starpu.texi 138 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance feedback:: Performance debugging tools
  31. * Configuring StarPU:: How to configure StarPU
  32. * StarPU API:: The API to use StarPU
  33. * Advanced Topics:: Advanced use of StarPU
  34. * Full source code for the 'Scaling a Vector' example::
  35. @end menu
  36. @c ---------------------------------------------------------------------
  37. @c Introduction to StarPU
  38. @c ---------------------------------------------------------------------
  39. @node Introduction
  40. @chapter Introduction to StarPU
  41. @menu
  42. * Motivation:: Why StarPU ?
  43. * StarPU in a Nutshell:: The Fundamentals of StarPU
  44. @end menu
  45. @node Motivation
  46. @section Motivation
  47. @c complex machines with heterogeneous cores/devices
  48. The use of specialized hardware such as accelerators or coprocessors offers an
  49. interesting approach to overcome the physical limits encountered by processor
  50. architects. As a result, many machines are now equipped with one or several
  51. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  52. efforts have been devoted to offload computation onto such accelerators, very
  53. little attention as been paid to portability concerns on the one hand, and to the
  54. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  55. StarPU is a runtime system that offers support for heterogeneous multicore
  56. architectures, it not only offers a unified view of the computational resources
  57. (i.e. CPUs and accelerators at the same time), but it also takes care of
  58. efficiently mapping and executing tasks onto an heterogeneous machine while
  59. transparently handling low-level issues in a portable fashion.
  60. @c this leads to a complicated distributed memory design
  61. @c which is not (easily) manageable by hand
  62. @c added value/benefits of StarPU
  63. @c - portability
  64. @c - scheduling, perf. portability
  65. @node StarPU in a Nutshell
  66. @section StarPU in a Nutshell
  67. @menu
  68. * Codelet and Tasks::
  69. * StarPU Data Management Library::
  70. * Research Papers::
  71. @end menu
  72. From a programming point of view, StarPU is not a new language but a library
  73. that executes tasks explicitly submitted by the application. The data that a
  74. task manipulates are automatically transferred onto the accelerator so that the
  75. programmer does not have to take care of complex data movements. StarPU also
  76. takes particular care of scheduling those tasks efficiently and allows
  77. scheduling experts to implement custom scheduling policies in a portable
  78. fashion.
  79. @c explain the notion of codelet and task (i.e. g(A, B)
  80. @node Codelet and Tasks
  81. @subsection Codelet and Tasks
  82. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  83. computational kernel that can possibly be implemented on multiple architectures
  84. such as a CPU, a CUDA device or a Cell's SPU.
  85. @c TODO insert illustration f : f_spu, f_cpu, ...
  86. Another important data structure is the @b{task}. Executing a StarPU task
  87. consists in applying a codelet on a data set, on one of the architectures on
  88. which the codelet is implemented. In addition to the codelet that a task
  89. implements, it also describes which data are accessed, and how they are
  90. accessed during the computation (read and/or write).
  91. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  92. operation. The task structure can also specify a @b{callback} function that is
  93. called once StarPU has properly executed the task. It also contains optional
  94. fields that the application may use to give hints to the scheduler (such as
  95. priority levels).
  96. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  97. Task dependencies can be enforced either by the means of callback functions, or
  98. by expressing dependencies between tags.
  99. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  100. @c DSM
  101. @node StarPU Data Management Library
  102. @subsection StarPU Data Management Library
  103. Because StarPU schedules tasks at runtime, data transfers have to be
  104. done automatically and ``just-in-time'' between processing units,
  105. relieving the application programmer from explicit data transfers.
  106. Moreover, to avoid unnecessary transfers, StarPU keeps data
  107. where it was last needed, even if was modified there, and it
  108. allows multiple copies of the same data to reside at the same time on
  109. several processing units as long as it is not modified.
  110. @node Research Papers
  111. @subsection Research Papers
  112. Research papers about StarPU can be found at
  113. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  114. Notably a good overview in the research report
  115. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  116. @c ---------------------------------------------------------------------
  117. @c Installing StarPU
  118. @c ---------------------------------------------------------------------
  119. @node Installing StarPU
  120. @chapter Installing StarPU
  121. @menu
  122. * Downloading StarPU::
  123. * Configuration of StarPU::
  124. * Building and Installing StarPU::
  125. @end menu
  126. StarPU can be built and installed by the standard means of the GNU
  127. autotools. The following chapter is intended to briefly remind how these tools
  128. can be used to install StarPU.
  129. @node Downloading StarPU
  130. @section Downloading StarPU
  131. @menu
  132. * Getting Sources::
  133. * Optional dependencies::
  134. @end menu
  135. @node Getting Sources
  136. @subsection Getting Sources
  137. The source code is managed by a Subversion server hosted by the
  138. InriaGforge. To get the source code, you need:
  139. @itemize
  140. @item
  141. To install the client side of the software Subversion if it is
  142. not already available on your system. The software can be obtained from
  143. @indicateurl{http://subversion.tigris.org}.
  144. @item
  145. You can check out the project's SVN repository through anonymous
  146. access. This will provide you with a read access to the
  147. repository.
  148. You can also choose to become a member of the project @code{starpu}.
  149. For this, you first need to get an account to the gForge server. You
  150. can then send a request to join the project
  151. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  152. @item
  153. More information on how to get a gForge account, to become a member of
  154. a project, or on any other related task can be obtained from the
  155. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  156. thing is to upload your public SSH key on the gForge server (see the
  157. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  158. instructions).
  159. @end itemize
  160. You can now check out the latest version from the Subversion server:
  161. @itemize
  162. @item
  163. using the anonymous access via svn:
  164. @example
  165. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  166. @end example
  167. @item
  168. using the anonymous access via https:
  169. @example
  170. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  171. @end example
  172. The password is @code{anonsvn}.
  173. @item
  174. using your gForge account
  175. @example
  176. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  177. @end example
  178. @end itemize
  179. These steps require to run autoconf and automake to generate the
  180. @code{./configure} script. This can be done by calling
  181. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  182. higher.
  183. @example
  184. % ./autogen.sh
  185. @end example
  186. If the autotools are not available on your machine or not recent
  187. enough, you can choose to download the latest nightly tarball, which
  188. is provided with a @code{configure} script.
  189. @example
  190. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  191. @end example
  192. @node Optional dependencies
  193. @subsection Optional dependencies
  194. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  195. but strongly recommended. It allows to increase performance, and to
  196. perform some topology aware scheduling.
  197. @code{hwloc} is available in major distributions and for most OSes and can be
  198. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  199. @node Configuration of StarPU
  200. @section Configuration of StarPU
  201. @menu
  202. * Generating Makefiles and configuration scripts::
  203. * Running the configuration::
  204. @end menu
  205. @node Generating Makefiles and configuration scripts
  206. @subsection Generating Makefiles and configuration scripts
  207. This step is not necessary when using the tarball releases of StarPU. If you
  208. are using the source code from the svn repository, you first need to generate
  209. the configure scripts and the Makefiles.
  210. @example
  211. % ./autogen.sh
  212. @end example
  213. @node Running the configuration
  214. @subsection Running the configuration
  215. @example
  216. % ./configure
  217. @end example
  218. Details about options that are useful to give to @code{./configure} are given in
  219. @ref{Compilation configuration}.
  220. @node Building and Installing StarPU
  221. @section Building and Installing StarPU
  222. @menu
  223. * Building::
  224. * Sanity Checks::
  225. * Installing::
  226. @end menu
  227. @node Building
  228. @subsection Building
  229. @example
  230. % make
  231. @end example
  232. @node Sanity Checks
  233. @subsection Sanity Checks
  234. In order to make sure that StarPU is working properly on the system, it is also
  235. possible to run a test suite.
  236. @example
  237. % make check
  238. @end example
  239. @node Installing
  240. @subsection Installing
  241. In order to install StarPU at the location that was specified during
  242. configuration:
  243. @example
  244. % make install
  245. @end example
  246. @c ---------------------------------------------------------------------
  247. @c Using StarPU
  248. @c ---------------------------------------------------------------------
  249. @node Using StarPU
  250. @chapter Using StarPU
  251. @menu
  252. * Setting flags for compiling and linking applications::
  253. * Running a basic StarPU application::
  254. * Using accelerators::
  255. @end menu
  256. @node Setting flags for compiling and linking applications
  257. @section Setting flags for compiling and linking applications
  258. Compiling and linking an application against StarPU may require to use
  259. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  260. To this end, it is possible to use the @code{pkg-config} tool.
  261. If StarPU was not installed at some standard location, the path of StarPU's
  262. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  263. that @code{pkg-config} can find it. For example if StarPU was installed in
  264. @code{$prefix_dir}:
  265. @example
  266. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  267. @end example
  268. The flags required to compile or link against StarPU are then
  269. accessible with the following commands:
  270. @example
  271. % pkg-config --cflags libstarpu # options for the compiler
  272. % pkg-config --libs libstarpu # options for the linker
  273. @end example
  274. @node Running a basic StarPU application
  275. @section Running a basic StarPU application
  276. Basic examples using StarPU have been built in the directory
  277. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  278. example @code{vector_scal}.
  279. @example
  280. % $prefix_dir/lib/starpu/examples/vector_scal
  281. BEFORE : First element was 1.000000
  282. AFTER First element is 3.140000
  283. %
  284. @end example
  285. When StarPU is used for the first time, the directory
  286. @code{$HOME/.starpu/} is created, performance models will be stored in
  287. that directory.
  288. Please note that buses are benchmarked when StarPU is launched for the
  289. first time. This may take a few minutes, or less if @code{hwloc} is
  290. installed. This step is done only once per user and per machine.
  291. @node Using accelerators
  292. @section Using accelerators
  293. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  294. OpenCL worker only if CUDA is not already running on the GPU.
  295. This design choice was necessary as OpenCL and CUDA can not run at the
  296. same time on the same GPU, as there is currently no interoperability
  297. between them.
  298. Details on how to specify devices running OpenCL and the ones running
  299. CUDA are given in @ref{Enabling OpenCL}.
  300. @c ---------------------------------------------------------------------
  301. @c Basic Examples
  302. @c ---------------------------------------------------------------------
  303. @node Basic Examples
  304. @chapter Basic Examples
  305. @menu
  306. * Compiling and linking options::
  307. * Hello World:: Submitting Tasks
  308. * Scaling a Vector:: Manipulating Data
  309. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  310. * Task and Worker Profiling::
  311. * Partitioning Data:: Partitioning Data
  312. * Performance model example::
  313. * Theoretical lower bound on execution time::
  314. * More examples:: More examples shipped with StarPU
  315. @end menu
  316. @node Compiling and linking options
  317. @section Compiling and linking options
  318. Let's suppose StarPU has been installed in the directory
  319. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  320. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  321. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  322. libraries at runtime.
  323. @example
  324. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  325. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  326. @end example
  327. The Makefile could for instance contain the following lines to define which
  328. options must be given to the compiler and to the linker:
  329. @cartouche
  330. @example
  331. CFLAGS += $$(pkg-config --cflags libstarpu)
  332. LDFLAGS += $$(pkg-config --libs libstarpu)
  333. @end example
  334. @end cartouche
  335. @node Hello World
  336. @section Hello World
  337. @menu
  338. * Required Headers::
  339. * Defining a Codelet::
  340. * Submitting a Task::
  341. * Execution of Hello World::
  342. @end menu
  343. In this section, we show how to implement a simple program that submits a task to StarPU.
  344. @node Required Headers
  345. @subsection Required Headers
  346. The @code{starpu.h} header should be included in any code using StarPU.
  347. @cartouche
  348. @smallexample
  349. #include <starpu.h>
  350. @end smallexample
  351. @end cartouche
  352. @node Defining a Codelet
  353. @subsection Defining a Codelet
  354. @cartouche
  355. @smallexample
  356. struct params @{
  357. int i;
  358. float f;
  359. @};
  360. void cpu_func(void *buffers[], void *cl_arg)
  361. @{
  362. struct params *params = cl_arg;
  363. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  364. @}
  365. starpu_codelet cl =
  366. @{
  367. .where = STARPU_CPU,
  368. .cpu_func = cpu_func,
  369. .nbuffers = 0
  370. @};
  371. @end smallexample
  372. @end cartouche
  373. A codelet is a structure that represents a computational kernel. Such a codelet
  374. may contain an implementation of the same kernel on different architectures
  375. (e.g. CUDA, Cell's SPU, x86, ...).
  376. The @code{nbuffers} field specifies the number of data buffers that are
  377. manipulated by the codelet: here the codelet does not access or modify any data
  378. that is controlled by our data management library. Note that the argument
  379. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  380. structure) does not count as a buffer since it is not managed by our data
  381. management library.
  382. @c TODO need a crossref to the proper description of "where" see bla for more ...
  383. We create a codelet which may only be executed on the CPUs. The @code{where}
  384. field is a bitmask that defines where the codelet may be executed. Here, the
  385. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  386. (@pxref{Codelets and Tasks} for more details on this field).
  387. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  388. which @emph{must} have the following prototype:
  389. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  390. In this example, we can ignore the first argument of this function which gives a
  391. description of the input and output buffers (e.g. the size and the location of
  392. the matrices). The second argument is a pointer to a buffer passed as an
  393. argument to the codelet by the means of the @code{cl_arg} field of the
  394. @code{starpu_task} structure.
  395. @c TODO rewrite so that it is a little clearer ?
  396. Be aware that this may be a pointer to a
  397. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  398. if the codelet modifies this buffer, there is no guarantee that the initial
  399. buffer will be modified as well: this for instance implies that the buffer
  400. cannot be used as a synchronization medium.
  401. @node Submitting a Task
  402. @subsection Submitting a Task
  403. @cartouche
  404. @smallexample
  405. void callback_func(void *callback_arg)
  406. @{
  407. printf("Callback function (arg %x)\n", callback_arg);
  408. @}
  409. int main(int argc, char **argv)
  410. @{
  411. /* @b{initialize StarPU} */
  412. starpu_init(NULL);
  413. struct starpu_task *task = starpu_task_create();
  414. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  415. struct params params = @{ 1, 2.0f @};
  416. task->cl_arg = &params;
  417. task->cl_arg_size = sizeof(params);
  418. task->callback_func = callback_func;
  419. task->callback_arg = 0x42;
  420. /* @b{starpu_task_submit will be a blocking call} */
  421. task->synchronous = 1;
  422. /* @b{submit the task to StarPU} */
  423. starpu_task_submit(task);
  424. /* @b{terminate StarPU} */
  425. starpu_shutdown();
  426. return 0;
  427. @}
  428. @end smallexample
  429. @end cartouche
  430. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  431. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  432. be submitted after the termination of StarPU by a call to
  433. @code{starpu_shutdown}.
  434. In the example above, a task structure is allocated by a call to
  435. @code{starpu_task_create}. This function only allocates and fills the
  436. corresponding structure with the default settings (@pxref{starpu_task_create}),
  437. but it does not submit the task to StarPU.
