. for (b_col = 0; b_col < NB; b_col++) {
  188. starpu_data_unregister(C_h[b_row*NB+b_col]);
  189. }
  190. }
  191. free(A_h);
  192. free(B_h);
  193. free(C_h);
  194. }
  195. /* Perform the actual computation. In a real-life case, this would rather call a BLAS 'gemm' routine
  196. * instead. */
  197. static void cpu_mult(void *handles[], STARPU_ATTRIBUTE_UNUSED void *arg)
  198. {
  199. double *block_A = (double *)STARPU_MATRIX_GET_PTR(handles[0]);
  200. double *block_B = (double *)STARPU_MATRIX_GET_PTR(handles[1]);
  201. double *block_C = (double *)STARPU_MATRIX_GET_PTR(handles[2]);
  202. unsigned n_col_A = STARPU_MATRIX_GET_NX(handles[0]);
  203. unsigned n_col_B = STARPU_MATRIX_GET_NX(handles[1]);
  204. unsigned n_col_C = STARPU_MATRIX_GET_NX(handles[2]);
  205. unsigned n_row_A = STARPU_MATRIX_GET_NY(handles[0]);
  206. unsigned n_row_B = STARPU_MATRIX_GET_NY(handles[1]);
  207. unsigned n_row_C = STARPU_MATRIX_GET_NY(handles[2]);
  208. unsigned ld_A = STARPU_MATRIX_GET_LD(handles[0]);
  209. unsigned ld_B = STARPU_MATRIX_GET_LD(handles[1]);
  210. unsigned ld_C = STARPU_MATRIX_GET_LD(handles[2]);
  211. /* Sanity check, not needed in real life case */
  212. assert(n_col_C == n_col_B);
  213. assert(n_row_C == n_row_A);
  214. assert(n_col_A == n_row_B);
  215. int i,j,k;
  216. for (k = 0; k < n_row_C; k++) {
  217. for (j = 0; j < n_col_C; j++) {
  218. for (i = 0; i < n_col_A; i++) {
  219. block_C[k*ld_C+j] += block_A[k*ld_A+i] * block_B[i*ld_B+j];
  220. }
  221. #if VERBOSE
  222. /* For illustration purpose, shows which node computed
  223. * the block in the decimal part of the cell */
  224. block_C[k*ld_C+j] += comm_rank / 100.0;
  225. #endif
  226. }
  227. }
  228. }
  229. /* Define a StarPU 'codelet' structure for the matrix multiply kernel above.
  230. * This structure enable specifying multiple implementations for the kernel (such as CUDA or OpenCL versions)
  231. */
  232. static struct starpu_codelet gemm_cl =
  233. {
  234. .cpu_funcs = {cpu_mult}, /* cpu implementation(s) of the routine */
  235. .nbuffers = 3, /* number of data handles referenced by this routine */
  236. .modes = {STARPU_R, STARPU_R, STARPU_RW} /* access modes for each data handle */
  237. };
  238. int main(int argc, char *argv[])
  239. {
  240. /* Initializes the StarPU core */
  241. int ret = starpu_init(NULL);
  242. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  243. /* Initializes the StarPU-MPI layer */
  244. ret = starpu_mpi_init(&argc, &argv, 1);
  245. STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init");
  246. /* Parse the matrix size and block size optional args */
  247. if (argc > 1) {
  248. N = atoi(argv[1]);
  249. if (N < 1) {
  250. fprintf(stderr, "invalid matrix size\n");
  251. exit(1);
  252. }
  253. if (argc > 2) {
  254. BS = atoi(argv[2]);
  255. }
  256. if (BS < 1 || N % BS != 0) {
  257. fprintf(stderr, "invalid block size\n");
  258. exit(1);
  259. }
  260. }
  261. /* Get the process rank and session size */
  262. starpu_mpi_comm_rank(MPI_COMM_WORLD, &comm_rank);
  263. starpu_mpi_comm_size(MPI_COMM_WORLD, &comm_size);
  264. if (comm_rank == 0)
  265. {
  266. #if VERBOSE
  267. printf("N = %d\n", N);
  268. printf("BS = %d\n", BS);
  269. printf("NB = %d\n", NB);
  270. printf("comm_size = %d\n", comm_size);
  271. #endif
  272. /* In this example, node rank 0 performs all the memory allocations and initializations,
  273. * and the blocks are later distributed on the other nodes.
  274. * This is not mandatory however, and blocks could be allocated on other nodes right
  275. * from the beginning, depending on the application needs (in particular for the case
  276. * where the session wide data footprint is larger than a single node available memory. */
  277. alloc_matrices();
  278. init_matrices();
  279. }
  280. /* Register matrices to StarPU and StarPU-MPI */
  281. register_matrices();
  282. /* Distribute C blocks */
  283. distribute_matrix_C();
  284. int b_row,b_col;
  285. for (b_row = 0; b_row < NB; b_row++)
  286. {
  287. for (b_col = 0; b_col < NB; b_col++)
  288. {
  289. starpu_mpi_task_insert(MPI_COMM_WORLD, &gemm_cl,
  290. STARPU_R, A_h[b_row],
  291. STARPU_R, B_h[b_col],
  292. STARPU_RW, C_h[b_row*NB+b_col],
  293. 0);
  294. }
  295. }
  296. starpu_task_wait_for_all();
  297. undistribute_matrix_C();
  298. unregister_matrices();
  299. if (comm_rank == 0) {
  300. #if VERBOSE
  301. disp_matrix(C);
  302. #endif
  303. check_result();
  304. free_matrices();
  305. }
  306. starpu_mpi_shutdown();
  307. starpu_shutdown();
  308. return 0;
  309. }