starpu.texi 188 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @dircategory Development
  9. @direntry
  10. * StarPU: (starpu). StarPU Handbook
  11. @end direntry
  12. @titlepage
  13. @title StarPU Handbook
  14. @subtitle for StarPU @value{VERSION}
  15. @page
  16. @vskip 0pt plus 1fill
  17. @comment For the @value{version-GCC} Version*
  18. @end titlepage
  19. @c @summarycontents
  20. @contents
  21. @page
  22. @node Top
  23. @top Preface
  24. @cindex Preface
  25. This manual documents the usage of StarPU version @value{VERSION}. It
  26. was last updated on @value{UPDATED}.
  27. @comment
  28. @comment When you add a new menu item, please keep the right hand
  29. @comment aligned to the same column. Do not use tabs. This provides
  30. @comment better formatting.
  31. @comment
  32. @menu
  33. * Introduction:: A basic introduction to using StarPU
  34. * Installing StarPU:: How to configure, build and install StarPU
  35. * Using StarPU:: How to run StarPU application
  36. * Basic Examples:: Basic examples of the use of StarPU
  37. * Performance optimization:: How to optimize performance with StarPU
  38. * Performance feedback:: Performance debugging tools
  39. * StarPU MPI support:: How to combine StarPU with MPI
  40. * Configuring StarPU:: How to configure StarPU
  41. * StarPU API:: The API to use StarPU
  42. * Advanced Topics:: Advanced use of StarPU
  43. * Full source code for the 'Scaling a Vector' example::
  44. * Function Index:: Index of C functions.
  45. @end menu
  46. @c ---------------------------------------------------------------------
  47. @c Introduction to StarPU
  48. @c ---------------------------------------------------------------------
  49. @node Introduction
  50. @chapter Introduction to StarPU
  51. @menu
  52. * Motivation:: Why StarPU ?
  53. * StarPU in a Nutshell:: The Fundamentals of StarPU
  54. @end menu
  55. @node Motivation
  56. @section Motivation
  57. @c complex machines with heterogeneous cores/devices
  58. The use of specialized hardware such as accelerators or coprocessors offers an
  59. interesting approach to overcome the physical limits encountered by processor
  60. architects. As a result, many machines are now equipped with one or several
  61. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  62. efforts have been devoted to offload computation onto such accelerators, very
  63. little attention as been paid to portability concerns on the one hand, and to the
  64. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  65. StarPU is a runtime system that offers support for heterogeneous multicore
  66. architectures, it not only offers a unified view of the computational resources
  67. (i.e. CPUs and accelerators at the same time), but it also takes care of
  68. efficiently mapping and executing tasks onto an heterogeneous machine while
  69. transparently handling low-level issues such as data transfers in a portable
  70. fashion.
  71. @c this leads to a complicated distributed memory design
  72. @c which is not (easily) manageable by hand
  73. @c added value/benefits of StarPU
  74. @c - portability
  75. @c - scheduling, perf. portability
  76. @node StarPU in a Nutshell
  77. @section StarPU in a Nutshell
  78. @menu
  79. * Codelet and Tasks::
  80. * StarPU Data Management Library::
  81. * Glossary::
  82. * Research Papers::
  83. @end menu
  84. From a programming point of view, StarPU is not a new language but a library
  85. that executes tasks explicitly submitted by the application. The data that a
  86. task manipulates are automatically transferred onto the accelerator so that the
  87. programmer does not have to take care of complex data movements. StarPU also
  88. takes particular care of scheduling those tasks efficiently and allows
  89. scheduling experts to implement custom scheduling policies in a portable
  90. fashion.
  91. @c explain the notion of codelet and task (i.e. g(A, B)
  92. @node Codelet and Tasks
  93. @subsection Codelet and Tasks
  94. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  95. computational kernel that can possibly be implemented on multiple architectures
  96. such as a CPU, a CUDA device or a Cell's SPU.