  438. @c not really clear ;)
  439. The @code{cl} field is a pointer to the codelet which the task will
  440. execute: in other words, the codelet structure describes which computational
  441. kernel should be offloaded on the different architectures, and the task
  442. structure is a wrapper containing a codelet and the piece of data on which the
  443. codelet should operate.
  444. The optional @code{cl_arg} field is a pointer to a buffer (of size
  445. @code{cl_arg_size}) with some parameters for the kernel
  446. described by the codelet. For instance, if a codelet implements a computational
  447. kernel that multiplies its input vector by a constant, the constant could be
  448. specified by the means of this buffer, instead of registering it.
  449. Once a task has been executed, an optional callback function can be called.
  450. While the computational kernel could be offloaded on various architectures, the
  451. callback function is always executed on a CPU. The @code{callback_arg}
  452. pointer is passed as an argument of the callback. The prototype of a callback
  453. function must be:
  454. @code{void (*callback_function)(void *);}
  455. If the @code{synchronous} field is non-null, task submission will be
  456. synchronous: the @code{starpu_task_submit} function will not return until the
  457. task was executed. Note that the @code{starpu_shutdown} method does not
  458. guarantee that asynchronous tasks have been executed before it returns.
  459. @node Execution of Hello World
  460. @subsection Execution of Hello World
  461. @smallexample
  462. % make hello_world
  463. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  464. % ./hello_world
  465. Hello world (array = @{1.000000, -1.000000@} )
  466. Callback function (arg 42)
  467. @end smallexample
  468. @node Scaling a Vector
  469. @section Manipulating Data: Scaling a Vector
  470. The previous example has shown how to submit tasks. In this section,
  471. we show how StarPU tasks can manipulate data. The full source code for
  472. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  473. @menu
  474. * Source code of Vector Scaling::
  475. * Execution of Vector Scaling::
  476. @end menu
  477. @node Source code of Vector Scaling
  478. @subsection Source code of Vector Scaling
  479. Programmers can describe the data layout of their application so that StarPU is
  480. responsible for enforcing data coherency and availability across the machine.
  481. Instead of handling complex (and non-portable) mechanisms to perform data
  482. movements, programmers only declare which piece of data is accessed and/or
  483. modified by a task, and StarPU makes sure that when a computational kernel
  484. starts somewhere (e.g. on a GPU), its data are available locally.
  485. Before submitting those tasks, the programmer first needs to declare the
  486. different pieces of data to StarPU using the @code{starpu_*_data_register}
  487. functions. To ease the development of applications for StarPU, it is possible
  488. to describe multiple types of data layout. A type of data layout is called an
  489. @b{interface}. By default, there are different interfaces available in StarPU:
  490. here we will consider the @b{vector interface}.
  491. The following lines show how to declare an array of @code{NX} elements of type
  492. @code{float} using the vector interface:
  493. @cartouche
  494. @smallexample
  495. float vector[NX];
  496. starpu_data_handle vector_handle;
  497. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  498. sizeof(vector[0]));
  499. @end smallexample
  500. @end cartouche
  501. The first argument, called the @b{data handle}, is an opaque pointer which
  502. designates the array in StarPU. This is also the structure which is used to
  503. describe which data is used by a task. The second argument is the node number
  504. where the data currently resides. Here it is 0 since the @code{vector} array is in
  505. the main memory. Then comes the pointer @code{vector} where the data can be found,
  506. the number of elements in the vector and the size of each element.
  507. It is possible to construct a StarPU task that will manipulate the
  508. vector and a constant factor.
  509. @cartouche
  510. @smallexample
  511. float factor = 3.14;
  512. struct starpu_task *task = starpu_task_create();
  513. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  514. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  515. task->buffers[0].mode = STARPU_RW;
  516. task->cl_arg = &factor;
  517. task->cl_arg_size = sizeof(factor);
  518. task->synchronous = 1;
  519. starpu_task_submit(task);
  520. @end smallexample
  521. @end cartouche
  522. Since the factor is a mere float value parameter, it does not need a preliminary registration, and
  523. can just be passed through the @code{cl_arg} pointer like in the previous
  524. example. The vector parameter is described by its handle.
  525. There are two fields in each element of the @code{buffers} array.
  526. @code{handle} is the handle of the data, and @code{mode} specifies how the
  527. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  528. write-only and @code{STARPU_RW} for read and write access).
  529. The definition of the codelet can be written as follows:
  530. @cartouche
  531. @smallexample
  532. void scal_cpu_func(void *buffers[], void *cl_arg)
  533. @{
  534. unsigned i;
  535. float *factor = cl_arg;
  536. /* length of the vector */
  537. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  538. /* local copy of the vector pointer */
  539. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  540. for (i = 0; i < n; i++)
  541. val[i] *= *factor;
  542. @}
  543. starpu_codelet cl = @{
  544. .where = STARPU_CPU,
  545. .cpu_func = scal_cpu_func,
  546. .nbuffers = 1
  547. @};
  548. @end smallexample
  549. @end cartouche
  550. The first argument is an array that gives
  551. a description of all the buffers passed in the @code{task->buffers}@ array. The
  552. size of this array is given by the @code{nbuffers} field of the codelet
  553. structure. For the sake of generality, this array contains pointers to the
  554. different interfaces describing each buffer. In the case of the @b{vector
  555. interface}, the location of the vector (resp. its length) is accessible in the
  556. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  557. read-write fashion, any modification will automatically affect future accesses
  558. to this vector made by other tasks.
  559. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  560. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  561. constant factor from this pointer.
  562. @node Execution of Vector Scaling
  563. @subsection Execution of Vector Scaling
  564. @smallexample
  565. % make vector_scal
  566. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  567. % ./vector_scal
  568. 0.000000 3.000000 6.000000 9.000000 12.000000
  569. @end smallexample
  570. @node Vector Scaling on an Hybrid CPU/GPU Machine
  571. @section Vector Scaling on an Hybrid CPU/GPU Machine
  572. Contrary to the previous examples, the task submitted in this example may not
  573. only be executed by the CPUs, but also by a CUDA device.
  574. @menu
  575. * Definition of the CUDA Kernel::
  576. * Definition of the OpenCL Kernel::
  577. * Definition of the Main Code::
  578. * Execution of Hybrid Vector Scaling::
  579. @end menu
  580. @node Definition of the CUDA Kernel
  581. @subsection Definition of the CUDA Kernel
  582. The CUDA implementation can be written as follows. It needs to be
  583. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  584. driver.
  585. @cartouche
  586. @smallexample
  587. #include <starpu.h>
  588. static __global__ void vector_mult_cuda(float *val, unsigned n,
  589. float factor)
  590. @{
  591. unsigned i;
  592. for(i = 0 ; i < n ; i++)
  593. val[i] *= factor;
  594. @}
  595. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  596. @{
  597. float *factor = (float *)_args;
  598. /* length of the vector */
  599. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  600. /* local copy of the vector pointer */
  601. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  602. @i{ vector_mult_cuda<<<1,1>>>(val, n, *factor);}
  603. @i{ cudaThreadSynchronize();}
  604. @}
  605. @end smallexample
  606. @end cartouche
  607. @node Definition of the OpenCL Kernel
  608. @subsection Definition of the OpenCL Kernel
  609. The OpenCL implementation can be written as follows. StarPU provides
  610. tools to compile a OpenCL kernel stored in a file.
  611. @cartouche
  612. @smallexample
  613. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  614. @{
  615. const int i = get_global_id(0);
  616. if (i < nx) @{
  617. val[i] *= factor;
  618. @}
  619. @}
  620. @end smallexample
  621. @end cartouche
  622. @cartouche
  623. @smallexample
  624. #include <starpu.h>
  625. @i{#include <starpu_opencl.h>}
  626. @i{extern struct starpu_opencl_program programs;}
  627. void scal_opencl_func(void *buffers[], void *_args)
  628. @{
  629. float *factor = _args;
  630. @i{ int id, devid, err;}
  631. @i{ cl_kernel kernel;}
  632. @i{ cl_command_queue queue;}
  633. /* length of the vector */
  634. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  635. /* local copy of the vector pointer */
  636. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  637. @i{ id = starpu_worker_get_id();}
  638. @i{ devid = starpu_worker_get_devid(id);}
  639. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  640. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  641. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  642. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  643. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  644. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  645. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  646. @i{ @{}
  647. @i{ size_t global=1;}
  648. @i{ size_t local=1;}
  649. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  650. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  651. @i{ @}}
  652. @i{ clFinish(queue);}
  653. @i{ starpu_opencl_release_kernel(kernel);}
  654. @}
  655. @end smallexample
  656. @end cartouche
  657. @node Definition of the Main Code
  658. @subsection Definition of the Main Code
  659. The CPU implementation is the same as in the previous section.
  660. Here is the source of the main application. You can notice the value of the
  661. field @code{where} for the codelet. We specify
  662. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  663. can be executed either on a CPU or on a CUDA or an OpenCL device.
  664. @cartouche
  665. @smallexample
  666. #include <starpu.h>
  667. #define NX 2048
  668. extern void scal_cuda_func(void *buffers[], void *_args);
  669. extern void scal_cpu_func(void *buffers[], void *_args);
  670. extern void scal_opencl_func(void *buffers[], void *_args);
  671. /* @b{Definition of the codelet} */
  672. static starpu_codelet cl = @{
  673. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  674. /* @b{on a CUDA device, or on an OpenCL device} */
  675. .cuda_func = scal_cuda_func;
  676. .cpu_func = scal_cpu_func;
  677. .opencl_func = scal_opencl_func;
  678. .nbuffers = 1;
  679. @}
  680. #ifdef STARPU_USE_OPENCL
  681. /* @b{The compiled version of the OpenCL program} */
  682. struct starpu_opencl_program programs;
  683. #endif
  684. int main(int argc, char **argv)
  685. @{
  686. float *vector;
  687. int i, ret;
  688. float factor=3.0;
  689. struct starpu_task *task;
  690. starpu_data_handle vector_handle;
  691. starpu_init(NULL); /* @b{Initialising StarPU} */
  692. #ifdef STARPU_USE_OPENCL
  693. starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_codelet.cl",
  694. &programs);
  695. #endif
  696. vector = malloc(NX*sizeof(vector[0]));
  697. assert(vector);
  698. for(i=0 ; i<NX ; i++) vector[i] = i;
  699. @end smallexample
  700. @end cartouche
  701. @cartouche
  702. @smallexample
  703. /* @b{Registering data within StarPU} */
  704. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  705. NX, sizeof(vector[0]));
  706. /* @b{Definition of the task} */
  707. task = starpu_task_create();
  708. task->cl = &cl;
  709. task->buffers[0].handle = vector_handle;
  710. task->buffers[0].mode = STARPU_RW;
  711. task->cl_arg = &factor;
  712. task->cl_arg_size = sizeof(factor);
  713. @end smallexample
  714. @end cartouche
  715. @cartouche
  716. @smallexample
  717. /* @b{Submitting the task} */
  718. ret = starpu_task_submit(task);
  719. if (ret == -ENODEV) @{
  720. fprintf(stderr, "No worker may execute this task\n");
  721. return 1;
  722. @}
  723. /* @b{Waiting for its termination} */
  724. starpu_task_wait_for_all();
  725. /* @b{Update the vector in RAM} */
  726. starpu_data_acquire(vector_handle, STARPU_R);
  727. @end smallexample
  728. @end cartouche
  729. @cartouche
  730. @smallexample
  731. /* @b{Access the data} */
  732. for(i=0 ; i<NX; i++) @{
  733. fprintf(stderr, "%f ", vector[i]);
  734. @}
  735. fprintf(stderr, "\n");
  736. /* @b{Release the data and shutdown StarPU} */
  737. starpu_data_release(vector_handle);
  738. starpu_shutdown();
  739. return 0;
  740. @}
  741. @end smallexample
  742. @end cartouche
  743. @node Execution of Hybrid Vector Scaling
  744. @subsection Execution of Hybrid Vector Scaling
  745. The Makefile given at the beginning of the section must be extended to
  746. give the rules to compile the CUDA source code. Note that the source
  747. file of the OpenCL kernel does not need to be compiled now, it will
  748. be compiled at run-time when calling the function
  749. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  750. @cartouche
  751. @smallexample
  752. CFLAGS += $(shell pkg-config --cflags libstarpu)
  753. LDFLAGS += $(shell pkg-config --libs libstarpu)
  754. CC = gcc
  755. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  756. %.o: %.cu
  757. nvcc $(CFLAGS) $< -c $@
  758. clean:
  759. rm -f vector_scal *.o
  760. @end smallexample
  761. @end cartouche
  762. @smallexample
  763. % make
  764. @end smallexample
  765. and to execute it, with the default configuration:
  766. @smallexample
  767. % ./vector_scal
  768. 0.000000 3.000000 6.000000 9.000000 12.000000
  769. @end smallexample
  770. or for example, by disabling CPU devices:
  771. @smallexample
  772. % STARPU_NCPUS=0 ./vector_scal
  773. 0.000000 3.000000 6.000000 9.000000 12.000000
  774. @end smallexample
  775. or by disabling CUDA devices:
  776. @smallexample
  777. % STARPU_NCUDA=0 ./vector_scal
  778. 0.000000 3.000000 6.000000 9.000000 12.000000
  779. @end smallexample
  780. @node Task and Worker Profiling
  781. @section Task and Worker Profiling
  782. A full example showing how to use the profiling API is available in
  783. the StarPU sources in the directory @code{examples/profiling/}.
  784. @cartouche
  785. @smallexample
  786. struct starpu_task *task = starpu_task_create();
  787. task->cl = &cl;
  788. task->synchronous = 1;
  789. /* We will destroy the task structure by hand so that we can
  790. * query the profiling info before the task is destroyed. */
  791. task->destroy = 0;
  792. starpu_task_submit(task);
  793. /* The task is finished, get profiling information */
  794. struct starpu_task_profiling_info *info = task->profiling_info;
  795. /* How much time did it take before the task started ? */
  796. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  797. /* How long was the task execution ? */
  798. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  799. /* We don't need the task structure anymore */
  800. starpu_task_destroy(task);
  801. @end smallexample
  802. @end cartouche
  803. @cartouche
  804. @smallexample
  805. /* Display the occupancy of all workers during the test */
  806. int worker;
  807. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  808. @{
  809. struct starpu_worker_profiling_info worker_info;
  810. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  811. STARPU_ASSERT(!ret);
  812. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  813. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  814. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  815. float executing_ratio = 100.0*executing_time/total_time;
  816. float sleeping_ratio = 100.0*sleeping_time/total_time;
  817. char workername[128];
  818. starpu_worker_get_name(worker, workername, 128);
  819. fprintf(stderr, "Worker %s:\n", workername);
  820. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  821. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  822. executing_ratio);
  823. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  824. sleeping_ratio);
  825. @}
  826. @end smallexample
  827. @end cartouche
  828. @node Partitioning Data
  829. @section Partitioning Data
  830. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  831. @cartouche
  832. @smallexample
  833. int vector[NX];
  834. starpu_data_handle handle;
  835. /* Declare data to StarPU */
  836. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  837. /* Partition the vector in PARTS sub-vectors */
  838. starpu_filter f =
  839. @{
  840. .filter_func = starpu_block_filter_func_vector,
  841. .nchildren = PARTS,
  842. .get_nchildren = NULL,
  843. .get_child_ops = NULL
  844. @};
  845. starpu_data_partition(handle, &f);
  846. @end smallexample
  847. @end cartouche
  848. @cartouche
  849. @smallexample
  850. /* Submit a task on each sub-vector */
  851. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  852. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  853. struct starpu_task *task = starpu_task_create();
  854. task->buffers[0].handle = sub_handle;
  855. task->buffers[0].mode = STARPU_RW;
  856. task->cl = &cl;
  857. task->synchronous = 1;
  858. task->cl_arg = &factor;
  859. task->cl_arg_size = sizeof(factor);
  860. starpu_task_submit(task);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. Partitioning can be applied several times, see
  865. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  866. @node Performance model example
  867. @section Performance model example
  868. To achieve good scheduling, StarPU scheduling policies need to be able to
  869. estimate in advance the duration of a task. This is done by giving to codelets a
  870. performance model. There are several kinds of performance models.
