05performance_feedback.doxy 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page PerformanceFeedback Performance Feedback
  9. \section UsingTheTemanejoTaskDebugger Using The Temanejo Task Debugger
  10. StarPU can connect to Temanejo >= 1.0rc2 (see
  11. http://www.hlrs.de/temanejo), to permit
  12. nice visual task debugging. To do so, build Temanejo's <c>libayudame.so</c>,
  13. install <c>Ayudame.h</c> to e.g. <c>/usr/local/include</c>, apply the
  14. <c>tools/patch-ayudame</c> to it to fix C build, re-<c>./configure</c>, make
  15. sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path
  16. to your application, any options you want to pass it, the path to <c>libayudame.so</c>.
  17. Make sure to specify at least the same number of CPUs in the dialog box as your
  18. machine has, otherwise an error will happen during execution. Future versions
  19. of Temanejo should be able to tell StarPU the number of CPUs to use.
  20. Tag numbers have to be below <c>4000000000000000000ULL</c> to be usable for
  21. Temanejo (so as to distinguish them from tasks).
  22. \section On-linePerformanceFeedback On-line Performance Feedback
  23. \subsection EnablingOn-linePerformanceMonitoring Enabling On-line Performance Monitoring
  24. In order to enable online performance monitoring, the application can
  25. call starpu_profiling_status_set() with the parameter
  26. ::STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring
  27. is already enabled or not by calling starpu_profiling_status_get().
  28. Enabling monitoring also reinitialize all previously collected
  29. feedback. The environment variable \ref STARPU_PROFILING can also be
  30. set to <c>1</c> to achieve the same effect. The function
  31. starpu_profiling_init() can also be called during the execution to
  32. reinitialize performance counters and to start the profiling if the
  33. environment variable \ref STARPU_PROFILING is set to <c>1</c>.
  34. Likewise, performance monitoring is stopped by calling
  35. starpu_profiling_status_set() with the parameter
  36. ::STARPU_PROFILING_DISABLE. Note that this does not reset the
  37. performance counters so that the application may consult them later
  38. on.
  39. More details about the performance monitoring API are available in \ref API_Profiling.
  40. \subsection Per-taskFeedback Per-task Feedback
  41. If profiling is enabled, a pointer to a structure
  42. starpu_profiling_task_info is put in the field
  43. starpu_task::profiling_info when a task terminates. This structure is
  44. automatically destroyed when the task structure is destroyed, either
  45. automatically or by calling starpu_task_destroy().
  46. The structure starpu_profiling_task_info indicates the date when the
  47. task was submitted (starpu_profiling_task_info::submit_time), started
  48. (starpu_profiling_task_info::start_time), and terminated
  49. (starpu_profiling_task_info::end_time), relative to the initialization
  50. of StarPU with starpu_init(). It also specifies the identifier of the worker
  51. that has executed the task (starpu_profiling_task_info::workerid).
  52. These date are stored as <c>timespec</c> structures which the user may convert
  53. into micro-seconds using the helper function
  54. starpu_timing_timespec_to_us().
  55. It it worth noting that the application may directly access this structure from
  56. the callback executed at the end of the task. The structure starpu_task
  57. associated to the callback currently being executed is indeed accessible with
  58. the function starpu_task_get_current().
  59. \subsection Per-codeletFeedback Per-codelet Feedback
  60. The field starpu_codelet::per_worker_stats is
  61. an array of counters. The i-th entry of the array is incremented every time a
  62. task implementing the codelet is executed on the i-th worker.