  97. @c TODO insert illustration f : f_spu, f_cpu, ...
  98. Another important data structure is the @b{task}. Executing a StarPU task
  99. consists in applying a codelet on a data set, on one of the architectures on
  100. which the codelet is implemented. A task thus describes the codelet that it
  101. uses, but also which data are accessed, and how they are
  102. accessed during the computation (read and/or write).
  103. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  104. operation. The task structure can also specify a @b{callback} function that is
  105. called once StarPU has properly executed the task. It also contains optional
  106. fields that the application may use to give hints to the scheduler (such as
  107. priority levels).
  108. By default, task dependencies are inferred from data dependency (sequential
  109. coherence) by StarPU. The application can however disable sequential coherency
  110. for some data, and dependencies be expressed by hand.
  111. A task may be identified by a unique 64-bit number chosen by the application
  112. which we refer as a @b{tag}.
  113. Task dependencies can be enforced by hand either by the means of callback functions, by
  114. submitting other tasks, or by expressing dependencies
  115. between tags (which can thus correspond to tasks that have not been submitted
  116. yet).
  117. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  118. @c DSM
  119. @node StarPU Data Management Library
  120. @subsection StarPU Data Management Library
  121. Because StarPU schedules tasks at runtime, data transfers have to be
  122. done automatically and ``just-in-time'' between processing units,
  123. relieving the application programmer from explicit data transfers.
  124. Moreover, to avoid unnecessary transfers, StarPU keeps data
  125. where it was last needed, even if was modified there, and it
  126. allows multiple copies of the same data to reside at the same time on
  127. several processing units as long as it is not modified.
  128. @node Glossary
  129. @subsection Glossary
  130. A @b{codelet} records pointers to various implementations of the same
  131. theoretical function.
  132. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  133. A @b{bus} is a link between memory nodes.
  134. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  135. application) over various memory nodes. The data management library manages
  136. keeping them coherent.
  137. The @b{home} memory node of a data handle is the memory node from which the data
  138. was registered (usually the main memory node).
  139. A @b{task} represents a scheduled execution of a codelet on some data handles.
  140. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  141. depend on other tags. The value is chosen by the application.
  142. A @b{worker} execute tasks. There is typically one per CPU computation core and
  143. one per accelerator (for which a whole CPU core is dedicated).
  144. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  145. OpenCL and Gordon drivers. They usually start several workers to actually drive
  146. them.
  147. A @b{performance model} is a (dynamic or static) model of the performance of a
  148. given codelet. Codelets can have execution time performance model as well as
  149. power consumption performance models.
  150. A data @b{interface} describes the layout of the data: for a vector, a pointer
  151. for the start, the number of elements and the size of elements ; for a matrix, a
  152. pointer for the start, the number of elements per row, the offset between rows,
  153. and the size of each element ; etc. To access their data, codelet functions are
  154. given interfaces for the local memory node replicates of the data handles of the
  155. scheduled task.
  156. @b{Partitioning} data means dividing the data of a given data handle (called
  157. @b{father}) into a series of @b{children} data handles which designate various
  158. portions of the former.
  159. A @b{filter} is the function which computes children data handles from a father
  160. data handle, and thus describes how the partitioning should be done (horizontal,
  161. vertical, etc.)
  162. @b{Acquiring} a data handle can be done from the main application, to safely
  163. access the data of a data handle from its home node, without having to
  164. unregister it.
  165. @node Research Papers
  166. @subsection Research Papers
  167. Research papers about StarPU can be found at
  168. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  169. Notably a good overview in the research report
  170. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  171. @c ---------------------------------------------------------------------
  172. @c Installing StarPU
  173. @c ---------------------------------------------------------------------
  174. @node Installing StarPU
  175. @chapter Installing StarPU
  176. @menu
  177. * Downloading StarPU::
  178. * Configuration of StarPU::
  179. * Building and Installing StarPU::
  180. @end menu
  181. StarPU can be built and installed by the standard means of the GNU
  182. autotools. The following chapter is intended to briefly remind how these tools
  183. can be used to install StarPU.