  871. @itemize
  872. @item
  873. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  874. see for instance
  875. @code{examples/common/blas_model.c} and @code{examples/common/blas_model.h}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  876. @item
  877. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  878. given set of data input/output sizes, the performance will always be about the
  879. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  880. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  881. few different sets of data input/output sizes. StarPU will then keep record of
  882. the average time of previous executions on the various processing units, and use
  883. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  884. for further executions. The following is a small code example.
  885. @cartouche
  886. @smallexample
  887. static struct starpu_perfmodel_t mult_perf_model = @{
  888. .type = STARPU_HISTORY_BASED,
  889. .symbol = "mult_perf_model"
  890. @};
  891. starpu_codelet cl = @{
  892. .where = STARPU_CPU,
  893. .cpu_func = cpu_mult,
  894. .nbuffers = 3,
  895. /* for the scheduling policy to be able to use performance models */
  896. .model = &mult_perf_model
  897. @};
  898. @end smallexample
  899. @end cartouche
  900. @item
  901. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  902. type). This still assumes performance regularity, but can work with various data
  903. input sizes, by applying a*n^b+c regression over observed execution times.
  904. @end itemize
  905. @node Theoretical lower bound on execution time
  906. @section Theoretical lower bound on execution time
  907. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  908. bound for the execution time of a whole set of tasks. See for
  909. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  910. call @code{starpu_bound_start}, and after complete execution, call
  911. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  912. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  913. problem corresponding to the schedule of your tasks. Run it through
  914. @code{lp_solve} or any other linear programming solver, and that will give you a
  915. lower bound for the total execution time of your tasks. If StarPU was compiled
  916. with the glpk library installed, @code{starpu_bound_compute} can be used to
  917. solve it immediately and get the optimized minimum. Its @code{integer}
  918. parameter allows to decide whether integer resolution should be computed
  919. and returned.
  920. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  921. dependencies into account. It must be understood that the linear programming
  922. problem size is quadratic with the number of tasks and thus the time to solve it
  923. will be very long, it could be minutes for just a few dozen tasks. You should
  924. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  925. problem to MPS format and then use a better solver, @code{glpsol} might be
  926. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  927. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  928. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  929. of @code{lp_solve}. For instance, we often just use
  930. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  931. the @code{-gr} option can also be quite useful.
  932. Setting @code{deps} to 0 will only take into account the actual computations
  933. on processing units. It however still properly takes into account the varying
  934. performances of kernels and processing units, which is quite more accurate than
  935. just comparing StarPU performances with the fastest of the kernels being used.
  936. The @code{prio} parameter tells StarPU whether to simulate taking into account
  937. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  938. tasks before less prioritized tasks, to check to which extend this results
  939. to a less optimal solution. This increases even more computation time.
  940. Note that all this however doesn't take into account data transfer, which is
  941. assumed to be completely overlapped.
  942. @node More examples
  943. @section More examples
  944. More examples are available in the StarPU sources in the @code{examples/}
  945. directory. Simple examples include:
  946. @table @asis
  947. @item @code{incrementer/}:
  948. Trivial incrementation test.
  949. @item @code{basic_examples/}:
  950. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  951. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  952. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  953. interface, and an example using the variable data interface.
  954. @item @code{matvecmult/}:
  955. OpenCL example from NVidia, adapted to StarPU.
  956. @item @code{axpy/}:
  957. AXPY CUBLAS operation adapted to StarPU.
  958. @item @code{fortran/}:
  959. Example of Fortran bindings.
  960. @end table
  961. More advanced examples include:
  962. @table @asis
  963. @item @code{filters/}:
  964. Examples using filters, as shown in @ref{Partitioning Data}.
  965. @item @code{lu/}:
  966. LU matrix factorization.
  967. @end table
  968. @c ---------------------------------------------------------------------
  969. @c Performance feedback
  970. @c ---------------------------------------------------------------------
  971. @node Performance feedback
  972. @chapter Performance feedback
  973. @menu
  974. * On-line:: On-line performance feedback
  975. * Off-line:: Off-line performance feedback
  976. @end menu
  977. @node On-line
  978. @section On-line performance feedback
  979. @menu
  980. * Enabling monitoring:: Enabling on-line performance monitoring
  981. * Task feedback:: Per-task feedback
  982. * Codelet feedback:: Per-codelet feedback
  983. * Worker feedback:: Per-worker feedback
  984. * Bus feedback:: Bus-related feedback
  985. @end menu
  986. @node Enabling monitoring
  987. @subsection Enabling on-line performance monitoring
  988. In order to enable online performance monitoring, the application must call
  989. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  990. detect whether monitoring is already enabled or not by calling
  991. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  992. previously collected feedback.
  993. Likewise, performance monitoring is stopped by calling
  994. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  995. does not reset the performance counters so that the application may consult
  996. them later on.
  997. More details about the performance monitoring API are available in section
  998. @ref{Profiling API}.
  999. @node Task feedback
  1000. @subsection Per-task feedback
  1001. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1002. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1003. structure when a task terminates.
  1004. This structure is automatically destroyed when the task structure is destroyed,
  1005. either automatically or by calling @code{starpu_task_destroy}.
  1006. The @code{starpu_task_profiling_info} structure indicates the date when the
  1007. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1008. terminated (@code{end_time}), relative to the initialization of
  1009. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1010. that has executed the task (@code{workerid}).
  1011. These date are stored as @code{timespec} structures which the user may convert
  1012. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1013. function.
  1014. It it worth noting that the application may directly access this structure from
  1015. the callback executed at the end of the task. The @code{starpu_task} structure
  1016. associated to the callback currently being executed is indeed accessible with
  1017. the @code{starpu_get_current_task()} function.
  1018. @node Codelet feedback
  1019. @subsection Per-codelet feedback
  1020. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1021. an array of counters. The i-th entry of the array is incremented every time a
  1022. task implementing the codelet is executed on the i-th worker.
  1023. This array is not reinitialized when profiling is enabled or disabled.
  1024. @node Worker feedback
  1025. @subsection Per-worker feedback
  1026. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1027. function is a @code{starpu_worker_profiling_info} structure that gives
  1028. statistics about the specified worker. This structure specifies when StarPU
  1029. started collecting profiling information for that worker (@code{start_time}),
  1030. the duration of the profiling measurement interval (@code{total_time}), the
  1031. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1032. because there is no task to execute at all (@code{sleeping_time}), and the
  1033. number of tasks that were executed while profiling was enabled.
  1034. These values give an estimation of the proportion of time spent do real work,
  1035. and the time spent either sleeping because there are not enough executable
  1036. tasks or simply wasted in pure StarPU overhead.
  1037. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1038. information associated to a worker.
  1039. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1040. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1041. generate a graphic showing the evolution of these values during the time, for
  1042. the different workers.
  1043. @node Bus feedback
  1044. @subsection Bus-related feedback
  1045. TODO
  1046. @c how to enable/disable performance monitoring
  1047. @c what kind of information do we get ?
  1048. @node Off-line
  1049. @section Off-line performance feedback
  1050. @menu
  1051. * Generating traces:: Generating traces with FxT
  1052. * Gantt diagram:: Creating a Gantt Diagram
  1053. * DAG:: Creating a DAG with graphviz
  1054. * starpu-top:: Monitoring activity
  1055. @end menu
  1056. @node Generating traces
  1057. @subsection Generating traces with FxT
  1058. StarPU can use the FxT library (see
  1059. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1060. with a limited runtime overhead.
  1061. You can either get the FxT library from CVS (autotools are required):
  1062. @example
  1063. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1064. % ./bootstrap
  1065. @end example
  1066. If autotools are not available on your machine, or if you prefer to do so,
  1067. FxT's code is also available as a tarball:
  1068. @example
  1069. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1070. @end example
  1071. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1072. done following the standard procedure:
  1073. @example
  1074. % ./configure --prefix=$FXTDIR
  1075. % make
  1076. % make install
  1077. @end example
  1078. In order to have StarPU to generate traces, StarPU should be configured with
  1079. the @code{--with-fxt} option:
  1080. @example
  1081. $ ./configure --with-fxt=$FXTDIR
  1082. @end example
  1083. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1084. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1085. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1086. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1087. @code{/tmp/} directory by default, or by the directory specified by
  1088. the @code{STARPU_FXT_PREFIX} environment variable.
  1089. @node Gantt diagram
  1090. @subsection Creating a Gantt Diagram
  1091. When the FxT trace file @code{filename} has been generated, it is possible to
  1092. generate a trace in the Paje format by calling:
  1093. @example
  1094. % fxt_tool -i filename
  1095. @end example
  1096. This will create a @code{paje.trace} file in the current directory that can be
  1097. inspected with the Vite trace visualizing open-source tool. More information
  1098. about Vite is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1099. possible to open the @code{paje.trace} file with Vite by using the following
  1100. command:
  1101. @example
  1102. % vite paje.trace
  1103. @end example
  1104. @node DAG
  1105. @subsection Creating a DAG with graphviz
  1106. When the FxT trace file @code{filename} has been generated, it is possible to
  1107. generate a task graph in the DOT format by calling:
  1108. @example
  1109. $ fxt_tool -i filename
  1110. @end example
  1111. This will create a @code{dag.dot} file in the current directory. This file is a
  1112. task graph described using the DOT language. It is possible to get a
  1113. graphical output of the graph by using the graphviz library:
  1114. @example
  1115. $ dot -Tpdf dag.dot -o output.pdf
  1116. @end example
  1117. @node starpu-top
  1118. @subsection Monitoring activity
  1119. When the FxT trace file @code{filename} has been generated, it is possible to
  1120. generate a activity trace by calling:
  1121. @example
  1122. $ fxt_tool -i filename
  1123. @end example
  1124. This will create an @code{activity.data} file in the current
  1125. directory. A profile of the application showing the activity of StarPU
  1126. during the execution of the program can be generated:
  1127. @example
  1128. $ starpu_top.sh activity.data
  1129. @end example
  1130. This will create a file named @code{activity.eps} in the current directory.
  1131. This picture is composed of two parts.
  1132. The first part shows the activity of the different workers. The green sections
  1133. indicate which proportion of the time was spent executed kernels on the
  1134. processing unit. The red sections indicate the proportion of time spent in
  1135. StartPU: an important overhead may indicate that the granularity may be too
  1136. low, and that bigger tasks may be appropriate to use the processing unit more
  1137. efficiently. The black sections indicate that the processing unit was blocked
  1138. because there was no task to process: this may indicate a lack of parallelism
  1139. which may be alleviated by creating more tasks when it is possible.
  1140. The second part of the @code{activity.eps} picture is a graph showing the
  1141. evolution of the number of tasks available in the system during the execution.
  1142. Ready tasks are shown in black, and tasks that are submitted but not
  1143. schedulable yet are shown in grey.
  1144. @c ---------------------------------------------------------------------
  1145. @c Configuration options
  1146. @c ---------------------------------------------------------------------
  1147. @node Configuring StarPU
  1148. @chapter Configuring StarPU
  1149. @menu
  1150. * Compilation configuration::
  1151. * Execution configuration through environment variables::
  1152. @end menu
  1153. @node Compilation configuration
  1154. @section Compilation configuration
  1155. The following arguments can be given to the @code{configure} script.
  1156. @menu
  1157. * Common configuration::
  1158. * Configuring workers::
  1159. * Advanced configuration::
  1160. @end menu
  1161. @node Common configuration
  1162. @subsection Common configuration
  1163. @menu
  1164. * --enable-debug::
  1165. * --enable-fast::
  1166. * --enable-verbose::
  1167. * --enable-coverage::
  1168. @end menu
  1169. @node --enable-debug
  1170. @subsubsection @code{--enable-debug}
  1171. @table @asis
  1172. @item @emph{Description}:
  1173. Enable debugging messages.
  1174. @end table
  1175. @node --enable-fast
  1176. @subsubsection @code{--enable-fast}
  1177. @table @asis
  1178. @item @emph{Description}:
  1179. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1180. @end table
  1181. @node --enable-verbose
  1182. @subsubsection @code{--enable-verbose}
  1183. @table @asis
  1184. @item @emph{Description}:
  1185. Augment the verbosity of the debugging messages.
  1186. @end table
  1187. @node --enable-coverage
  1188. @subsubsection @code{--enable-coverage}
  1189. @table @asis
  1190. @item @emph{Description}:
  1191. Enable flags for the coverage tool.
  1192. @end table
  1193. @node Configuring workers
  1194. @subsection Configuring workers
  1195. @menu
  1196. * --enable-nmaxcpus::
  1197. * --disable-cpu::
  1198. * --enable-maxcudadev::
  1199. * --disable-cuda::
  1200. * --with-cuda-dir::
  1201. * --with-cuda-include-dir::
  1202. * --with-cuda-lib-dir::
  1203. * --enable-maxopencldev::
  1204. * --disable-opencl::
  1205. * --with-opencl-dir::
  1206. * --with-opencl-include-dir::
  1207. * --with-opencl-lib-dir::
  1208. * --enable-gordon::
  1209. * --with-gordon-dir::
  1210. @end menu
  1211. @node --enable-nmaxcpus
  1212. @subsubsection @code{--enable-nmaxcpus=<number>}
  1213. @table @asis
  1214. @item @emph{Description}:
  1215. Defines the maximum number of CPU cores that StarPU will support, then
  1216. available as the @code{STARPU_NMAXCPUS} macro.
  1217. @end table
  1218. @node --disable-cpu
  1219. @subsubsection @code{--disable-cpu}
  1220. @table @asis
  1221. @item @emph{Description}:
  1222. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1223. @end table
  1224. @node --enable-maxcudadev
  1225. @subsubsection @code{--enable-maxcudadev=<number>}
  1226. @table @asis
  1227. @item @emph{Description}:
  1228. Defines the maximum number of CUDA devices that StarPU will support, then
  1229. available as the @code{STARPU_MAXCUDADEVS} macro.