  63. This array is not reinitialized when profiling is enabled or disabled.
  64. \subsection Per-workerFeedback Per-worker Feedback
  65. The second argument returned by the function
  66. starpu_profiling_worker_get_info() is a structure
  67. starpu_profiling_worker_info that gives statistics about the specified
  68. worker. This structure specifies when StarPU started collecting
  69. profiling information for that worker
  70. (starpu_profiling_worker_info::start_time), the
  71. duration of the profiling measurement interval
  72. (starpu_profiling_worker_info::total_time), the time spent executing
  73. kernels (starpu_profiling_worker_info::executing_time), the time
  74. spent sleeping because there is no task to execute at all
  75. (starpu_profiling_worker_info::sleeping_time), and the number of tasks that were executed
  76. while profiling was enabled. These values give an estimation of the
  77. proportion of time spent do real work, and the time spent either
  78. sleeping because there are not enough executable tasks or simply
  79. wasted in pure StarPU overhead.
  80. Calling starpu_profiling_worker_get_info() resets the profiling
  81. information associated to a worker.
  82. When an FxT trace is generated (see \ref GeneratingTracesWithFxT), it is also
  83. possible to use the tool <c>starpu_workers_activity</c> (see \ref
  84. MonitoringActivity) to generate a graphic showing the evolution of
  85. these values during the time, for the different workers.
  86. \subsection Bus-relatedFeedback Bus-related Feedback
  87. TODO: ajouter \ref STARPU_BUS_STATS
  88. // how to enable/disable performance monitoring
  89. // what kind of information do we get ?
  90. The bus speed measured by StarPU can be displayed by using the tool
  91. <c>starpu_machine_display</c>, for instance:
  92. \verbatim
  93. StarPU has found:
  94. 3 CUDA devices
  95. CUDA 0 (Tesla C2050 02:00.0)
  96. CUDA 1 (Tesla C2050 03:00.0)
  97. CUDA 2 (Tesla C2050 84:00.0)
  98. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  99. RAM 0.000000 5176.530428 5176.492994 5191.710722
  100. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  101. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  102. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  103. \endverbatim
  104. \subsection StarPU-TopInterface StarPU-Top Interface
  105. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  106. application and permits the user to change parameters on the fly.
  107. Variables to be monitored can be registered by calling the functions
  108. starpu_top_add_data_boolean(), starpu_top_add_data_integer(),
  109. starpu_top_add_data_float(), e.g.:
  110. \code{.c}
  111. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  112. \endcode
  113. The application should then call starpu_top_init_and_wait() to give its name
  114. and wait for StarPU-Top to get a start request from the user. The name is used
  115. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  116. \code{.c}
  117. starpu_top_init_and_wait("the application");
  118. \endcode
  119. The new values can then be provided thanks to
  120. starpu_top_update_data_boolean(), starpu_top_update_data_integer(),
  121. starpu_top_update_data_float(), e.g.:
  122. \code{.c}
  123. starpu_top_update_data_integer(data, mynum);
  124. \endcode
  125. Updateable parameters can be registered thanks to starpu_top_register_parameter_boolean(), starpu_top_register_parameter_integer(), starpu_top_register_parameter_float(), e.g.:
  126. \code{.c}
  127. float alpha;
  128. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  129. \endcode
  130. <c>modif_hook</c> is a function which will be called when the parameter is being modified, it can for instance print the new value:
  131. \code{.c}
  132. void modif_hook(struct starpu_top_param *d) {
  133. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  134. }
  135. \endcode
  136. Task schedulers should notify StarPU-Top when it has decided when a task will be
  137. scheduled, so that it can show it in its Gantt chart, for instance:
  138. \code{.c}
  139. starpu_top_task_prevision(task, workerid, begin, end);
  140. \endcode
  141. Starting StarPU-Top (StarPU-Top is started via the binary
  142. <c>starpu_top</c>.) and the application can be done two ways:
  143. <ul>
  144. <li> The application is started by hand on some machine (and thus already
  145. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  146. checkbox should be unchecked, and the hostname and port (default is 2011) on
  147. which the application is already running should be specified. Clicking on the
  148. connection button will thus connect to the already-running application.