  184. @node Downloading StarPU
  185. @section Downloading StarPU
  186. @menu
  187. * Getting Sources::
  188. * Optional dependencies::
  189. @end menu
  190. @node Getting Sources
  191. @subsection Getting Sources
  192. The simplest way to get StarPU sources is to download the latest official
  193. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  194. or the latest nightly snapshot from
  195. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  196. how to get the very latest version from the subversion repository itself, it
  197. should be needed only if you need the very latest changes (i.e. less than a
  198. day!)
  199. The source code is managed by a Subversion server hosted by the
  200. InriaGforge. To get the source code, you need:
  201. @itemize
  202. @item
  203. To install the client side of the software Subversion if it is
  204. not already available on your system. The software can be obtained from
  205. @indicateurl{http://subversion.tigris.org} . If you are running
  206. on Windows, you will probably prefer to use TortoiseSVN from
  207. @indicateurl{http://tortoisesvn.tigris.org/} .
  208. @item
  209. You can check out the project's SVN repository through anonymous
  210. access. This will provide you with a read access to the
  211. repository.
  212. If you need to have write access on the StarPU project, you can also choose to
  213. become a member of the project @code{starpu}. For this, you first need to get
  214. an account to the gForge server. You can then send a request to join the project
  215. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  216. @item
  217. More information on how to get a gForge account, to become a member of
  218. a project, or on any other related task can be obtained from the
  219. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  220. thing is to upload your public SSH key on the gForge server (see the
  221. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  222. instructions).
  223. @end itemize
  224. You can now check out the latest version from the Subversion server:
  225. @itemize
  226. @item
  227. using the anonymous access via svn:
  228. @example
  229. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  230. @end example
  231. @item
  232. using the anonymous access via https:
  233. @example
  234. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  235. @end example
  236. The password is @code{anonsvn}.
  237. @item
  238. using your gForge account
  239. @example
  240. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  241. @end example
  242. @end itemize
  243. The following step requires the availability of @code{autoconf} and
  244. @code{automake} to generate the @code{./configure} script. This is
  245. done by calling @code{./autogen.sh}. The required version for
  246. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  247. @example
  248. % ./autogen.sh
  249. @end example
  250. If the autotools are not available on your machine or not recent
  251. enough, you can choose to download the latest nightly tarball, which
  252. is provided with a @code{configure} script.
  253. @example
  254. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  255. @end example
  256. @node Optional dependencies
  257. @subsection Optional dependencies
  258. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  259. but strongly recommended. It allows to increase performance, and to
  260. perform some topology aware scheduling.
  261. @code{hwloc} is available in major distributions and for most OSes and can be
  262. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  263. @node Configuration of StarPU
  264. @section Configuration of StarPU
  265. @menu
  266. * Generating Makefiles and configuration scripts::
  267. * Running the configuration::
  268. @end menu
  269. @node Generating Makefiles and configuration scripts
  270. @subsection Generating Makefiles and configuration scripts
  271. This step is not necessary when using the tarball releases of StarPU. If you
  272. are using the source code from the svn repository, you first need to generate
  273. the configure scripts and the Makefiles.
  274. @example
  275. % ./autogen.sh
  276. @end example
  277. @node Running the configuration
  278. @subsection Running the configuration
  279. @example
  280. % ./configure
  281. @end example
  282. Details about options that are useful to give to @code{./configure} are given in
  283. @ref{Compilation configuration}.
  284. @node Building and Installing StarPU
  285. @section Building and Installing StarPU
  286. @menu
  287. * Building::
  288. * Sanity Checks::
  289. * Installing::
  290. @end menu
  291. @node Building
  292. @subsection Building
  293. @example
  294. % make
  295. @end example
  296. @node Sanity Checks
  297. @subsection Sanity Checks
  298. In order to make sure that StarPU is working properly on the system, it is also
  299. possible to run a test suite.