  1230. @end table
  1231. @node --disable-cuda
  1232. @subsubsection @code{--disable-cuda}
  1233. @table @asis
  1234. @item @emph{Description}:
  1235. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1236. @end table
  1237. @node --with-cuda-dir
  1238. @subsubsection @code{--with-cuda-dir=<path>}
  1239. @table @asis
  1240. @item @emph{Description}:
  1241. Specify the directory where CUDA is installed. This directory should notably contain
  1242. @code{include/cuda.h}.
  1243. @end table
  1244. @node --with-cuda-include-dir
  1245. @subsubsection @code{--with-cuda-include-dir=<path>}
  1246. @table @asis
  1247. @item @emph{Description}:
  1248. Specify the directory where CUDA headers are installed. This directory should
  1249. notably contain @code{cuda.h}.
  1250. @end table
  1251. @node --with-cuda-lib-dir
  1252. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1253. @table @asis
  1254. @item @emph{Description}:
  1255. Specify the directory where the CUDA library is installed.
  1256. @end table
  1257. @node --enable-maxopencldev
  1258. @subsubsection @code{--enable-maxopencldev=<number>}
  1259. @table @asis
  1260. @item @emph{Description}:
  1261. Defines the maximum number of OpenCL devices that StarPU will support, then
  1262. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1263. @end table
  1264. @node --disable-opencl
  1265. @subsubsection @code{--disable-opencl}
  1266. @table @asis
  1267. @item @emph{Description}:
  1268. Disable the use of OpenCL, even if the SDK is detected.
  1269. @end table
  1270. @node --with-opencl-dir
  1271. @subsubsection @code{--with-opencl-dir=<path>}
  1272. @table @asis
  1273. @item @emph{Description}:
  1274. Specify the location of the OpenCL SDK. This directory should notably contain
  1275. @code{include/CL/cl.h}.
  1276. @end table
  1277. @node --with-opencl-include-dir
  1278. @subsubsection @code{--with-opencl-include-dir=<path>}
  1279. @table @asis
  1280. @item @emph{Description}:
  1281. Specify the location of OpenCL headers. This directory should notably contain
  1282. @code{CL/cl.h}.
  1283. @end table
  1284. @node --with-opencl-lib-dir
  1285. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1286. @table @asis
  1287. @item @emph{Description}:
  1288. Specify the location of the OpenCL library.
  1289. @code{include/CL/cl.h}.
  1290. @end table
  1291. @node --enable-gordon
  1292. @subsubsection @code{--enable-gordon}
  1293. @table @asis
  1294. @item @emph{Description}:
  1295. Enable the use of the Gordon runtime for Cell SPUs.
  1296. @c TODO: rather default to enabled when detected
  1297. @end table
  1298. @node --with-gordon-dir
  1299. @subsubsection @code{--with-gordon-dir=<path>}
  1300. @table @asis
  1301. @item @emph{Description}:
  1302. Specify the location of the Gordon SDK.
  1303. @end table
  1304. @node Advanced configuration
  1305. @subsection Advanced configuration
  1306. @menu
  1307. * --enable-perf-debug::
  1308. * --enable-model-debug::
  1309. * --enable-stats::
  1310. * --enable-maxbuffers::
  1311. * --enable-allocation-cache::
  1312. * --enable-opengl-render::
  1313. * --enable-blas-lib::
  1314. * --with-magma::
  1315. * --with-fxt::
  1316. * --with-perf-model-dir::
  1317. * --with-mpicc::
  1318. * --with-goto-dir::
  1319. * --with-atlas-dir::
  1320. * --with-mkl-cflags::
  1321. * --with-mkl-ldflags::
  1322. @end menu
  1323. @node --enable-perf-debug
  1324. @subsubsection @code{--enable-perf-debug}
  1325. @table @asis
  1326. @item @emph{Description}:
  1327. Enable performance debugging.
  1328. @end table
  1329. @node --enable-model-debug
  1330. @subsubsection @code{--enable-model-debug}
  1331. @table @asis
  1332. @item @emph{Description}:
  1333. Enable performance model debugging.
  1334. @end table
  1335. @node --enable-stats
  1336. @subsubsection @code{--enable-stats}
  1337. @table @asis
  1338. @item @emph{Description}:
  1339. Enable statistics.
  1340. @end table
  1341. @node --enable-maxbuffers
  1342. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1343. @table @asis
  1344. @item @emph{Description}:
  1345. Define the maximum number of buffers that tasks will be able to take
  1346. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1347. @end table
  1348. @node --enable-allocation-cache
  1349. @subsubsection @code{--enable-allocation-cache}
  1350. @table @asis
  1351. @item @emph{Description}:
  1352. Enable the use of a data allocation cache to avoid the cost of it with
  1353. CUDA. Still experimental.
  1354. @end table
  1355. @node --enable-opengl-render
  1356. @subsubsection @code{--enable-opengl-render}
  1357. @table @asis
  1358. @item @emph{Description}:
  1359. Enable the use of OpenGL for the rendering of some examples.
  1360. @c TODO: rather default to enabled when detected
  1361. @end table
  1362. @node --enable-blas-lib
  1363. @subsubsection @code{--enable-blas-lib=<name>}
  1364. @table @asis
  1365. @item @emph{Description}:
  1366. Specify the blas library to be used by some of the examples. The
  1367. library has to be 'atlas' or 'goto'.
  1368. @end table
  1369. @node --with-magma
  1370. @subsubsection @code{--with-magma=<path>}
  1371. @table @asis
  1372. @item @emph{Description}:
  1373. Specify where magma is installed.
  1374. @end table
  1375. @node --with-fxt
  1376. @subsubsection @code{--with-fxt=<path>}
  1377. @table @asis
  1378. @item @emph{Description}:
  1379. Specify the location of FxT (for generating traces and rendering them
  1380. using ViTE). This directory should notably contain
  1381. @code{include/fxt/fxt.h}.
  1382. @c TODO add ref to other section
  1383. @end table
  1384. @node --with-perf-model-dir
  1385. @subsubsection @code{--with-perf-model-dir=<dir>}
  1386. @table @asis
  1387. @item @emph{Description}:
  1388. Specify where performance models should be stored (instead of defaulting to the
  1389. current user's home).
  1390. @end table
  1391. @node --with-mpicc
  1392. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1393. @table @asis
  1394. @item @emph{Description}:
  1395. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1396. @end table
  1397. @node --with-goto-dir
  1398. @subsubsection @code{--with-goto-dir=<dir>}
  1399. @table @asis
  1400. @item @emph{Description}:
  1401. Specify the location of GotoBLAS.
  1402. @end table
  1403. @node --with-atlas-dir
  1404. @subsubsection @code{--with-atlas-dir=<dir>}
  1405. @table @asis
  1406. @item @emph{Description}:
  1407. Specify the location of ATLAS. This directory should notably contain
  1408. @code{include/cblas.h}.
  1409. @end table
  1410. @node --with-mkl-cflags
  1411. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1412. @table @asis
  1413. @item @emph{Description}:
  1414. Specify the compilation flags for the MKL Library.
  1415. @end table
  1416. @node --with-mkl-ldflags
  1417. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1418. @table @asis
  1419. @item @emph{Description}:
  1420. Specify the linking flags for the MKL Library. Note that the
  1421. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1422. website provides a script to determine the linking flags.
  1423. @end table
  1424. @c ---------------------------------------------------------------------
  1425. @c Environment variables
  1426. @c ---------------------------------------------------------------------
  1427. @node Execution configuration through environment variables
  1428. @section Execution configuration through environment variables
  1429. @menu
  1430. * Workers:: Configuring workers
  1431. * Scheduling:: Configuring the Scheduling engine
  1432. * Misc:: Miscellaneous and debug
  1433. @end menu
  1434. Note: the values given in @code{starpu_conf} structure passed when
  1435. calling @code{starpu_init} will override the values of the environment
  1436. variables.
  1437. @node Workers
  1438. @subsection Configuring workers
  1439. @menu
  1440. * STARPU_NCPUS:: Number of CPU workers
  1441. * STARPU_NCUDA:: Number of CUDA workers
  1442. * STARPU_NOPENCL:: Number of OpenCL workers
  1443. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1444. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1445. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1446. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1447. @end menu
  1448. @node STARPU_NCPUS
  1449. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1450. @table @asis
  1451. @item @emph{Description}:
  1452. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1453. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1454. the accelerators.
  1455. @end table
  1456. @node STARPU_NCUDA
  1457. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1458. @table @asis
  1459. @item @emph{Description}:
  1460. Specify the number of CUDA devices that StarPU can use. If
  1461. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1462. possible to select which CUDA devices should be used by the means of the
  1463. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1464. create as many CUDA workers as there are CUDA devices.
  1465. @end table
  1466. @node STARPU_NOPENCL
  1467. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1468. @table @asis
  1469. @item @emph{Description}:
  1470. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1471. @end table
  1472. @node STARPU_NGORDON
  1473. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1474. @table @asis
  1475. @item @emph{Description}:
  1476. Specify the number of SPUs that StarPU can use.
  1477. @end table
  1478. @node STARPU_WORKERS_CPUID
  1479. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1480. @table @asis
  1481. @item @emph{Description}:
  1482. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1483. specifies on which logical CPU the different workers should be
  1484. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  1485. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  1486. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  1487. determined by the OS, or provided by the @code{hwloc} library in case it is
  1488. available.
  1489. Note that the first workers correspond to the CUDA workers, then come the
  1490. OpenCL and the SPU, and finally the CPU workers. For example if
  1491. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1492. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1493. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1494. the logical CPUs #1 and #3 will be used by the CPU workers.
  1495. If the number of workers is larger than the array given in
  1496. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1497. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1498. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1499. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1500. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1501. @end table
  1502. @node STARPU_WORKERS_CUDAID
  1503. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1504. @table @asis
  1505. @item @emph{Description}:
  1506. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1507. possible to select which CUDA devices should be used by StarPU. On a machine
  1508. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1509. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1510. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1511. the one reported by CUDA).
  1512. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1513. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1514. @end table
  1515. @node STARPU_WORKERS_OPENCLID
  1516. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1517. @table @asis
  1518. @item @emph{Description}:
  1519. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1520. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1521. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1522. @end table
  1523. @node Scheduling
  1524. @subsection Configuring the Scheduling engine
  1525. @menu
  1526. * STARPU_SCHED:: Scheduling policy
  1527. * STARPU_CALIBRATE:: Calibrate performance models
  1528. * STARPU_PREFETCH:: Use data prefetch
  1529. * STARPU_SCHED_ALPHA:: Computation factor
  1530. * STARPU_SCHED_BETA:: Communication factor
  1531. @end menu
  1532. @node STARPU_SCHED
  1533. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1534. @table @asis
  1535. @item @emph{Description}:
  1536. This chooses between the different scheduling policies proposed by StarPU: work
  1537. random, stealing, greedy, with performance models, etc.
  1538. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1539. @end table
  1540. @node STARPU_CALIBRATE
  1541. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1542. @table @asis
  1543. @item @emph{Description}:
  1544. If this variable is set to 1, the performance models are calibrated during
  1545. the execution. If it is set to 2, the previous values are dropped to restart
  1546. calibration from scratch.
  1547. Note: this currently only applies to dm and dmda scheduling policies.
  1548. @end table
  1549. @node STARPU_PREFETCH
  1550. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1551. @table @asis
  1552. @item @emph{Description}:
  1553. This variable indicates whether data prefetching should be enabled (0 means
  1554. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1555. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1556. advance, so that data is already present on the GPU when the task starts. As a
  1557. result, computation and data transfers are overlapped.
  1558. @end table
  1559. @node STARPU_SCHED_ALPHA
  1560. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1561. @table @asis
  1562. @item @emph{Description}:
  1563. To estimate the cost of a task StarPU takes into account the estimated
  1564. computation time (obtained thanks to performance models). The alpha factor is
  1565. the coefficient to be applied to it before adding it to the communication part.
  1566. @end table
  1567. @node STARPU_SCHED_BETA
  1568. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1569. @table @asis
  1570. @item @emph{Description}:
  1571. To estimate the cost of a task StarPU takes into account the estimated
  1572. data transfer time (obtained thanks to performance models). The beta factor is
  1573. the coefficient to be applied to it before adding it to the computation part.
  1574. @end table
  1575. @node Misc
  1576. @subsection Miscellaneous and debug
  1577. @menu
  1578. * STARPU_LOGFILENAME:: Select debug file name
  1579. * STARPU_FXT_PREFIX:: FxT trace location
  1580. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1581. @end menu
  1582. @node STARPU_LOGFILENAME
  1583. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1584. @table @asis
  1585. @item @emph{Description}:
  1586. This variable specifies in which file the debugging output should be saved to.
  1587. @end table
  1588. @node STARPU_FXT_PREFIX
  1589. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1590. @table @asis
  1591. @item @emph{Description}
  1592. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1593. @end table
  1594. @node STARPU_LIMIT_GPU_MEM
  1595. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1596. @table @asis
  1597. @item @emph{Description}
  1598. This variable specifies the maximum number of megabytes that should be
  1599. available to the application on each GPUs. In case this value is smaller than
  1600. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1601. on the device. This variable is intended to be used for experimental purposes
  1602. as it emulates devices that have a limited amount of memory.
  1603. @end table
  1604. @c ---------------------------------------------------------------------
  1605. @c StarPU API
  1606. @c ---------------------------------------------------------------------
  1607. @node StarPU API
  1608. @chapter StarPU API
  1609. @menu
  1610. * Initialization and Termination:: Initialization and Termination methods
  1611. * Workers' Properties:: Methods to enumerate workers' properties
  1612. * Data Library:: Methods to manipulate data
  1613. * Data Interfaces::
  1614. * Data Partition::
  1615. * Codelets and Tasks:: Methods to construct tasks
  1616. * Explicit Dependencies:: Explicit Dependencies
  1617. * Implicit Data Dependencies:: Implicit Data Dependencies
  1618. * Performance Model API::
  1619. * Profiling API:: Profiling API
  1620. * CUDA extensions:: CUDA extensions
  1621. * OpenCL extensions:: OpenCL extensions
  1622. * Cell extensions:: Cell extensions
  1623. * Miscellaneous helpers::
  1624. @end menu
  1625. @node Initialization and Termination
  1626. @section Initialization and Termination
  1627. @menu
  1628. * starpu_init:: Initialize StarPU
  1629. * struct starpu_conf:: StarPU runtime configuration
  1630. * starpu_conf_init:: Initialize starpu_conf structure
  1631. * starpu_shutdown:: Terminate StarPU
  1632. @end menu
  1633. @node starpu_init
  1634. @subsection @code{starpu_init} -- Initialize StarPU
  1635. @table @asis
  1636. @item @emph{Description}:
  1637. This is StarPU initialization method, which must be called prior to any other
  1638. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1639. policy, number of cores, ...) by passing a non-null argument. Default
  1640. configuration is used if the passed argument is @code{NULL}.
