08mpi_support.doxy 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page MPISupport MPI Support
  9. The integration of MPI transfers within task parallelism is done in a
  10. very natural way by the means of asynchronous interactions between the
  11. application and StarPU. This is implemented in a separate libstarpumpi library
  12. which basically provides "StarPU" equivalents of <c>MPI_*</c> functions, where
  13. <c>void *</c> buffers are replaced with ::starpu_data_handle_t, and all
  14. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  15. use the usual <c>mpirun</c> command of the MPI implementation to start StarPU on
  16. the different MPI nodes.
  17. An MPI Insert Task function provides an even more seamless transition to a
  18. distributed application, by automatically issuing all required data transfers
  19. according to the task graph and an application-provided distribution.
  20. \section SimpleExample Simple Example
  21. The flags required to compile or link against the MPI layer are
  22. accessible with the following commands:
  23. \verbatim
  24. $ pkg-config --cflags starpumpi-1.2 # options for the compiler
  25. $ pkg-config --libs starpumpi-1.2 # options for the linker
  26. \endverbatim
  27. You also need pass the option <c>--static</c> if the application is to
  28. be linked statically.
  29. \code{.c}
  30. void increment_token(void)
  31. {
  32. struct starpu_task *task = starpu_task_create();
  33. task->cl = &increment_cl;
  34. task->handles[0] = token_handle;
  35. starpu_task_submit(task);
  36. }
  37. int main(int argc, char **argv)
  38. {
  39. int rank, size;
  40. starpu_init(NULL);
  41. starpu_mpi_initialize_extended(&rank, &size);
  42. starpu_vector_data_register(&token_handle, STARPU_MAIN_RAM, (uintptr_t)&token, 1, sizeof(unsigned));
  43. unsigned nloops = NITER;
  44. unsigned loop;
  45. unsigned last_loop = nloops - 1;
  46. unsigned last_rank = size - 1;
  47. for (loop = 0; loop < nloops; loop++) {
  48. int tag = loop*size + rank;
  49. if (loop == 0 && rank == 0)
  50. {
  51. token = 0;
  52. fprintf(stdout, "Start with token value %d\n", token);
  53. }
  54. else
  55. {
  56. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  57. MPI_COMM_WORLD, NULL, NULL);
  58. }
  59. increment_token();
  60. if (loop == last_loop && rank == last_rank)
  61. {
  62. starpu_data_acquire(token_handle, STARPU_R);
  63. fprintf(stdout, "Finished: token value %d\n", token);
  64. starpu_data_release(token_handle);
  65. }
  66. else
  67. {
  68. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  69. MPI_COMM_WORLD, NULL, NULL);
  70. }
  71. }
  72. starpu_task_wait_for_all();
  73. starpu_mpi_shutdown();
  74. starpu_shutdown();
  75. if (rank == last_rank)
  76. {
  77. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  78. STARPU_ASSERT(token == nloops*size);
  79. }
  80. \endcode
  81. \section PointToPointCommunication Point To Point Communication
  82. The standard point to point communications of MPI have been
  83. implemented. The semantic is similar to the MPI one, but adapted to
  84. the DSM provided by StarPU. A MPI request will only be submitted when
  85. the data is available in the main memory of the node submitting the
  86. request.
  87. There is two types of asynchronous communications: the classic
  88. asynchronous communications and the detached communications. The
  89. classic asynchronous communications (starpu_mpi_isend() and
  90. starpu_mpi_irecv()) need to be followed by a call to
  91. starpu_mpi_wait() or to starpu_mpi_test() to wait for or to
  92. test the completion of the communication. Waiting for or testing the
  93. completion of detached communications is not possible, this is done
  94. internally by StarPU-MPI, on completion, the resources are
  95. automatically released. This mechanism is similar to the pthread
  96. detach state attribute which determines whether a thread will be
  97. created in a joinable or a detached state.
  98. For any communication, the call of the function will result in the
  99. creation of a StarPU-MPI request, the function
  100. starpu_data_acquire_cb() is then called to asynchronously request
  101. StarPU to fetch the data in main memory; when the data is available in
  102. main memory, a StarPU-MPI function is called to put the new request in
  103. the list of the ready requests if it is a send request, or in an
  104. hashmap if it is a receive request.