  300. @example
  301. % make check
  302. @end example
  303. @node Installing
  304. @subsection Installing
  305. In order to install StarPU at the location that was specified during
  306. configuration:
  307. @example
  308. % make install
  309. @end example
  310. @c ---------------------------------------------------------------------
  311. @c Using StarPU
  312. @c ---------------------------------------------------------------------
  313. @node Using StarPU
  314. @chapter Using StarPU
  315. @menu
  316. * Setting flags for compiling and linking applications::
  317. * Running a basic StarPU application::
  318. * Kernel threads started by StarPU::
  319. * Using accelerators::
  320. @end menu
  321. @node Setting flags for compiling and linking applications
  322. @section Setting flags for compiling and linking applications
  323. Compiling and linking an application against StarPU may require to use
  324. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  325. To this end, it is possible to use the @code{pkg-config} tool.
  326. If StarPU was not installed at some standard location, the path of StarPU's
  327. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  328. that @code{pkg-config} can find it. For example if StarPU was installed in
  329. @code{$prefix_dir}:
  330. @example
  331. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  332. @end example
  333. The flags required to compile or link against StarPU are then
  334. accessible with the following commands:
  335. @example
  336. % pkg-config --cflags libstarpu # options for the compiler
  337. % pkg-config --libs libstarpu # options for the linker
  338. @end example
  339. @node Running a basic StarPU application
  340. @section Running a basic StarPU application
  341. Basic examples using StarPU are built in the directory
  342. @code{examples/basic_examples/} (and installed in
  343. @code{$prefix_dir/lib/starpu/examples/}). You can for example run the example
  344. @code{vector_scal}.
  345. @example
  346. % ./examples/basic_examples/vector_scal
  347. BEFORE : First element was 1.000000
  348. AFTER First element is 3.140000
  349. %
  350. @end example
  351. When StarPU is used for the first time, the directory
  352. @code{$HOME/.starpu/} is created, performance models will be stored in
  353. that directory.
  354. Please note that buses are benchmarked when StarPU is launched for the
  355. first time. This may take a few minutes, or less if @code{hwloc} is
  356. installed. This step is done only once per user and per machine.
  357. @node Kernel threads started by StarPU
  358. @section Kernel threads started by StarPU
  359. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  360. them per GPU. The application is not supposed to do computations in its own
  361. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  362. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  363. worker).
  364. @node Using accelerators
  365. @section Using accelerators
  366. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  367. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  368. This design choice was necessary as OpenCL and CUDA can not run at the
  369. same time on the same NVIDIA GPU, as there is currently no interoperability
  370. between them.
  371. Details on how to specify devices running OpenCL and the ones running
  372. CUDA are given in @ref{Enabling OpenCL}.
  373. @c ---------------------------------------------------------------------
  374. @c Basic Examples
  375. @c ---------------------------------------------------------------------
  376. @node Basic Examples
  377. @chapter Basic Examples
  378. @menu
  379. * Compiling and linking options::
  380. * Hello World:: Submitting Tasks
  381. * Scaling a Vector:: Manipulating Data
  382. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  383. * Task and Worker Profiling::
  384. * Partitioning Data:: Partitioning Data
  385. * Performance model example::
  386. * Theoretical lower bound on execution time::
  387. * Insert Task Utility::
  388. * More examples:: More examples shipped with StarPU
  389. * Debugging:: When things go wrong.
  390. @end menu
  391. @node Compiling and linking options
  392. @section Compiling and linking options
  393. Let's suppose StarPU has been installed in the directory
  394. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  395. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  396. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  397. libraries at runtime.