  1641. @item @emph{Return value}:
  1642. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1643. indicates that no worker was available (so that StarPU was not initialized).
  1644. @item @emph{Prototype}:
  1645. @code{int starpu_init(struct starpu_conf *conf);}
  1646. @end table
  1647. @node struct starpu_conf
  1648. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1649. @table @asis
  1650. @item @emph{Description}:
  1651. This structure is passed to the @code{starpu_init} function in order
  1652. to configure StarPU.
  1653. When the default value is used, StarPU automatically selects the number
  1654. of processing units and takes the default scheduling policy. This parameter
  1655. overwrites the equivalent environment variables.
  1656. @item @emph{Fields}:
  1657. @table @asis
  1658. @item @code{sched_policy_name} (default = NULL):
  1659. This is the name of the scheduling policy. This can also be specified with the
  1660. @code{STARPU_SCHED} environment variable.
  1661. @item @code{sched_policy} (default = NULL):
  1662. This is the definition of the scheduling policy. This field is ignored
  1663. if @code{sched_policy_name} is set.
  1664. @item @code{ncpus} (default = -1):
  1665. This is the number of CPU cores that StarPU can use. This can also be
  1666. specified with the @code{STARPU_NCPUS} environment variable.
  1667. @item @code{ncuda} (default = -1):
  1668. This is the number of CUDA devices that StarPU can use. This can also be
  1669. specified with the @code{STARPU_NCUDA} environment variable.
  1670. @item @code{nopencl} (default = -1):
  1671. This is the number of OpenCL devices that StarPU can use. This can also be
  1672. specified with the @code{STARPU_NOPENCL} environment variable.
  1673. @item @code{nspus} (default = -1):
  1674. This is the number of Cell SPUs that StarPU can use. This can also be
  1675. specified with the @code{STARPU_NGORDON} environment variable.
  1676. @item @code{use_explicit_workers_bindid} (default = 0)
  1677. If this flag is set, the @code{workers_bindid} array indicates where the
  1678. different workers are bound, otherwise StarPU automatically selects where to
  1679. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1680. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1681. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1682. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1683. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1684. where to bind the different workers. The i-th entry of the
  1685. @code{workers_bindid} indicates the logical identifier of the processor which
  1686. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1687. either determined by the OS, or provided by the @code{hwloc} library in case it
  1688. is available.
  1689. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1690. ignored.
  1691. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1692. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1693. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1694. CUDA devices in a round-robin fashion.
  1695. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1696. ignored.
  1697. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1698. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1699. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1700. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1701. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1702. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1703. OpenCL devices in a round-robin fashion.
  1704. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1705. @item @code{calibrate} (default = 0):
  1706. If this flag is set, StarPU will calibrate the performance models when
  1707. executing tasks. If this value is equal to -1, the default value is used. The
  1708. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1709. variable when it is set.
  1710. @end table
  1711. @end table
  1712. @node starpu_conf_init
  1713. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1714. @table @asis
  1715. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1716. @item @emph{Return value}:
  1717. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1718. indicates that the argument was NULL.
  1719. @item @emph{Prototype}:
  1720. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1721. @end table
  1722. @node starpu_shutdown
  1723. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1724. @table @asis
  1725. @item @emph{Description}:
  1726. This is StarPU termination method. It must be called at the end of the
  1727. application: statistics and other post-mortem debugging information are not
  1728. guaranteed to be available until this method has been called.
  1729. @item @emph{Prototype}:
  1730. @code{void starpu_shutdown(void);}
  1731. @end table
  1732. @node Workers' Properties
  1733. @section Workers' Properties
  1734. @menu
  1735. * starpu_worker_get_count:: Get the number of processing units
  1736. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1737. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1738. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1739. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1740. * starpu_worker_get_id:: Get the identifier of the current worker
  1741. * starpu_worker_get_devid:: Get the device identifier of a worker
  1742. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1743. * starpu_worker_get_name:: Get the name of a worker
  1744. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1745. @end menu
  1746. @node starpu_worker_get_count
  1747. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1748. @table @asis
  1749. @item @emph{Description}:
  1750. This function returns the number of workers (i.e. processing units executing
  1751. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1752. @item @emph{Prototype}:
  1753. @code{unsigned starpu_worker_get_count(void);}
  1754. @end table
  1755. @node starpu_cpu_worker_get_count
  1756. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1757. @table @asis
  1758. @item @emph{Description}:
  1759. This function returns the number of CPUs controlled by StarPU. The returned
  1760. value should be at most @code{STARPU_NMAXCPUS}.
  1761. @item @emph{Prototype}:
  1762. @code{unsigned starpu_cpu_worker_get_count(void);}
  1763. @end table
  1764. @node starpu_cuda_worker_get_count
  1765. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1766. @table @asis
  1767. @item @emph{Description}:
  1768. This function returns the number of CUDA devices controlled by StarPU. The returned
  1769. value should be at most @code{STARPU_MAXCUDADEVS}.
  1770. @item @emph{Prototype}:
  1771. @code{unsigned starpu_cuda_worker_get_count(void);}
  1772. @end table
  1773. @node starpu_opencl_worker_get_count
  1774. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1775. @table @asis
  1776. @item @emph{Description}:
  1777. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1778. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1779. @item @emph{Prototype}:
  1780. @code{unsigned starpu_opencl_worker_get_count(void);}
  1781. @end table
  1782. @node starpu_spu_worker_get_count
  1783. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1784. @table @asis
  1785. @item @emph{Description}:
  1786. This function returns the number of Cell SPUs controlled by StarPU.
  1787. @item @emph{Prototype}:
  1788. @code{unsigned starpu_opencl_worker_get_count(void);}
  1789. @end table
  1790. @node starpu_worker_get_id
  1791. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1792. @table @asis
  1793. @item @emph{Description}:
  1794. This function returns the identifier of the worker associated to the calling
  1795. thread. The returned value is either -1 if the current context is not a StarPU
  1796. worker (i.e. when called from the application outside a task or a callback), or
  1797. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1798. @item @emph{Prototype}:
  1799. @code{int starpu_worker_get_id(void);}
  1800. @end table
  1801. @node starpu_worker_get_devid
  1802. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1803. @table @asis
  1804. @item @emph{Description}:
  1805. This functions returns the device id of the worker associated to an identifier
  1806. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1807. CUDA worker, this device identifier is the logical device identifier exposed by
  1808. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1809. identifier of a CPU worker is the logical identifier of the core on which the
  1810. worker was bound; this identifier is either provided by the OS or by the
  1811. @code{hwloc} library in case it is available.
  1812. @item @emph{Prototype}:
  1813. @code{int starpu_worker_get_devid(int id);}
  1814. @end table
  1815. @node starpu_worker_get_type
  1816. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1817. @table @asis
  1818. @item @emph{Description}:
  1819. This function returns the type of worker associated to an identifier (as
  1820. returned by the @code{starpu_worker_get_id} function). The returned value
  1821. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1822. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1823. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1824. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1825. identifier is unspecified.
  1826. @item @emph{Prototype}:
  1827. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1828. @end table
  1829. @node starpu_worker_get_name
  1830. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1831. @table @asis
  1832. @item @emph{Description}:
  1833. StarPU associates a unique human readable string to each processing unit. This
  1834. function copies at most the @code{maxlen} first bytes of the unique string
  1835. associated to a worker identified by its identifier @code{id} into the
  1836. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1837. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1838. function on an invalid identifier results in an unspecified behaviour.
  1839. @item @emph{Prototype}:
  1840. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1841. @end table
  1842. @node starpu_worker_get_memory_node
  1843. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1844. @table @asis
  1845. @item @emph{Description}:
  1846. This function returns the identifier of the memory node associated to the
  1847. worker identified by @code{workerid}.
  1848. @item @emph{Prototype}:
  1849. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1850. @end table
  1851. @node Data Library
  1852. @section Data Library
  1853. This section describes the data management facilities provided by StarPU.
  1854. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1855. design their own data interfaces if required.
  1856. @menu
  1857. * starpu_access_mode:: starpu_access_mode
  1858. * unsigned memory_node:: Memory node
  1859. * starpu_data_handle:: StarPU opaque data handle
  1860. * void *interface:: StarPU data interface
  1861. * starpu_data_register:: Register a piece of data to StarPU
  1862. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1863. * starpu_data_invalidate:: Invalidate all data replicates
  1864. * starpu_data_acquire:: Access registered data from the application
  1865. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1866. * starpu_data_release:: Release registered data from the application
  1867. @end menu
  1868. @node starpu_access_mode
  1869. @subsection @code{starpu_access_mode} -- Data access mode
  1870. This datatype describes a data access mode. The different available modes are:
  1871. @table @asis
  1872. @table @asis
  1873. @item @code{STARPU_R} read-only mode.
  1874. @item @code{STARPU_W} write-only mode.
  1875. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1876. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1877. @end table
  1878. @end table
  1879. @node unsigned memory_node
  1880. @subsection @code{unsigned memory_node} -- Memory node
  1881. @table @asis
  1882. @item @emph{Description}:
  1883. Every worker is associated to a memory node which is a logical abstraction of
  1884. the address space from which the processing unit gets its data. For instance,
  1885. the memory node associated to the different CPU workers represents main memory
  1886. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1887. Every memory node is identified by a logical index which is accessible from the
  1888. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1889. to StarPU, the specified memory node indicates where the piece of data
  1890. initially resides (we also call this memory node the home node of a piece of
  1891. data).
  1892. @end table
  1893. @node starpu_data_handle
  1894. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1895. @table @asis
  1896. @item @emph{Description}:
  1897. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1898. data. Once a piece of data has been registered to StarPU, it is associated to a
  1899. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1900. over the entire machine, so that we can maintain data consistency and locate
  1901. data replicates for instance.
  1902. @end table
  1903. @node void *interface
  1904. @subsection @code{void *interface} -- StarPU data interface
  1905. @table @asis
  1906. @item @emph{Description}:
  1907. Data management is done at a high-level in StarPU: rather than accessing a mere
  1908. list of contiguous buffers, the tasks may manipulate data that are described by
  1909. a high-level construct which we call data interface.
  1910. An example of data interface is the "vector" interface which describes a
  1911. contiguous data array on a spefic memory node. This interface is a simple
  1912. structure containing the number of elements in the array, the size of the
  1913. elements, and the address of the array in the appropriate address space (this
  1914. address may be invalid if there is no valid copy of the array in the memory
  1915. node). More informations on the data interfaces provided by StarPU are
  1916. given in @ref{Data Interfaces}.
  1917. When a piece of data managed by StarPU is used by a task, the task
  1918. implementation is given a pointer to an interface describing a valid copy of
  1919. the data that is accessible from the current processing unit.
  1920. @end table
  1921. @node starpu_data_register
  1922. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1923. @table @asis
  1924. @item @emph{Description}:
  1925. Register a piece of data into the handle located at the @code{handleptr}
  1926. address. The @code{interface} buffer contains the initial description of the
  1927. data in the home node. The @code{ops} argument is a pointer to a structure
  1928. describing the different methods used to manipulate this type of interface. See
  1929. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1930. If @code{home_node} is -1, StarPU will automatically
  1931. allocate the memory when it is used for the
  1932. first time in write-only mode. Once such data handle has been automatically
  1933. allocated, it is possible to access it using any access mode.
  1934. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1935. matrix) which can be registered by the means of helper functions (e.g.
  1936. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1937. @item @emph{Prototype}:
  1938. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1939. uint32_t home_node,
  1940. void *interface,
  1941. struct starpu_data_interface_ops_t *ops);}
  1942. @end table
  1943. @node starpu_data_unregister
  1944. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1945. @table @asis
  1946. @item @emph{Description}:
  1947. This function unregisters a data handle from StarPU. If the data was
  1948. automatically allocated by StarPU because the home node was -1, all
  1949. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1950. is put back into the home node in the buffer that was initially registered.
  1951. Using a data handle that has been unregistered from StarPU results in an
  1952. undefined behaviour.
  1953. @item @emph{Prototype}:
  1954. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1955. @end table
  1956. @node starpu_data_invalidate
  1957. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1958. @table @asis
  1959. @item @emph{Description}:
  1960. Destroy all replicates of the data handle. After data invalidation, the first
  1961. access to the handle must be performed in write-only mode. Accessing an
  1962. invalidated data in read-mode results in undefined behaviour.
  1963. @item @emph{Prototype}:
  1964. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  1965. @end table
  1966. @c TODO create a specific sections about user interaction with the DSM ?
  1967. @node starpu_data_acquire
  1968. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  1969. @table @asis
  1970. @item @emph{Description}:
  1971. The application must call this function prior to accessing registered data from
  1972. main memory outside tasks. StarPU ensures that the application will get an
  1973. up-to-date copy of the data in main memory located where the data was
  1974. originally registered, and that all concurrent accesses (e.g. from tasks) will
  1975. be consistent with the access mode specified in the @code{mode} argument.
  1976. @code{starpu_data_release} must be called once the application does not need to
  1977. access the piece of data anymore.
  1978. Note that implicit data dependencies are also enforced by
  1979. @code{starpu_data_acquire} in case they are enabled.
  1980. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  1981. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  1982. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  1983. @item @emph{Prototype}:
  1984. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  1985. @end table
  1986. @node starpu_data_acquire_cb
  1987. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  1988. @table @asis
  1989. @item @emph{Description}:
  1990. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  1991. @code{starpu_data_release}. When the data specified in the first argument is
  1992. available in the appropriate access mode, the callback function is executed.
  1993. The application may access the requested data during the execution of this
  1994. callback. The callback function must call @code{starpu_data_release} once the
  1995. application does not need to access the piece of data anymore.
  1996. Note that implicit data dependencies are also enforced by
  1997. @code{starpu_data_acquire} in case they are enabled.
  1998. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  1999. be called from task callbacks. Upon successful completion, this function
  2000. returns 0.
  2001. @item @emph{Prototype}:
  2002. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2003. @end table
  2004. @node starpu_data_release
  2005. @subsection @code{starpu_data_release} -- Release registered data from the application
  2006. @table @asis
  2007. @item @emph{Description}:
  2008. This function releases the piece of data acquired by the application either by
  2009. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2010. @item @emph{Prototype}:
  2011. @code{void starpu_data_release(starpu_data_handle handle);}
  2012. @end table
  2013. @node Data Interfaces
  2014. @section Data Interfaces
  2015. @menu
  2016. * Variable Interface::
  2017. * Vector Interface::
  2018. * Matrix Interface::
  2019. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2020. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2021. * Block Interface::
  2022. @end menu
  2023. @node Variable Interface
  2024. @subsection Variable Interface
  2025. @table @asis
  2026. @item @emph{Description}:
  2027. This variant of @code{starpu_data_register} uses the variable interface,
  2028. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2029. and @code{elemsize} is the size of the variable.