  149. </li>
  150. <li> StarPU-Top is started first, and clicking on the connection button will
  151. start the application itself (possibly on a remote machine). The SSH checkbox
  152. should be checked, and a command line provided, e.g.:
  153. \verbatim
  154. $ ssh myserver STARPU_SCHED=dmda ./application
  155. \endverbatim
  156. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  157. \verbatim
  158. $ ssh -L 2011:localhost:2011 myserver STARPU_SCHED=dmda ./application
  159. \endverbatim
  160. and "localhost" should be used as IP Address to connect to.
  161. </li>
  162. </ul>
  163. \section Off-linePerformanceFeedback Off-line Performance Feedback
  164. \subsection GeneratingTracesWithFxT Generating Traces With FxT
  165. StarPU can use the FxT library (see
  166. https://savannah.nongnu.org/projects/fkt/) to generate traces
  167. with a limited runtime overhead.
  168. You can either get a tarball:
  169. \verbatim
  170. $ wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.11.tar.gz
  171. \endverbatim
  172. or use the FxT library from CVS (autotools are required):
  173. \verbatim
  174. $ cvs -d :pserver:anonymous\@cvs.sv.gnu.org:/sources/fkt co FxT
  175. $ ./bootstrap
  176. \endverbatim
  177. Compiling and installing the FxT library in the <c>$FXTDIR</c> path is
  178. done following the standard procedure:
  179. \verbatim
  180. $ ./configure --prefix=$FXTDIR
  181. $ make
  182. $ make install
  183. \endverbatim
  184. In order to have StarPU to generate traces, StarPU should be configured with
  185. the option \ref with-fxt "--with-fxt" :
  186. \verbatim
  187. $ ./configure --with-fxt=$FXTDIR
  188. \endverbatim
  189. Or you can simply point the <c>PKG_CONFIG_PATH</c> to
  190. <c>$FXTDIR/lib/pkgconfig</c> and pass
  191. \ref with-fxt "--with-fxt" to <c>./configure</c>
  192. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  193. starpu_shutdown(). The trace is a binary file whose name has the form
  194. <c>prof_file_XXX_YYY</c> where <c>XXX</c> is the user name, and
  195. <c>YYY</c> is the pid of the process that used StarPU. This file is saved in the
  196. <c>/tmp/</c> directory by default, or by the directory specified by
  197. the environment variable \ref STARPU_FXT_PREFIX.
  198. The additional configure option \ref enable-fxt-lock "--enable-fxt-lock" can
  199. be used to generate trace events which describes the locks behaviour during
  200. the execution.
  201. \subsection CreatingAGanttDiagram Creating a Gantt Diagram
  202. When the FxT trace file <c>filename</c> has been generated, it is possible to
  203. generate a trace in the Paje format by calling:
  204. \verbatim
  205. $ starpu_fxt_tool -i filename
  206. \endverbatim
  207. Or alternatively, setting the environment variable \ref STARPU_GENERATE_TRACE
  208. to <c>1</c> before application execution will make StarPU do it automatically at
  209. application shutdown.
  210. This will create a file <c>paje.trace</c> in the current directory that
  211. can be inspected with the <a href="http://vite.gforge.inria.fr/">ViTE trace
  212. visualizing open-source tool</a>. It is possible to open the
  213. file <c>paje.trace</c> with ViTE by using the following command:
  214. \verbatim
  215. $ vite paje.trace
  216. \endverbatim
  217. To get names of tasks instead of "unknown", fill the optional
  218. starpu_codelet::name, or use a performance model for them.
  219. In the MPI execution case, collect the trace files from the MPI nodes, and
  220. specify them all on the command <c>starpu_fxt_tool</c>, for instance:
  221. \verbatim
  222. $ starpu_fxt_tool -i filename1 -i filename2
  223. \endverbatim
  224. By default, all tasks are displayed using a green color. To display tasks with
  225. varying colors, pass option <c>-c</c> to <c>starpu_fxt_tool</c>.