  398. @example
  399. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  400. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  401. @end example
  402. The Makefile could for instance contain the following lines to define which
  403. options must be given to the compiler and to the linker:
  404. @cartouche
  405. @example
  406. CFLAGS += $$(pkg-config --cflags libstarpu)
  407. LDFLAGS += $$(pkg-config --libs libstarpu)
  408. @end example
  409. @end cartouche
  410. @node Hello World
  411. @section Hello World
  412. @menu
  413. * Required Headers::
  414. * Defining a Codelet::
  415. * Submitting a Task::
  416. * Execution of Hello World::
  417. @end menu
  418. In this section, we show how to implement a simple program that submits a task to StarPU.
  419. @node Required Headers
  420. @subsection Required Headers
  421. The @code{starpu.h} header should be included in any code using StarPU.
  422. @cartouche
  423. @smallexample
  424. #include <starpu.h>
  425. @end smallexample
  426. @end cartouche
  427. @node Defining a Codelet
  428. @subsection Defining a Codelet
  429. @cartouche
  430. @smallexample
  431. struct params @{
  432. int i;
  433. float f;
  434. @};
  435. void cpu_func(void *buffers[], void *cl_arg)
  436. @{
  437. struct params *params = cl_arg;
  438. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  439. @}
  440. starpu_codelet cl =
  441. @{
  442. .where = STARPU_CPU,
  443. .cpu_func = cpu_func,
  444. .nbuffers = 0
  445. @};
  446. @end smallexample
  447. @end cartouche
  448. A codelet is a structure that represents a computational kernel. Such a codelet
  449. may contain an implementation of the same kernel on different architectures
  450. (e.g. CUDA, Cell's SPU, x86, ...).
  451. The @code{nbuffers} field specifies the number of data buffers that are
  452. manipulated by the codelet: here the codelet does not access or modify any data
  453. that is controlled by our data management library. Note that the argument
  454. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  455. structure) does not count as a buffer since it is not managed by our data
  456. management library, but just contain trivial parameters.
  457. @c TODO need a crossref to the proper description of "where" see bla for more ...
  458. We create a codelet which may only be executed on the CPUs. The @code{where}
  459. field is a bitmask that defines where the codelet may be executed. Here, the
  460. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  461. (@pxref{Codelets and Tasks} for more details on this field).
  462. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  463. which @emph{must} have the following prototype:
  464. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  465. In this example, we can ignore the first argument of this function which gives a
  466. description of the input and output buffers (e.g. the size and the location of
  467. the matrices) since there is none.
  468. The second argument is a pointer to a buffer passed as an
  469. argument to the codelet by the means of the @code{cl_arg} field of the
  470. @code{starpu_task} structure.
  471. @c TODO rewrite so that it is a little clearer ?
  472. Be aware that this may be a pointer to a
  473. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  474. if the codelet modifies this buffer, there is no guarantee that the initial
  475. buffer will be modified as well: this for instance implies that the buffer
  476. cannot be used as a synchronization medium. If synchronization is needed, data
  477. has to be registered to StarPU, see @ref{Scaling a Vector}.
  478. @node Submitting a Task
  479. @subsection Submitting a Task
  480. @cartouche
  481. @smallexample
  482. void callback_func(void *callback_arg)
  483. @{
  484. printf("Callback function (arg %x)\n", callback_arg);
  485. @}
  486. int main(int argc, char **argv)
  487. @{
  488. /* @b{initialize StarPU} */
  489. starpu_init(NULL);
  490. struct starpu_task *task = starpu_task_create();
  491. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  492. struct params params = @{ 1, 2.0f @};
  493. task->cl_arg = &params;
  494. task->cl_arg_size = sizeof(params);
  495. task->callback_func = callback_func;
  496. task->callback_arg = 0x42;
  497. /* @b{starpu_task_submit will be a blocking call} */
  498. task->synchronous = 1;
  499. /* @b{submit the task to StarPU} */
  500. starpu_task_submit(task);
  501. /* @b{terminate StarPU} */
  502. starpu_shutdown();
  503. return 0;
  504. @}
  505. @end smallexample
  506. @end cartouche
  507. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  508. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  509. be submitted after the termination of StarPU by a call to
  510. @code{starpu_shutdown}.