  2030. @item @emph{Prototype}:
  2031. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2032. uint32_t home_node,
  2033. uintptr_t ptr, size_t elemsize);}
  2034. @item @emph{Example}:
  2035. @cartouche
  2036. @smallexample
  2037. float var;
  2038. starpu_data_handle var_handle;
  2039. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2040. @end smallexample
  2041. @end cartouche
  2042. @end table
  2043. @node Vector Interface
  2044. @subsection Vector Interface
  2045. @table @asis
  2046. @item @emph{Description}:
  2047. This variant of @code{starpu_data_register} uses the vector interface,
  2048. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2049. element in the home node. @code{nx} is the number of elements in the vector.
  2050. @code{elemsize} is the size of each element.
  2051. @item @emph{Prototype}:
  2052. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2053. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2054. @item @emph{Example}:
  2055. @cartouche
  2056. @smallexample
  2057. float vector[NX];
  2058. starpu_data_handle vector_handle;
  2059. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2060. sizeof(vector[0]));
  2061. @end smallexample
  2062. @end cartouche
  2063. @end table
  2064. @node Matrix Interface
  2065. @subsection Matrix Interface
  2066. @table @asis
  2067. @item @emph{Description}:
  2068. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2069. matrices of elements. @code{ptr} is the address of the first element in the home
  2070. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2071. of elements in a row (this can be different from @code{ld} if there are extra
  2072. elements for alignment for instance). @code{ny} is the number of rows.
  2073. @code{elemsize} is the size of each element.
  2074. @item @emph{Prototype}:
  2075. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2076. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2077. uint32_t ny, size_t elemsize);}
  2078. @item @emph{Example}:
  2079. @cartouche
  2080. @smallexample
  2081. float *matrix;
  2082. starpu_data_handle matrix_handle;
  2083. matrix = (float*)malloc(width * height * sizeof(float));
  2084. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2085. width, width, height, sizeof(float));
  2086. @end smallexample
  2087. @end cartouche
  2088. @end table
  2089. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2090. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2091. @table @asis
  2092. @item @emph{Description}:
  2093. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2094. TODO
  2095. @item @emph{Prototype}:
  2096. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2097. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2098. @item @emph{Example}:
  2099. @cartouche
  2100. @smallexample
  2101. @end smallexample
  2102. @end cartouche
  2103. @end table
  2104. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2105. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2106. @table @asis
  2107. @item @emph{Description}:
  2108. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2109. TODO
  2110. @item @emph{Prototype}:
  2111. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2112. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2113. @item @emph{Example}:
  2114. @cartouche
  2115. @smallexample
  2116. @end smallexample
  2117. @end cartouche
  2118. @end table
  2119. @node Block Interface
  2120. @subsection Block Interface
  2121. @table @asis
  2122. @item @emph{Description}:
  2123. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2124. @code{ptr} is the address of the array of first element in the home node.
  2125. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2126. of rows between z planes. @code{nx} is the number of elements in a row (this
  2127. can be different from @code{ldy} if there are extra elements for alignment
  2128. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2129. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2130. each element.
  2131. @item @emph{Prototype}:
  2132. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2133. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2134. uint32_t ny, uint32_t nz, size_t elemsize);}
  2135. @item @emph{Example}:
  2136. @cartouche
  2137. @smallexample
  2138. float *block;
  2139. starpu_data_handle block_handle;
  2140. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2141. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2142. nx, nx*ny, nx, ny, nz, sizeof(float));
  2143. @end smallexample
  2144. @end cartouche
  2145. @end table
  2146. @node Data Partition
  2147. @section Data Partition
  2148. @menu
  2149. * struct starpu_data_filter:: StarPU filter structure
  2150. * starpu_data_partition:: Partition Data
  2151. * starpu_data_unpartition:: Unpartition Data
  2152. * starpu_data_get_nb_children::
  2153. * starpu_data_get_sub_data::
  2154. * Predefined filter functions::
  2155. @end menu
  2156. @node struct starpu_data_filter
  2157. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2158. @table @asis
  2159. @item @emph{Description}:
  2160. The filter structure describes a data partitioning function.
  2161. @item @emph{Fields}:
  2162. @table @asis
  2163. @item @code{filter_func}:
  2164. TODO
  2165. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2166. @item @code{get_nchildren}:
  2167. TODO
  2168. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2169. @item @code{get_child_ops}:
  2170. TODO
  2171. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2172. @item @code{filter_arg}:
  2173. TODO
  2174. @item @code{nchildren}:
  2175. TODO
  2176. @item @code{filter_arg_ptr}:
  2177. TODO
  2178. @end table
  2179. @end table
  2180. @node starpu_data_partition
  2181. @subsection starpu_data_partition -- Partition Data
  2182. @table @asis
  2183. @item @emph{Description}:
  2184. TODO
  2185. @item @emph{Prototype}:
  2186. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2187. @end table
  2188. @node starpu_data_unpartition
  2189. @subsection starpu_data_unpartition -- Unpartition data
  2190. @table @asis
  2191. @item @emph{Description}:
  2192. TODO
  2193. @item @emph{Prototype}:
  2194. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2195. @end table
  2196. @node starpu_data_get_nb_children
  2197. @subsection starpu_data_get_nb_children
  2198. @table @asis
  2199. @item @emph{Description}:
  2200. TODO
  2201. @item @emph{Return value}:
  2202. This function returns returns the number of children.
  2203. @item @emph{Prototype}:
  2204. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2205. @end table
  2206. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2207. @node starpu_data_get_sub_data
  2208. @subsection starpu_data_get_sub_data
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. TODO
  2212. @item @emph{Return value}:
  2213. TODO
  2214. @item @emph{Prototype}:
  2215. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2216. @end table
  2217. @node Predefined filter functions
  2218. @subsection Predefined filter functions
  2219. @menu
  2220. * Partitioning BCSR Data::
  2221. * Partitioning BLAS interface::
  2222. * Partitioning Vector Data::
  2223. * Partitioning Block Data::
  2224. @end menu
  2225. This section gives a list of the predefined partitioning functions.
  2226. Examples on how to use them are shown in @ref{Partitioning Data}.
  2227. @node Partitioning BCSR Data
  2228. @subsubsection Partitioning BCSR Data
  2229. @itemize
  2230. @item
  2231. TODO
  2232. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2233. @item
  2234. TODO
  2235. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2236. @end itemize
  2237. @node Partitioning BLAS interface
  2238. @subsubsection Partitioning BLAS interface
  2239. @itemize
  2240. @item
  2241. TODO
  2242. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2243. @item
  2244. TODO
  2245. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2246. @end itemize
  2247. @node Partitioning Vector Data
  2248. @subsubsection Partitioning Vector Data
  2249. @itemize
  2250. @item
  2251. TODO
  2252. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2253. @item
  2254. TODO
  2255. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2256. @item
  2257. TODO
  2258. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2259. @end itemize
  2260. @node Partitioning Block Data
  2261. @subsubsection Partitioning Block Data
  2262. @itemize
  2263. @item
  2264. TODO
  2265. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2266. @end itemize
  2267. @node Codelets and Tasks
  2268. @section Codelets and Tasks
  2269. @menu
  2270. * struct starpu_codelet:: StarPU codelet structure
  2271. * struct starpu_task:: StarPU task structure
  2272. * starpu_task_init:: Initialize a Task
  2273. * starpu_task_create:: Allocate and Initialize a Task
  2274. * starpu_task_deinit:: Release all the resources used by a Task
  2275. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2276. * starpu_task_wait:: Wait for the termination of a Task
  2277. * starpu_task_submit:: Submit a Task
  2278. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2279. * starpu_get_current_task:: Return the task currently executed by the worker
  2280. * starpu_display_codelet_stats:: Display statistics
  2281. @end menu
  2282. @node struct starpu_codelet
  2283. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2284. @table @asis
  2285. @item @emph{Description}:
  2286. The codelet structure describes a kernel that is possibly implemented on
  2287. various targets.
  2288. @item @emph{Fields}:
  2289. @table @asis
  2290. @item @code{where}:
  2291. Indicates which types of processing units are able to execute the codelet.
  2292. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2293. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2294. indicates that it is only available on Cell SPUs.
  2295. @item @code{cpu_func} (optional):
  2296. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2297. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2298. argument being the array of data managed by the data management library, and
  2299. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2300. field of the @code{starpu_task} structure.
  2301. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2302. the @code{where} field, it must be non-null otherwise.
  2303. @item @code{cuda_func} (optional):
  2304. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2305. must be a host-function written in the CUDA runtime API}. Its prototype must
  2306. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2307. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2308. field, it must be non-null otherwise.
  2309. @item @code{opencl_func} (optional):
  2310. Is a function pointer to the OpenCL implementation of the codelet. Its
  2311. prototype must be:
  2312. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2313. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2314. @code{where} field, it must be non-null otherwise.
  2315. @item @code{gordon_func} (optional):
  2316. This is the index of the Cell SPU implementation within the Gordon library.
  2317. See Gordon documentation for more details on how to register a kernel and
  2318. retrieve its index.
  2319. @item @code{nbuffers}:
  2320. Specifies the number of arguments taken by the codelet. These arguments are
  2321. managed by the DSM and are accessed from the @code{void *buffers[]}
  2322. array. The constant argument passed with the @code{cl_arg} field of the
  2323. @code{starpu_task} structure is not counted in this number. This value should
  2324. not be above @code{STARPU_NMAXBUFS}.
  2325. @item @code{model} (optional):
  2326. This is a pointer to the performance model associated to this codelet. This
  2327. optional field is ignored when set to @code{NULL}. TODO
  2328. @end table
  2329. @end table
  2330. @node struct starpu_task
  2331. @subsection @code{struct starpu_task} -- StarPU task structure
  2332. @table @asis
  2333. @item @emph{Description}:
  2334. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2335. processing units managed by StarPU. It instantiates a codelet. It can either be
  2336. allocated dynamically with the @code{starpu_task_create} method, or declared
  2337. statically. In the latter case, the programmer has to zero the
  2338. @code{starpu_task} structure and to fill the different fields properly. The
  2339. indicated default values correspond to the configuration of a task allocated
  2340. with @code{starpu_task_create}.
  2341. @item @emph{Fields}:
  2342. @table @asis
  2343. @item @code{cl}:
  2344. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2345. describes where the kernel should be executed, and supplies the appropriate
  2346. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2347. such empty tasks can be useful for synchronization purposes.
  2348. @item @code{buffers}:
  2349. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2350. different pieces of data accessed by the task, and how they should be accessed.
  2351. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2352. @code{handle} field specifies the handle of the piece of data, and the
  2353. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2354. of entries in this array must be specified in the @code{nbuffers} field of the
  2355. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2356. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2357. option when configuring StarPU.
  2358. @item @code{cl_arg} (optional) (default = NULL):
  2359. This pointer is passed to the codelet through the second argument
  2360. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2361. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2362. argument.
  2363. @item @code{cl_arg_size} (optional, Cell specific):
  2364. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2365. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2366. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2367. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2368. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2369. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2370. codelets.
  2371. @item @code{callback_func} (optional) (default = @code{NULL}):
  2372. This is a function pointer of prototype @code{void (*f)(void *)} which
  2373. specifies a possible callback. If this pointer is non-null, the callback
  2374. function is executed @emph{on the host} after the execution of the task. The
  2375. callback is passed the value contained in the @code{callback_arg} field. No
  2376. callback is executed if the field is set to @code{NULL}.
  2377. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2378. This is the pointer passed to the callback function. This field is ignored if
  2379. the @code{callback_func} is set to @code{NULL}.
  2380. @item @code{use_tag} (optional) (default = 0):
  2381. If set, this flag indicates that the task should be associated with the tag
  2382. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2383. with the task and to express task dependencies easily.
  2384. @item @code{tag_id}:
  2385. This fields contains the tag associated to the task if the @code{use_tag} field
  2386. was set, it is ignored otherwise.
  2387. @item @code{synchronous}:
  2388. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2389. returns only when the task has been executed (or if no worker is able to
  2390. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2391. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2392. This field indicates a level of priority for the task. This is an integer value
  2393. that must be set between the return values of the
  2394. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2395. and that of the @code{starpu_sched_get_max_priority} for the most important
  2396. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2397. are provided for convenience and respectively returns value of
  2398. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2399. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2400. order to allow static task initialization. Scheduling strategies that take
  2401. priorities into account can use this parameter to take better scheduling
  2402. decisions, but the scheduling policy may also ignore it.
  2403. @item @code{execute_on_a_specific_worker} (default = 0):
  2404. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2405. task to the worker specified by the @code{workerid} field.
  2406. @item @code{workerid} (optional):
  2407. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2408. which is the identifier of the worker that should process this task (as
  2409. returned by @code{starpu_worker_get_id}). This field is ignored if
  2410. @code{execute_on_a_specific_worker} field is set to 0.
  2411. @item @code{detach} (optional) (default = 1):
  2412. If this flag is set, it is not possible to synchronize with the task
  2413. by the means of @code{starpu_task_wait} later on. Internal data structures
  2414. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2415. flag is not set.
  2416. @item @code{destroy} (optional) (default = 1):
  2417. If this flag is set, the task structure will automatically be freed, either
  2418. after the execution of the callback if the task is detached, or during
  2419. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2420. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2421. called explicitly. Setting this flag for a statically allocated task structure
  2422. will result in undefined behaviour.
  2423. @item @code{predicted} (output field):
  2424. Predicted duration of the task. This field is only set if the scheduling
  2425. strategy used performance models.
  2426. @end table
  2427. @end table
  2428. @node starpu_task_init
  2429. @subsection @code{starpu_task_init} -- Initialize a Task
  2430. @table @asis
  2431. @item @emph{Description}:
  2432. Initialize a task structure with default values. This function is implicitly
  2433. called by @code{starpu_task_create}. By default, tasks initialized with
  2434. @code{starpu_task_init} must be deinitialized explicitly with
  2435. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2436. constant @code{STARPU_TASK_INITIALIZER}.
  2437. @item @emph{Prototype}:
  2438. @code{void starpu_task_init(struct starpu_task *task);}
  2439. @end table
  2440. @node starpu_task_create
  2441. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2442. @table @asis
  2443. @item @emph{Description}:
  2444. Allocate a task structure and initialize it with default values. Tasks
  2445. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2446. task is terminated. If the destroy flag is explicitly unset, the resources used
  2447. by the task are freed by calling
  2448. @code{starpu_task_destroy}.
  2449. @item @emph{Prototype}:
  2450. @code{struct starpu_task *starpu_task_create(void);}
  2451. @end table
  2452. @node starpu_task_deinit
  2453. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2454. @table @asis
  2455. @item @emph{Description}:
  2456. Release all the structures automatically allocated to execute the task. This is
  2457. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2458. freed. This should be used for statically allocated tasks for instance.