  226. Traces can also be inspected by hand by using the tool <c>fxt_print</c>, for instance:
  227. \verbatim
  228. $ fxt_print -o -f filename
  229. \endverbatim
  230. Timings are in nanoseconds (while timings as seen in <c>vite</c> are in milliseconds).
  231. \subsection CreatingADAGWithGraphviz Creating a DAG With Graphviz
  232. When the FxT trace file <c>filename</c> has been generated, it is possible to
  233. generate a task graph in the DOT format by calling:
  234. \verbatim
  235. $ starpu_fxt_tool -i filename
  236. \endverbatim
  237. This will create a <c>dag.dot</c> file in the current directory. This file is a
  238. task graph described using the DOT language. It is possible to get a
  239. graphical output of the graph by using the graphviz library:
  240. \verbatim
  241. $ dot -Tpdf dag.dot -o output.pdf
  242. \endverbatim
  243. \subsection MonitoringActivity Monitoring Activity
  244. When the FxT trace file <c>filename</c> has been generated, it is possible to
  245. generate an activity trace by calling:
  246. \verbatim
  247. $ starpu_fxt_tool -i filename
  248. \endverbatim
  249. This will create a file <c>activity.data</c> in the current
  250. directory. A profile of the application showing the activity of StarPU
  251. during the execution of the program can be generated:
  252. \verbatim
  253. $ starpu_workers_activity activity.data
  254. \endverbatim
  255. This will create a file named <c>activity.eps</c> in the current directory.
  256. This picture is composed of two parts.
  257. The first part shows the activity of the different workers. The green sections
  258. indicate which proportion of the time was spent executed kernels on the
  259. processing unit. The red sections indicate the proportion of time spent in
  260. StartPU: an important overhead may indicate that the granularity may be too
  261. low, and that bigger tasks may be appropriate to use the processing unit more
  262. efficiently. The black sections indicate that the processing unit was blocked
  263. because there was no task to process: this may indicate a lack of parallelism
  264. which may be alleviated by creating more tasks when it is possible.
  265. The second part of the picture <c>activity.eps</c> is a graph showing the
  266. evolution of the number of tasks available in the system during the execution.
  267. Ready tasks are shown in black, and tasks that are submitted but not
  268. schedulable yet are shown in grey.
  269. \section PerformanceOfCodelets Performance Of Codelets
  270. The performance model of codelets (see \ref PerformanceModelExample)
  271. can be examined by using the tool <c>starpu_perfmodel_display</c>:
  272. \verbatim
  273. $ starpu_perfmodel_display -l
  274. file: <malloc_pinned.hannibal>
  275. file: <starpu_slu_lu_model_21.hannibal>
  276. file: <starpu_slu_lu_model_11.hannibal>
  277. file: <starpu_slu_lu_model_22.hannibal>
  278. file: <starpu_slu_lu_model_12.hannibal>
  279. \endverbatim
  280. Here, the codelets of the example <c>lu</c> are available. We can examine the
  281. performance of the kernel <c>22</c> (in micro-seconds), which is history-based:
  282. \verbatim
  283. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  284. performance model for cpu
  285. # hash size mean dev n
  286. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  287. performance model for cuda_0
  288. # hash size mean dev n
  289. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  290. performance model for cuda_1
  291. # hash size mean dev n
  292. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  293. performance model for cuda_2
  294. # hash size mean dev n
  295. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  296. \endverbatim
  297. We can see that for the given size, over a sample of a few hundreds of
  298. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  299. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  300. CPUs.
  301. This tool can also be used for regression-based performance models. It will then
  302. display the regression formula, and in the case of non-linear regression, the
  303. same performance log as for history-based performance models:
  304. \verbatim
  305. $ starpu_perfmodel_display -s non_linear_memset_regression_based
  306. performance model for cpu_impl_0
  307. Regression : #sample = 1400
  308. Linear: y = alpha size ^ beta
  309. alpha = 1.335973e-03
  310. beta = 8.024020e-01
  311. Non-Linear: y = a size ^b + c
  312. a = 5.429195e-04
  313. b = 8.654899e-01
  314. c = 9.009313e-01
  315. # hash size mean stddev n
  316. a3d3725e 4096 4.763200e+00 7.650928e-01 100
  317. 870a30aa 8192 1.827970e+00 2.037181e-01 100
  318. 48e988e9 16384 2.652800e+00 1.876459e-01 100
  319. 961e65d2 32768 4.255530e+00 3.518025e-01 100
  320. ...