  105. Internally, all MPI communications submitted by StarPU uses a unique
  106. tag which has a default value, and can be accessed with the functions
  107. starpu_mpi_get_communication_tag() and
  108. starpu_mpi_set_communication_tag().
  109. The matching of tags with corresponding requests is done into StarPU-MPI.
  110. To handle this, any communication is a double-communication based on a
  111. envelope + data system. Every data which will be sent needs to send an
  112. envelope which describes the data (particularly its tag) before sending
  113. the data, so the receiver can get the matching pending receive request
  114. from the hashmap, and submit it to recieve the data correctly.
  115. To this aim, the StarPU-MPI progression thread has a permanent-submitted
  116. request destined to receive incoming envelopes from all sources.
  117. The StarPU-MPI progression thread regularly polls this list of ready
  118. requests. For each new ready request, the appropriate function is
  119. called to post the corresponding MPI call. For example, calling
  120. starpu_mpi_isend() will result in posting <c>MPI_Isend</c>. If
  121. the request is marked as detached, the request will be put in the list
  122. of detached requests.
  123. The StarPU-MPI progression thread also polls the list of detached
  124. requests. For each detached request, it regularly tests the completion
  125. of the MPI request by calling <c>MPI_Test</c>. On completion, the data
  126. handle is released, and if a callback was defined, it is called.
  127. Finally, the StarPU-MPI progression thread checks if an envelope has
  128. arrived. If it is, it'll check if the corresponding receive has already
  129. been submitted by the application. If it is, it'll submit the request
  130. just as like as it does with those on the list of ready requests.
  131. If it is not, it'll allocate a temporary handle to store the data that
  132. will arrive just after, so as when the corresponding receive request
  133. will be submitted by the application, it'll copy this temporary handle
  134. into its one instead of submitting a new StarPU-MPI request.
  135. \ref MPIPtpCommunication "Communication" gives the list of all the
  136. point to point communications defined in StarPU-MPI.
  137. \section ExchangingUserDefinedDataInterface Exchanging User Defined Data Interface
  138. New data interfaces defined as explained in \ref
  139. DefiningANewDataInterface can also be used within StarPU-MPI and
  140. exchanged between nodes. Two functions needs to be defined through the
  141. type starpu_data_interface_ops. The function
  142. starpu_data_interface_ops::pack_data takes a handle and returns a
  143. contiguous memory buffer along with its size where data to be conveyed
  144. to another node should be copied. The reversed operation is
  145. implemented in the function starpu_data_interface_ops::unpack_data which
  146. takes a contiguous memory buffer and recreates the data handle.
  147. \code{.c}
  148. static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)
  149. {
  150. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  151. struct starpu_complex_interface *complex_interface =
  152. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  153. *count = complex_get_size(handle);
  154. *ptr = malloc(*count);
  155. memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
  156. memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary,
  157. complex_interface->nx*sizeof(double));
  158. return 0;
  159. }
  160. static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
  161. {
  162. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  163. struct starpu_complex_interface *complex_interface =
  164. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  165. memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
  166. memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),
  167. complex_interface->nx*sizeof(double));
  168. return 0;
  169. }
  170. static struct starpu_data_interface_ops interface_complex_ops =
  171. {
  172. ...
  173. .pack_data = complex_pack_data,
  174. .unpack_data = complex_unpack_data
  175. };
  176. \endcode
  177. \section MPIInsertTaskUtility MPI Insert Task Utility
  178. To save the programmer from having to explicit all communications, StarPU
  179. provides an "MPI Insert Task Utility". The principe is that the application
  180. decides a distribution of the data over the MPI nodes by allocating it and
  181. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns"
  182. which data. It also decides, for each handle, an MPI tag which will be used to
  183. exchange the content of the handle. All MPI nodes then process the whole task
  184. graph, and StarPU automatically determines which node actually execute which
  185. task, and trigger the required MPI transfers.