  2459. @item @emph{Prototype}:
  2460. @code{void starpu_task_deinit(struct starpu_task *task);}
  2461. @end table
  2462. @node starpu_task_destroy
  2463. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2464. @table @asis
  2465. @item @emph{Description}:
  2466. Free the resource allocated during @code{starpu_task_create}. This function can be
  2467. called automatically after the execution of a task by setting the
  2468. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2469. Calling this function on a statically allocated task results in an undefined
  2470. behaviour.
  2471. @item @emph{Prototype}:
  2472. @code{void starpu_task_destroy(struct starpu_task *task);}
  2473. @end table
  2474. @node starpu_task_wait
  2475. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2476. @table @asis
  2477. @item @emph{Description}:
  2478. This function blocks until the task has been executed. It is not possible to
  2479. synchronize with a task more than once. It is not possible to wait for
  2480. synchronous or detached tasks.
  2481. @item @emph{Return value}:
  2482. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2483. indicates that the specified task was either synchronous or detached.
  2484. @item @emph{Prototype}:
  2485. @code{int starpu_task_wait(struct starpu_task *task);}
  2486. @end table
  2487. @node starpu_task_submit
  2488. @subsection @code{starpu_task_submit} -- Submit a Task
  2489. @table @asis
  2490. @item @emph{Description}:
  2491. This function submits a task to StarPU. Calling this function does
  2492. not mean that the task will be executed immediately as there can be data or task
  2493. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2494. scheduling this task with respect to such dependencies.
  2495. This function returns immediately if the @code{synchronous} field of the
  2496. @code{starpu_task} structure was set to 0, and block until the termination of
  2497. the task otherwise. It is also possible to synchronize the application with
  2498. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2499. function for instance.
  2500. @item @emph{Return value}:
  2501. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2502. means that there is no worker able to process this task (e.g. there is no GPU
  2503. available and this task is only implemented for CUDA devices).
  2504. @item @emph{Prototype}:
  2505. @code{int starpu_task_submit(struct starpu_task *task);}
  2506. @end table
  2507. @node starpu_task_wait_for_all
  2508. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. This function blocks until all the tasks that were submitted are terminated.
  2512. @item @emph{Prototype}:
  2513. @code{void starpu_task_wait_for_all(void);}
  2514. @end table
  2515. @node starpu_get_current_task
  2516. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2517. @table @asis
  2518. @item @emph{Description}:
  2519. This function returns the task currently executed by the worker, or
  2520. NULL if it is called either from a thread that is not a task or simply
  2521. because there is no task being executed at the moment.
  2522. @item @emph{Prototype}:
  2523. @code{struct starpu_task *starpu_get_current_task(void);}
  2524. @end table
  2525. @node starpu_display_codelet_stats
  2526. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2527. @table @asis
  2528. @item @emph{Description}:
  2529. TODO
  2530. @item @emph{Prototype}:
  2531. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2532. @end table
  2533. @c Callbacks : what can we put in callbacks ?
  2534. @node Explicit Dependencies
  2535. @section Explicit Dependencies
  2536. @menu
  2537. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2538. * starpu_tag_t:: Task logical identifier
  2539. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2540. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2541. * starpu_tag_wait:: Block until a Tag is terminated
  2542. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2543. * starpu_tag_remove:: Destroy a Tag
  2544. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2545. @end menu
  2546. @node starpu_task_declare_deps_array
  2547. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2548. @table @asis
  2549. @item @emph{Description}:
  2550. Declare task dependencies between a @code{task} and an array of tasks of length
  2551. @code{ndeps}. This function must be called prior to the submission of the task,
  2552. but it may called after the submission or the execution of the tasks in the
  2553. array provided the tasks are still valid (ie. they were not automatically
  2554. destroyed). Calling this function on a task that was already submitted or with
  2555. an entry of @code{task_array} that is not a valid task anymore results in an
  2556. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2557. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2558. same task, in this case, the dependencies are added. It is possible to have
  2559. redundancy in the task dependencies.
  2560. @item @emph{Prototype}:
  2561. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2562. @end table
  2563. @node starpu_tag_t
  2564. @subsection @code{starpu_tag_t} -- Task logical identifier
  2565. @table @asis
  2566. @item @emph{Description}:
  2567. It is possible to associate a task with a unique ``tag'' and to express
  2568. dependencies between tasks by the means of those tags. To do so, fill the
  2569. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2570. be arbitrary) and set the @code{use_tag} field to 1.
  2571. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2572. not be started until the tasks which holds the declared dependency tags are
  2573. completed.
  2574. @end table
  2575. @node starpu_tag_declare_deps
  2576. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2577. @table @asis
  2578. @item @emph{Description}:
  2579. Specify the dependencies of the task identified by tag @code{id}. The first
  2580. argument specifies the tag which is configured, the second argument gives the
  2581. number of tag(s) on which @code{id} depends. The following arguments are the
  2582. tags which have to be terminated to unlock the task.
  2583. This function must be called before the associated task is submitted to StarPU
  2584. with @code{starpu_task_submit}.
  2585. @item @emph{Remark}
  2586. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2587. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2588. typically need to be explicitly casted. Using the
  2589. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2590. @item @emph{Prototype}:
  2591. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2592. @item @emph{Example}:
  2593. @cartouche
  2594. @example
  2595. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2596. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2597. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2598. @end example
  2599. @end cartouche
  2600. @end table
  2601. @node starpu_tag_declare_deps_array
  2602. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2603. @table @asis
  2604. @item @emph{Description}:
  2605. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2606. does not take a variable number of arguments but an array of tags of size
  2607. @code{ndeps}.
  2608. @item @emph{Prototype}:
  2609. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2610. @item @emph{Example}:
  2611. @cartouche
  2612. @example
  2613. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2614. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2615. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2616. @end example
  2617. @end cartouche
  2618. @end table
  2619. @node starpu_tag_wait
  2620. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2621. @table @asis
  2622. @item @emph{Description}:
  2623. This function blocks until the task associated to tag @code{id} has been
  2624. executed. This is a blocking call which must therefore not be called within
  2625. tasks or callbacks, but only from the application directly. It is possible to
  2626. synchronize with the same tag multiple times, as long as the
  2627. @code{starpu_tag_remove} function is not called. Note that it is still
  2628. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2629. data structure was freed (e.g. if the @code{destroy} flag of the
  2630. @code{starpu_task} was enabled).
  2631. @item @emph{Prototype}:
  2632. @code{void starpu_tag_wait(starpu_tag_t id);}
  2633. @end table
  2634. @node starpu_tag_wait_array
  2635. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2636. @table @asis
  2637. @item @emph{Description}:
  2638. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2639. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2640. terminated.
  2641. @item @emph{Prototype}:
  2642. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2643. @end table
  2644. @node starpu_tag_remove
  2645. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2646. @table @asis
  2647. @item @emph{Description}:
  2648. This function releases the resources associated to tag @code{id}. It can be
  2649. called once the corresponding task has been executed and when there is
  2650. no other tag that depend on this tag anymore.
  2651. @item @emph{Prototype}:
  2652. @code{void starpu_tag_remove(starpu_tag_t id);}
  2653. @end table
  2654. @node starpu_tag_notify_from_apps
  2655. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2656. @table @asis
  2657. @item @emph{Description}:
  2658. This function explicitly unlocks tag @code{id}. It may be useful in the
  2659. case of applications which execute part of their computation outside StarPU
  2660. tasks (e.g. third-party libraries). It is also provided as a
  2661. convenient tool for the programmer, for instance to entirely construct the task
  2662. DAG before actually giving StarPU the opportunity to execute the tasks.
  2663. @item @emph{Prototype}:
  2664. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2665. @end table
  2666. @node Implicit Data Dependencies
  2667. @section Implicit Data Dependencies
  2668. @menu
  2669. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2670. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2671. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2672. @end menu
  2673. In this section, we describe how StarPU makes it possible to insert implicit
  2674. task dependencies in order to enforce sequential data consistency. When this
  2675. data consistency is enabled on a specific data handle, any data access will
  2676. appear as sequentially consistent from the application. For instance, if the
  2677. application submits two tasks that access the same piece of data in read-only
  2678. mode, and then a third task that access it in write mode, dependencies will be
  2679. added between the two first tasks and the third one. Implicit data dependencies
  2680. are also inserted in the case of data accesses from the application.
  2681. @node starpu_data_set_default_sequential_consistency_flag
  2682. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2683. @table @asis
  2684. @item @emph{Description}:
  2685. Set the default sequential consistency flag. If a non-zero value is passed, a
  2686. sequential data consistency will be enforced for all handles registered after
  2687. this function call, otherwise it is disabled. By default, StarPU enables
  2688. sequential data consistency. It is also possible to select the data consistency
  2689. mode of a specific data handle with the
  2690. @code{starpu_data_set_sequential_consistency_flag} function.
  2691. @item @emph{Prototype}:
  2692. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2693. @end table
  2694. @node starpu_data_get_default_sequential_consistency_flag
  2695. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2696. @table @asis
  2697. @item @emph{Description}:
  2698. This function returns the current default sequential consistency flag.
  2699. @item @emph{Prototype}:
  2700. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2701. @end table
  2702. @node starpu_data_set_sequential_consistency_flag
  2703. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2704. @table @asis
  2705. @item @emph{Description}:
  2706. Select the data consistency mode associated to a data handle. The consistency
  2707. mode set using this function has the priority over the default mode which can
  2708. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2709. @item @emph{Prototype}:
  2710. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2711. @end table
  2712. @node Performance Model API
  2713. @section Performance Model API
  2714. @menu
  2715. * starpu_load_history_debug::
  2716. * starpu_perfmodel_debugfilepath::
  2717. * starpu_perfmodel_get_arch_name::
  2718. * starpu_force_bus_sampling::
  2719. @end menu
  2720. @node starpu_load_history_debug
  2721. @subsection @code{starpu_load_history_debug}
  2722. @table @asis
  2723. @item @emph{Description}:
  2724. TODO
  2725. @item @emph{Prototype}:
  2726. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2727. @end table
  2728. @node starpu_perfmodel_debugfilepath
  2729. @subsection @code{starpu_perfmodel_debugfilepath}
  2730. @table @asis
  2731. @item @emph{Description}:
  2732. TODO
  2733. @item @emph{Prototype}:
  2734. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2735. @end table
  2736. @node starpu_perfmodel_get_arch_name
  2737. @subsection @code{starpu_perfmodel_get_arch_name}
  2738. @table @asis
  2739. @item @emph{Description}:
  2740. TODO
  2741. @item @emph{Prototype}:
  2742. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2743. @end table
  2744. @node starpu_force_bus_sampling
  2745. @subsection @code{starpu_force_bus_sampling}
  2746. @table @asis
  2747. @item @emph{Description}:
  2748. TODO
  2749. @item @emph{Prototype}:
  2750. @code{void starpu_force_bus_sampling(void);}
  2751. @end table
  2752. @node Profiling API
  2753. @section Profiling API
  2754. @menu
  2755. * starpu_profiling_status_set:: starpu_profiling_status_set
  2756. * starpu_profiling_status_get:: starpu_profiling_status_get
  2757. * struct starpu_task_profiling_info:: task profiling information
  2758. * struct starpu_worker_profiling_info:: worker profiling information
  2759. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2760. * struct starpu_bus_profiling_info:: bus profiling information
  2761. * starpu_bus_get_count::
  2762. * starpu_bus_get_id::
  2763. * starpu_bus_get_src::
  2764. * starpu_bus_get_dst::
  2765. * starpu_timing_timespec_delay_us::
  2766. * starpu_timing_timespec_to_us::
  2767. * starpu_bus_profiling_helper_display_summary::
  2768. @end menu
  2769. @node starpu_profiling_status_set
  2770. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2771. @table @asis
  2772. @item @emph{Description}:
  2773. Thie function sets the profiling status. Profiling is activated by passing
  2774. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2775. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2776. resets all profiling measurements. When profiling is enabled, the
  2777. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2778. to a valid @code{struct starpu_task_profiling_info} structure containing
  2779. information about the execution of the task.
  2780. @item @emph{Return value}:
  2781. Negative return values indicate an error, otherwise the previous status is
  2782. returned.
  2783. @item @emph{Prototype}:
  2784. @code{int starpu_profiling_status_set(int status);}
  2785. @end table
  2786. @node starpu_profiling_status_get
  2787. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2788. @table @asis
  2789. @item @emph{Description}:
  2790. Return the current profiling status or a negative value in case there was an error.
  2791. @item @emph{Prototype}:
  2792. @code{int starpu_profiling_status_get(void);}
  2793. @end table
  2794. @node struct starpu_task_profiling_info
  2795. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2796. @table @asis
  2797. @item @emph{Description}:
  2798. This structure contains information about the execution of a task. It is
  2799. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2800. structure if profiling was enabled.
  2801. @item @emph{Fields}:
  2802. @table @asis
  2803. @item @code{submit_time}:
  2804. Date of task submission (relative to the initialization of StarPU).
  2805. @item @code{start_time}:
  2806. Date of task execution beginning (relative to the initialization of StarPU).
  2807. @item @code{end_time}:
  2808. Date of task execution termination (relative to the initialization of StarPU).
  2809. @item @code{workerid}:
  2810. Identifier of the worker which has executed the task.
  2811. @end table
  2812. @end table
  2813. @node struct starpu_worker_profiling_info
  2814. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2815. @table @asis
  2816. @item @emph{Description}:
  2817. This structure contains the profiling information associated to a worker.
  2818. @item @emph{Fields}:
  2819. @table @asis
  2820. @item @code{start_time}:
  2821. Starting date for the reported profiling measurements.
  2822. @item @code{total_time}:
  2823. Duration of the profiling measurement interval.
  2824. @item @code{executing_time}:
  2825. Time spent by the worker to execute tasks during the profiling measurement interval.
  2826. @item @code{sleeping_time}:
  2827. Time spent idling by the worker during the profiling measurement interval.
  2828. @item @code{executed_tasks}:
  2829. Number of tasks executed by the worker during the profiling measurement interval.
  2830. @end table
  2831. @end table
  2832. @node starpu_worker_get_profiling_info
  2833. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2834. @table @asis
  2835. @item @emph{Description}:
  2836. Get the profiling info associated to the worker identified by @code{workerid},
  2837. and reset the profiling measurements. If the @code{worker_info} argument is
  2838. NULL, only reset the counters associated to worker @code{workerid}.
  2839. @item @emph{Return value}:
  2840. Upon successful completion, this function returns 0. Otherwise, a negative
  2841. value is returned.