  321. \endverbatim
  322. The same can also be achieved by using StarPU's library API, see
  323. \ref API_Performance_Model and notably the function
  324. starpu_perfmodel_load_symbol(). The source code of the tool
  325. <c>starpu_perfmodel_display</c> can be a useful example.
  326. The tool <c>starpu_perfmodel_plot</c> can be used to draw performance
  327. models. It writes a <c>.gp</c> file in the current directory, to be
  328. run with the tool <c>gnuplot</c>, which shows the corresponding curve.
  329. \image html starpu_non_linear_memset_regression_based.png
  330. \image latex starpu_non_linear_memset_regression_based.eps "" width=\textwidth
  331. When the field starpu_task::flops is set, <c>starpu_perfmodel_plot</c> can
  332. directly draw a GFlops curve, by simply adding the <c>-f</c> option:
  333. \verbatim
  334. $ starpu_perfmodel_plot -f -s chol_model_11
  335. \endverbatim
  336. This will however disable displaying the regression model, for which we can not
  337. compute GFlops.
  338. \image html starpu_chol_model_11_type.png
  339. \image latex starpu_chol_model_11_type.eps "" width=\textwidth
  340. When the FxT trace file <c>filename</c> has been generated, it is possible to
  341. get a profiling of each codelet by calling:
  342. \verbatim
  343. $ starpu_fxt_tool -i filename
  344. $ starpu_codelet_profile distrib.data codelet_name
  345. \endverbatim
  346. This will create profiling data files, and a <c>.gp</c> file in the current
  347. directory, which draws the distribution of codelet time over the application
  348. execution, according to data input size.
  349. \image html distrib_data.png
  350. \image latex distrib_data.eps "" width=\textwidth
  351. This is also available in the tool <c>starpu_perfmodel_plot</c>, by passing it
  352. the fxt trace:
  353. \verbatim
  354. $ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0
  355. \endverbatim
  356. It will produce a <c>.gp</c> file which contains both the performance model
  357. curves, and the profiling measurements.
  358. \image html starpu_non_linear_memset_regression_based_2.png
  359. \image latex starpu_non_linear_memset_regression_based_2.eps "" width=\textwidth
  360. If you have the statistical tool <c>R</c> installed, you can additionally use
  361. \verbatim
  362. $ starpu_codelet_histo_profile distrib.data
  363. \endverbatim
  364. Which will create one <c>.pdf</c> file per codelet and per input size, showing a
  365. histogram of the codelet execution time distribution.
  366. \image html distrib_data_histo.png
  367. \image latex distrib_data_histo.eps "" width=\textwidth
  368. \section TheoreticalLowerBoundOnExecutionTime Theoretical Lower Bound On Execution Time
  369. StarPU can record a trace of what tasks are needed to complete the
  370. application, and then, by using a linear system, provide a theoretical lower
  371. bound of the execution time (i.e. with an ideal scheduling).
  372. The computed bound is not really correct when not taking into account
  373. dependencies, but for an application which have enough parallelism, it is very
  374. near to the bound computed with dependencies enabled (which takes a huge lot
  375. more time to compute), and thus provides a good-enough estimation of the ideal
  376. execution time.
  377. \ref TheoreticalLowerBoundOnExecutionTimeExample provides an example on how to
  378. use this.
  379. \section MemoryFeedback Memory Feedback
  380. It is possible to enable memory statistics. To do so, you need to pass
  381. the option \ref enable-memory-stats "--enable-memory-stats" when running <c>configure</c>. It is then
  382. possible to call the function starpu_data_display_memory_stats() to
  383. display statistics about the current data handles registered within StarPU.