  186. The list of functions is described in \ref MPIInsertTask "MPI Insert Task".
  187. Here an stencil example showing how to use starpu_mpi_task_insert(). One
  188. first needs to define a distribution function which specifies the
  189. locality of the data. Note that that distribution information needs to
  190. be given to StarPU by calling starpu_data_set_rank(). A MPI tag
  191. should also be defined for each data handle by calling
  192. starpu_data_set_tag().
  193. \code{.c}
  194. /* Returns the MPI node number where data is */
  195. int my_distrib(int x, int y, int nb_nodes) {
  196. /* Block distrib */
  197. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  198. // /* Other examples useful for other kinds of computations */
  199. // /* / distrib */
  200. // return (x+y) % nb_nodes;
  201. // /* Block cyclic distrib */
  202. // unsigned side = sqrt(nb_nodes);
  203. // return x % side + (y % side) * size;
  204. }
  205. \endcode
  206. Now the data can be registered within StarPU. Data which are not
  207. owned but will be needed for computations can be registered through
  208. the lazy allocation mechanism, i.e. with a <c>home_node</c> set to <c>-1</c>.
  209. StarPU will automatically allocate the memory when it is used for the
  210. first time.
  211. One can note an optimization here (the <c>else if</c> test): we only register
  212. data which will be needed by the tasks that we will execute.
  213. \code{.c}
  214. unsigned matrix[X][Y];
  215. starpu_data_handle_t data_handles[X][Y];
  216. for(x = 0; x < X; x++) {
  217. for (y = 0; y < Y; y++) {
  218. int mpi_rank = my_distrib(x, y, size);
  219. if (mpi_rank == my_rank)
  220. /* Owning data */
  221. starpu_variable_data_register(&data_handles[x][y], STARPU_MAIN_RAM,
  222. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  223. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  224. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  225. /* I don't own that index, but will need it for my computations */
  226. starpu_variable_data_register(&data_handles[x][y], -1,
  227. (uintptr_t)NULL, sizeof(unsigned));
  228. else
  229. /* I know it's useless to allocate anything for this */
  230. data_handles[x][y] = NULL;
  231. if (data_handles[x][y]) {
  232. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  233. starpu_data_set_tag(data_handles[x][y], x*X+y);
  234. }
  235. }
  236. }
  237. \endcode
  238. Now starpu_mpi_task_insert() can be called for the different
  239. steps of the application.
  240. \code{.c}
  241. for(loop=0 ; loop<niter; loop++)
  242. for (x = 1; x < X-1; x++)
  243. for (y = 1; y < Y-1; y++)
  244. starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,
  245. STARPU_RW, data_handles[x][y],
  246. STARPU_R, data_handles[x-1][y],
  247. STARPU_R, data_handles[x+1][y],
  248. STARPU_R, data_handles[x][y-1],
  249. STARPU_R, data_handles[x][y+1],
  250. 0);
  251. starpu_task_wait_for_all();
  252. \endcode
  253. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  254. each task, only the MPI node which owns the data being written to (here,
  255. <c>data_handles[x][y]</c>) will actually run the task. The other MPI nodes will
  256. automatically send the required data.
  257. This can be a concern with a growing number of nodes. To avoid this, the
  258. application can prune the task for loops according to the data distribution,
  259. so as to only submit tasks on nodes which have to care about them (either to
  260. execute them, or to send the required data).
  261. \section MPIMigration MPI Data migration
  262. The application can dynamically change its mind about the data distribution, to
  263. balance the load over MPI nodes for instance. This can be done very simply by
  264. requesting an explicit move and then change the registered rank. For instance,
  265. we here switch to a new distribution function <c>my_distrib2</c>: we first
  266. register any data that wasn't registered already and will be needed, then
  267. migrate the data, and register the new location.
  268. \code{.c}
  269. for(x = 0; x < X; x++) {
  270. for (y = 0; y < Y; y++) {
  271. int mpi_rank = my_distrib2(x, y, size);
  272. if (!data_handles[x][y] && (mpi_rank == my_rank
  273. || my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  274. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size)))
  275. /* Register newly-needed data */
  276. starpu_variable_data_register(&data_handles[x][y], -1,
  277. (uintptr_t)NULL, sizeof(unsigned));
  278. if (data_handles[x][y]) {
  279. /* Migrate the data */
  280. starpu_mpi_get_data_on_node_detached(MPI_COMM_WORLD, data_handles[x][y], mpi_rank, NULL, NULL);
  281. /* And register the new rank of the matrix */
  282. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  283. }
  284. }
  285. }
  286. \endcode
  287. From then on, further tasks submissions will use the new data distribution,
  288. which will thus change both MPI communications and task assignments.