  2842. @item @emph{Prototype}:
  2843. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2844. @end table
  2845. @node struct starpu_bus_profiling_info
  2846. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2847. @table @asis
  2848. @item @emph{Description}:
  2849. TODO
  2850. @item @emph{Fields}:
  2851. @table @asis
  2852. @item @code{start_time}:
  2853. TODO
  2854. @item @code{total_time}:
  2855. TODO
  2856. @item @code{transferred_bytes}:
  2857. TODO
  2858. @item @code{transfer_count}:
  2859. TODO
  2860. @end table
  2861. @end table
  2862. @node starpu_bus_get_count
  2863. @subsection @code{starpu_bus_get_count}
  2864. @table @asis
  2865. @item @emph{Description}:
  2866. TODO
  2867. @item @emph{Prototype}:
  2868. @code{int starpu_bus_get_count(void);}
  2869. @end table
  2870. @node starpu_bus_get_id
  2871. @subsection @code{starpu_bus_get_id}
  2872. @table @asis
  2873. @item @emph{Description}:
  2874. TODO
  2875. @item @emph{Prototype}:
  2876. @code{int starpu_bus_get_id(int src, int dst);}
  2877. @end table
  2878. @node starpu_bus_get_src
  2879. @subsection @code{starpu_bus_get_src}
  2880. @table @asis
  2881. @item @emph{Description}:
  2882. TODO
  2883. @item @emph{Prototype}:
  2884. @code{int starpu_bus_get_src(int busid);}
  2885. @end table
  2886. @node starpu_bus_get_dst
  2887. @subsection @code{starpu_bus_get_dst}
  2888. @table @asis
  2889. @item @emph{Description}:
  2890. TODO
  2891. @item @emph{Prototype}:
  2892. @code{int starpu_bus_get_dst(int busid);}
  2893. @end table
  2894. @node starpu_timing_timespec_delay_us
  2895. @subsection @code{starpu_timing_timespec_delay_us}
  2896. @table @asis
  2897. @item @emph{Description}:
  2898. TODO
  2899. @item @emph{Prototype}:
  2900. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2901. @end table
  2902. @node starpu_timing_timespec_to_us
  2903. @subsection @code{starpu_timing_timespec_to_us}
  2904. @table @asis
  2905. @item @emph{Description}:
  2906. TODO
  2907. @item @emph{Prototype}:
  2908. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  2909. @end table
  2910. @node starpu_bus_profiling_helper_display_summary
  2911. @subsection @code{starpu_bus_profiling_helper_display_summary}
  2912. @table @asis
  2913. @item @emph{Description}:
  2914. TODO
  2915. @item @emph{Prototype}:
  2916. @code{void starpu_bus_profiling_helper_display_summary(void);}
  2917. @end table
  2918. @node CUDA extensions
  2919. @section CUDA extensions
  2920. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  2921. @menu
  2922. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  2923. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  2924. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  2925. @end menu
  2926. @node starpu_cuda_get_local_stream
  2927. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  2928. @table @asis
  2929. @item @emph{Description}:
  2930. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2931. function is only provided for convenience so that programmers can easily use
  2932. asynchronous operations within codelets without having to create a stream by
  2933. hand. Note that the application is not forced to use the stream provided by
  2934. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2935. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2936. the likelihood of having all transfers overlapped.
  2937. @item @emph{Prototype}:
  2938. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  2939. @end table
  2940. @node starpu_helper_cublas_init
  2941. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  2942. @table @asis
  2943. @item @emph{Description}:
  2944. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2945. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2946. controlled by StarPU. This call blocks until CUBLAS has been properly
  2947. initialized on every device.
  2948. @item @emph{Prototype}:
  2949. @code{void starpu_helper_cublas_init(void);}
  2950. @end table
  2951. @node starpu_helper_cublas_shutdown
  2952. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  2953. @table @asis
  2954. @item @emph{Description}:
  2955. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2956. @item @emph{Prototype}:
  2957. @code{void starpu_helper_cublas_shutdown(void);}
  2958. @end table
  2959. @node OpenCL extensions
  2960. @section OpenCL extensions
  2961. @menu
  2962. * Enabling OpenCL:: Enabling OpenCL
  2963. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2964. * Loading OpenCL kernels:: Loading OpenCL kernels
  2965. @end menu
  2966. @node Enabling OpenCL
  2967. @subsection Enabling OpenCL
  2968. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  2969. enabled by default. To enable OpenCL, you need either to disable CUDA
  2970. when configuring StarPU:
  2971. @example
  2972. % ./configure --disable-cuda
  2973. @end example
  2974. or when running applications:
  2975. @example
  2976. % STARPU_NCUDA=0 ./application
  2977. @end example
  2978. OpenCL will automatically be started on any device not yet used by
  2979. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  2980. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  2981. so:
  2982. @example
  2983. % STARPU_NCUDA=2 ./application
  2984. @end example
  2985. @node Compiling OpenCL kernels
  2986. @subsection Compiling OpenCL kernels
  2987. Source codes for OpenCL kernels can be stored in a file or in a
  2988. string. StarPU provides functions to build the program executable for
  2989. each available OpenCL device as a @code{cl_program} object. This
  2990. program executable can then be loaded within a specific queue as
  2991. explained in the next section. These are only helpers, Applications
  2992. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2993. use (e.g. different programs on the different OpenCL devices, for
  2994. relocation purpose for instance).
  2995. @menu
  2996. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  2997. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  2998. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  2999. @end menu
  3000. @node starpu_opencl_load_opencl_from_file
  3001. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3002. @table @asis
  3003. @item @emph{Description}:
  3004. TODO
  3005. @item @emph{Prototype}:
  3006. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3007. @end table
  3008. @node starpu_opencl_load_opencl_from_string
  3009. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3010. @table @asis
  3011. @item @emph{Description}:
  3012. TODO
  3013. @item @emph{Prototype}:
  3014. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3015. @end table
  3016. @node starpu_opencl_unload_opencl
  3017. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3018. @table @asis
  3019. @item @emph{Description}:
  3020. TODO
  3021. @item @emph{Prototype}:
  3022. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3023. @end table
  3024. @node Loading OpenCL kernels
  3025. @subsection Loading OpenCL kernels
  3026. @menu
  3027. * starpu_opencl_load_kernel:: Loading a kernel
  3028. * starpu_opencl_relase_kernel:: Releasing a kernel
  3029. @end menu
  3030. @node starpu_opencl_load_kernel
  3031. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3032. @table @asis
  3033. @item @emph{Description}:
  3034. TODO
  3035. @item @emph{Prototype}:
  3036. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3037. }
  3038. @end table
  3039. @node starpu_opencl_relase_kernel
  3040. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3041. @table @asis
  3042. @item @emph{Description}:
  3043. TODO
  3044. @item @emph{Prototype}:
  3045. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3046. @end table
  3047. @node Cell extensions
  3048. @section Cell extensions
  3049. nothing yet.
  3050. @node Miscellaneous helpers
  3051. @section Miscellaneous helpers
  3052. @menu
  3053. * starpu_data_cpy:: Copy a data handle into another data handle
  3054. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3055. @end menu
  3056. @node starpu_data_cpy
  3057. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3058. @table @asis
  3059. @item @emph{Description}:
  3060. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3061. The @code{asynchronous} parameter indicates whether the function should
  3062. block or not. In the case of an asynchronous call, it is possible to
  3063. synchronize with the termination of this operation either by the means of
  3064. implicit dependencies (if enabled) or by calling
  3065. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3066. this callback function is executed after the handle has been copied, and it is
  3067. given the @code{callback_arg} pointer as argument.
  3068. @item @emph{Prototype}:
  3069. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3070. @end table
  3071. @node starpu_execute_on_each_worker
  3072. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3073. @table @asis
  3074. @item @emph{Description}:
  3075. When calling this method, the offloaded function specified by the first argument is
  3076. executed by every StarPU worker that may execute the function.
  3077. The second argument is passed to the offloaded function.
  3078. The last argument specifies on which types of processing units the function
  3079. should be executed. Similarly to the @code{where} field of the
  3080. @code{starpu_codelet} structure, it is possible to specify that the function
  3081. should be executed on every CUDA device and every CPU by passing
  3082. @code{STARPU_CPU|STARPU_CUDA}.
  3083. This function blocks until the function has been executed on every appropriate
  3084. processing units, so that it may not be called from a callback function for
  3085. instance.
  3086. @item @emph{Prototype}:
  3087. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3088. @end table
  3089. @c ---------------------------------------------------------------------
  3090. @c Advanced Topics
  3091. @c ---------------------------------------------------------------------
  3092. @node Advanced Topics
  3093. @chapter Advanced Topics
  3094. @menu
  3095. * Defining a new data interface::
  3096. * Defining a new scheduling policy::
  3097. @end menu
  3098. @node Defining a new data interface
  3099. @section Defining a new data interface
  3100. @menu
  3101. * struct starpu_data_interface_ops_t:: Per-interface methods
  3102. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3103. * An example of data interface:: An example of data interface
  3104. @end menu
  3105. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3106. @node struct starpu_data_interface_ops_t
  3107. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3108. @table @asis
  3109. @item @emph{Description}:
  3110. TODO describe all the different fields
  3111. @end table
  3112. @node struct starpu_data_copy_methods
  3113. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3114. @table @asis
  3115. @item @emph{Description}:
  3116. TODO describe all the different fields
  3117. @end table
  3118. @node An example of data interface
  3119. @subsection An example of data interface
  3120. @table @asis
  3121. TODO
  3122. @end table
  3123. @node Defining a new scheduling policy
  3124. @section Defining a new scheduling policy
  3125. TODO
  3126. A full example showing how to define a new scheduling policy is available in
  3127. the StarPU sources in the directory @code{examples/scheduler/}.
  3128. @menu
  3129. * struct starpu_sched_policy_s::
  3130. * starpu_worker_set_sched_condition::
  3131. * starpu_sched_set_min_priority:: Set the minimum priority level
  3132. * starpu_sched_set_max_priority:: Set the maximum priority level
  3133. * Source code::
  3134. @end menu
  3135. @node struct starpu_sched_policy_s
  3136. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3137. @table @asis
  3138. @item @emph{Description}:
  3139. This structure contains all the methods that implement a scheduling policy. An
  3140. application may specify which scheduling strategy in the @code{sched_policy}
  3141. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3142. function.
  3143. @item @emph{Fields}:
  3144. @table @asis
  3145. @item @code{init_sched}:
  3146. Initialize the scheduling policy.
  3147. @item @code{deinit_sched}:
  3148. Cleanup the scheduling policy.
  3149. @item @code{push_task}:
  3150. Insert a task into the scheduler.
  3151. @item @code{push_prio_task}:
  3152. Insert a priority task into the scheduler.
  3153. @item @code{pop_task}:
  3154. Get a task from the scheduler. The mutex associated to the worker is already
  3155. taken when this method is called.
  3156. @item @code{pop_every_task}:
  3157. Remove all available tasks from the scheduler (tasks are chained by the means
  3158. of the prev and next fields of the starpu_task structure). The mutex associated
  3159. to the worker is already taken when this method is called.
  3160. @item @code{post_exec_hook} (optionnal):
  3161. This method is called every time a task has been executed.
  3162. @item @code{policy_name}:
  3163. Name of the policy (optionnal).
  3164. @item @code{policy_description}:
  3165. Description of the policy (optionnal).
  3166. @end table
  3167. @end table
  3168. @node starpu_worker_set_sched_condition
  3169. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3170. @table @asis
  3171. @item @emph{Description}:
  3172. When there is no available task for a worker, StarPU blocks this worker on a
  3173. condition variable. This function specifies which condition variable (and the
  3174. associated mutex) should be used to block (and to wake up) a worker. Note that
  3175. multiple workers may use the same condition variable. For instance, in the case
  3176. of a scheduling strategy with a single task queue, the same condition variable
  3177. would be used to block and wake up all workers.
  3178. The initialization method of a scheduling strategy (@code{init_sched}) must
  3179. call this function once per worker.
  3180. @item @emph{Prototype}:
  3181. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3182. @end table
  3183. @node starpu_sched_set_min_priority
  3184. @subsection @code{starpu_sched_set_min_priority}
  3185. @table @asis
  3186. @item @emph{Description}:
  3187. Defines the minimum priority level supported by the scheduling policy. The
  3188. default minimum priority level is the same as the default priority level which
  3189. is 0 by convention. The application may access that value by calling the
  3190. @code{starpu_sched_get_min_priority} function. This function should only be
  3191. called from the initialization method of the scheduling policy, and should not
  3192. be used directly from the application.
  3193. @item @emph{Prototype}:
  3194. @code{void starpu_sched_set_min_priority(int min_prio)}
  3195. @end table
  3196. @node starpu_sched_set_max_priority
  3197. @subsection @code{starpu_sched_set_max_priority}
  3198. @table @asis
  3199. @item @emph{Description}:
  3200. Defines the maximum priority level supported by the scheduling policy. The
  3201. default maximum priority level is 1. The application may access that value by
  3202. calling the @code{starpu_sched_get_max_priority} function. This function should
  3203. only be called from the initialization method of the scheduling policy, and
  3204. should not be used directly from the application.
  3205. @item @emph{Prototype}:
  3206. @code{void starpu_sched_set_min_priority(int max_prio)}
  3207. @end table
  3208. @node Source code
  3209. @subsection Source code
  3210. @cartouche
  3211. @smallexample
  3212. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3213. .init_sched = init_dummy_sched,
  3214. .deinit_sched = deinit_dummy_sched,
  3215. .push_task = push_task_dummy,
  3216. .push_prio_task = NULL,
  3217. .pop_task = pop_task_dummy,
  3218. .post_exec_hook = NULL,
  3219. .pop_every_task = NULL,
  3220. .policy_name = "dummy",
  3221. .policy_description = "dummy scheduling strategy"
  3222. @};
  3223. @end smallexample
  3224. @end cartouche
  3225. @c ---------------------------------------------------------------------
  3226. @c Appendices
  3227. @c ---------------------------------------------------------------------
  3228. @c ---------------------------------------------------------------------
  3229. @c Full source code for the 'Scaling a Vector' example
  3230. @c ---------------------------------------------------------------------
  3231. @node Full source code for the 'Scaling a Vector' example
  3232. @appendix Full source code for the 'Scaling a Vector' example
  3233. @menu
  3234. * Main application::
  3235. * CPU Kernel::
  3236. * CUDA Kernel::
  3237. * OpenCL Kernel::
  3238. @end menu
  3239. @node Main application
  3240. @section Main application
  3241. @smallexample
  3242. @include vector_scal_c.texi
  3243. @end smallexample
  3244. @node CPU Kernel
  3245. @section CPU Kernel
  3246. @smallexample
  3247. @include vector_scal_cpu.texi
  3248. @end smallexample
  3249. @node CUDA Kernel
  3250. @section CUDA Kernel
  3251. @smallexample
  3252. @include vector_scal_cuda.texi
  3253. @end smallexample
  3254. @node OpenCL Kernel
  3255. @section OpenCL Kernel
  3256. @menu
  3257. * Invoking the kernel::
  3258. * Source of the kernel::
  3259. @end menu
  3260. @node Invoking the kernel
  3261. @subsection Invoking the kernel
  3262. @smallexample
  3263. @include vector_scal_opencl.texi
  3264. @end smallexample
  3265. @node Source of the kernel
  3266. @subsection Source of the kernel
  3267. @smallexample
  3268. @include vector_scal_opencl_codelet.texi
  3269. @end smallexample
  3270. @bye