  511. In the example above, a task structure is allocated by a call to
  512. @code{starpu_task_create}. This function only allocates and fills the
  513. corresponding structure with the default settings (@pxref{Codelets and
  514. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  515. @c not really clear ;)
  516. The @code{cl} field is a pointer to the codelet which the task will
  517. execute: in other words, the codelet structure describes which computational
  518. kernel should be offloaded on the different architectures, and the task
  519. structure is a wrapper containing a codelet and the piece of data on which the
  520. codelet should operate.
  521. The optional @code{cl_arg} field is a pointer to a buffer (of size
  522. @code{cl_arg_size}) with some parameters for the kernel
  523. described by the codelet. For instance, if a codelet implements a computational
  524. kernel that multiplies its input vector by a constant, the constant could be
  525. specified by the means of this buffer, instead of registering it as a StarPU
  526. data. It must however be noted that StarPU avoids making copy whenever possible
  527. and rather passes the pointer as such, so the buffer which is pointed at must
  528. kept allocated until the task terminates, and if several tasks are submitted
  529. with various parameters, each of them must be given a pointer to their own
  530. buffer.
  531. Once a task has been executed, an optional callback function is be called.
  532. While the computational kernel could be offloaded on various architectures, the
  533. callback function is always executed on a CPU. The @code{callback_arg}
  534. pointer is passed as an argument of the callback. The prototype of a callback
  535. function must be:
  536. @code{void (*callback_function)(void *);}
  537. If the @code{synchronous} field is non-zero, task submission will be
  538. synchronous: the @code{starpu_task_submit} function will not return until the
  539. task was executed. Note that the @code{starpu_shutdown} method does not
  540. guarantee that asynchronous tasks have been executed before it returns,
  541. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  542. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  543. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  544. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  545. @code{starpu_data_set_sequential_consistency_flag}.
  546. @node Execution of Hello World
  547. @subsection Execution of Hello World
  548. @smallexample
  549. % make hello_world
  550. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  551. % ./hello_world
  552. Hello world (params = @{1, 2.000000@} )
  553. Callback function (arg 42)
  554. @end smallexample
  555. @node Scaling a Vector
  556. @section Manipulating Data: Scaling a Vector
  557. The previous example has shown how to submit tasks. In this section,
  558. we show how StarPU tasks can manipulate data. The full source code for
  559. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  560. @menu
  561. * Source code of Vector Scaling::
  562. * Execution of Vector Scaling::
  563. @end menu
  564. @node Source code of Vector Scaling
  565. @subsection Source code of Vector Scaling
  566. Programmers can describe the data layout of their application so that StarPU is
  567. responsible for enforcing data coherency and availability across the machine.
  568. Instead of handling complex (and non-portable) mechanisms to perform data
  569. movements, programmers only declare which piece of data is accessed and/or
  570. modified by a task, and StarPU makes sure that when a computational kernel
  571. starts somewhere (e.g. on a GPU), its data are available locally.
  572. Before submitting those tasks, the programmer first needs to declare the
  573. different pieces of data to StarPU using the @code{starpu_*_data_register}
  574. functions. To ease the development of applications for StarPU, it is possible
  575. to describe multiple types of data layout. A type of data layout is called an
  576. @b{interface}. There are different predefined interfaces available in StarPU:
  577. here we will consider the @b{vector interface}.