  289. Very importantly, since all nodes have to agree on which node owns which data
  290. so as to determine MPI communications and task assignments the same way, all
  291. nodes have to perform the same data migration, and at the same point among task
  292. submissions. It thus does not require a strict synchronization, just a clear
  293. separation of task submissions before and after the data redistribution.
  294. Before data unregistration, it has to be migrated back to its original home
  295. node (the value, at least), since that is where the user-provided buffer
  296. resides. Otherwise the unregistration will complain that it does not have the
  297. latest value on the original home node.
  298. \code{.c}
  299. for(x = 0; x < X; x++) {
  300. for (y = 0; y < Y; y++) {
  301. if (data_handles[x][y]) {
  302. int mpi_rank = my_distrib(x, y, size);
  303. /* Get back data to original place where the user-provided buffer is. */
  304. starpu_mpi_get_data_on_node_detached(MPI_COMM_WORLD, data_handles[x][y], mpi_rank, NULL, NULL);
  305. /* And unregister it */
  306. starpu_data_unregister(data_handles[x][y]);
  307. }
  308. }
  309. }
  310. \endcode
  311. \section MPICollective MPI Collective Operations
  312. The functions are described in \ref MPICollectiveOperations "MPI Collective Operations".
  313. \code{.c}
  314. if (rank == root)
  315. {
  316. /* Allocate the vector */
  317. vector = malloc(nblocks * sizeof(float *));
  318. for(x=0 ; x<nblocks ; x++)
  319. {
  320. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  321. }
  322. }
  323. /* Allocate data handles and register data to StarPU */
  324. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  325. for(x = 0; x < nblocks ; x++)
  326. {
  327. int mpi_rank = my_distrib(x, nodes);
  328. if (rank == root) {
  329. starpu_vector_data_register(&data_handles[x], STARPU_MAIN_RAM, (uintptr_t)vector[x],
  330. blocks_size, sizeof(float));
  331. }
  332. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) {
  333. /* I own that index, or i will need it for my computations */
  334. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  335. block_size, sizeof(float));
  336. }
  337. else {
  338. /* I know it's useless to allocate anything for this */
  339. data_handles[x] = NULL;
  340. }
  341. if (data_handles[x]) {
  342. starpu_data_set_rank(data_handles[x], mpi_rank);
  343. starpu_data_set_tag(data_handles[x], x*nblocks+y);
  344. }
  345. }
  346. /* Scatter the matrix among the nodes */
  347. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  348. /* Calculation */
  349. for(x = 0; x < nblocks ; x++) {
  350. if (data_handles[x]) {
  351. int owner = starpu_data_get_rank(data_handles[x]);
  352. if (owner == rank) {
  353. starpu_task_insert(&cl, STARPU_RW, data_handles[x], 0);
  354. }
  355. }
  356. }
  357. /* Gather the matrix on main node */
  358. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  359. \endcode
  360. */
  361. \section MPIExamples More MPI examples
  362. MPI examples are available in the StarPU source code in mpi/examples:
  363. <ul>
  364. <li><c>complex</c> is a simple example using a user-define data interface over
  365. MPI (complex numbers),
  366. <li><c>stencil5</c> is a simple stencil example using starpu_mpi_task_insert(),
  367. <li><c>matrix_decomposition</c> is a cholesky decomposition example using
  368. starpu_mpi_task_insert(). The non-distributed version can check for
  369. <algorithm correctness in 1-node configuration, the distributed version uses
  370. exactly the same source code, to be used over MPI,
  371. <li><c>mpi_lu</c> is an LU decomposition example, provided in three versions:
  372. <c>plu_example</c> uses explicit MPI data transfers, <c>plu_implicit_example</c>
  373. uses implicit MPI data transfers, <c>plu_outofcore_example</c> uses implicit MPI
  374. data transfers and supports data matrices which do not fit in memory (out-of-core).
  375. </ul>