  384. Moreover, statistics will be displayed at the end of the execution on
  385. data handles which have not been cleared out. This can be disabled by
  386. setting the environment variable \ref STARPU_MEMORY_STATS to <c>0</c>.
  387. For example, if you do not unregister data at the end of the complex
  388. example, you will get something similar to:
  389. \verbatim
  390. $ STARPU_MEMORY_STATS=0 ./examples/interface/complex
  391. Complex[0] = 45.00 + 12.00 i
  392. Complex[0] = 78.00 + 78.00 i
  393. Complex[0] = 45.00 + 12.00 i
  394. Complex[0] = 45.00 + 12.00 i
  395. \endverbatim
  396. \verbatim
  397. $ STARPU_MEMORY_STATS=1 ./examples/interface/complex
  398. Complex[0] = 45.00 + 12.00 i
  399. Complex[0] = 78.00 + 78.00 i
  400. Complex[0] = 45.00 + 12.00 i
  401. Complex[0] = 45.00 + 12.00 i
  402. #---------------------
  403. Memory stats:
  404. #-------
  405. Data on Node #3
  406. #-----
  407. Data : 0x553ff40
  408. Size : 16
  409. #--
  410. Data access stats
  411. /!\ Work Underway
  412. Node #0
  413. Direct access : 4
  414. Loaded (Owner) : 0
  415. Loaded (Shared) : 0
  416. Invalidated (was Owner) : 0
  417. Node #3
  418. Direct access : 0
  419. Loaded (Owner) : 0
  420. Loaded (Shared) : 1
  421. Invalidated (was Owner) : 0
  422. #-----
  423. Data : 0x5544710
  424. Size : 16
  425. #--
  426. Data access stats
  427. /!\ Work Underway
  428. Node #0
  429. Direct access : 2
  430. Loaded (Owner) : 0
  431. Loaded (Shared) : 1
  432. Invalidated (was Owner) : 1
  433. Node #3
  434. Direct access : 0
  435. Loaded (Owner) : 1
  436. Loaded (Shared) : 0
  437. Invalidated (was Owner) : 0
  438. \endverbatim
  439. \section DataStatistics Data Statistics
  440. Different data statistics can be displayed at the end of the execution
  441. of the application. To enable them, you need to pass the option
  442. \ref enable-stats "--enable-stats" when calling <c>configure</c>. When calling
  443. starpu_shutdown() various statistics will be displayed,
  444. execution, MSI cache statistics, allocation cache statistics, and data
  445. transfer statistics. The display can be disabled by setting the
  446. environment variable \ref STARPU_STATS to <c>0</c>.
  447. \verbatim
  448. $ ./examples/cholesky/cholesky_tag
  449. Computation took (in ms)
  450. 518.16
  451. Synthetic GFlops : 44.21
  452. #---------------------
  453. MSI cache stats :
  454. TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
  455. ...
  456. \endverbatim
  457. \verbatim
  458. $ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
  459. Computation took (in ms)
  460. 518.16
  461. Synthetic GFlops : 44.21
  462. \endverbatim
  463. \section DataTrace Data trace and tasks length
  464. It is possible to get statistics about tasks length and data size by using :
  465. \verbatim
  466. $starpu_fxt_data_trace filename [codelet1 codelet2 ... codeletn]
  467. \endverbatim
  468. Where filename is the FxT trace file and codeletX the names of the codelets you
  469. want to profile (if no names are specified, starpu_fxt_data_trace will use them all).
  470. This will create a file, <c>data_trace.gp</c> which
  471. can be plotted to get a .eps image of these results. On the image, each point represents a
  472. task, and each color corresponds to a codelet.
  473. \image html data_trace.png
  474. \image latex data_trace.eps "" width=\textwidth
  475. // TODO: data transfer stats are similar to the ones displayed when
  476. // setting STARPU_BUS_STATS
  477. */