  578. The following lines show how to declare an array of @code{NX} elements of type
  579. @code{float} using the vector interface:
  580. @cartouche
  581. @smallexample
  582. float vector[NX];
  583. starpu_data_handle vector_handle;
  584. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  585. sizeof(vector[0]));
  586. @end smallexample
  587. @end cartouche
  588. The first argument, called the @b{data handle}, is an opaque pointer which
  589. designates the array in StarPU. This is also the structure which is used to
  590. describe which data is used by a task. The second argument is the node number
  591. where the data originally resides. Here it is 0 since the @code{vector} array is in
  592. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  593. the number of elements in the vector and the size of each element.
  594. The following shows how to construct a StarPU task that will manipulate the
  595. vector and a constant factor.
  596. @cartouche
  597. @smallexample
  598. float factor = 3.14;
  599. struct starpu_task *task = starpu_task_create();
  600. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  601. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  602. task->buffers[0].mode = STARPU_RW;
  603. task->cl_arg = &factor;
  604. task->cl_arg_size = sizeof(factor);
  605. task->synchronous = 1;
  606. starpu_task_submit(task);
  607. @end smallexample
  608. @end cartouche
  609. Since the factor is a mere constant float value parameter,
  610. it does not need a preliminary registration, and
  611. can just be passed through the @code{cl_arg} pointer like in the previous
  612. example. The vector parameter is described by its handle.
  613. There are two fields in each element of the @code{buffers} array.
  614. @code{handle} is the handle of the data, and @code{mode} specifies how the
  615. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  616. write-only and @code{STARPU_RW} for read and write access).
  617. The definition of the codelet can be written as follows:
  618. @cartouche
  619. @smallexample
  620. void scal_cpu_func(void *buffers[], void *cl_arg)
  621. @{
  622. unsigned i;
  623. float *factor = cl_arg;
  624. /* length of the vector */
  625. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  626. /* CPU copy of the vector pointer */
  627. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  628. for (i = 0; i < n; i++)
  629. val[i] *= *factor;
  630. @}
  631. starpu_codelet cl = @{
  632. .where = STARPU_CPU,
  633. .cpu_func = scal_cpu_func,
  634. .nbuffers = 1
  635. @};
  636. @end smallexample
  637. @end cartouche
  638. The first argument is an array that gives
  639. a description of all the buffers passed in the @code{task->buffers}@ array. The
  640. size of this array is given by the @code{nbuffers} field of the codelet
  641. structure. For the sake of genericity, this array contains pointers to the
  642. different interfaces describing each buffer. In the case of the @b{vector
  643. interface}, the location of the vector (resp. its length) is accessible in the
  644. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  645. read-write fashion, any modification will automatically affect future accesses
  646. to this vector made by other tasks.
  647. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  648. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  649. constant factor from this pointer.
  650. @node Execution of Vector Scaling
  651. @subsection Execution of Vector Scaling
  652. @smallexample
  653. % make vector_scal
  654. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  655. % ./vector_scal
  656. 0.000000 3.000000 6.000000 9.000000 12.000000
  657. @end smallexample
  658. @node Vector Scaling on an Hybrid CPU/GPU Machine
  659. @section Vector Scaling on an Hybrid CPU/GPU Machine
  660. Contrary to the previous examples, the task submitted in this example may not
  661. only be executed by the CPUs, but also by a CUDA device.
  662. @menu
  663. * Definition of the CUDA Kernel::
  664. * Definition of the OpenCL Kernel::
  665. * Definition of the Main Code::
  666. * Execution of Hybrid Vector Scaling::
  667. @end menu
  668. @node Definition of the CUDA Kernel
  669. @subsection Definition of the CUDA Kernel
  670. The CUDA implementation can be written as follows. It needs to be compiled with
  671. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  672. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  673. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  674. call.
  675. @cartouche
  676. @smallexample
  677. #include <starpu.h>
  678. static __global__ void vector_mult_cuda(float *val, unsigned n,
  679. float factor)
  680. @{
  681. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  682. if (i < n)
  683. val[i] *= factor;
  684. @}
  685. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  686. @{
  687. float *factor = (float *)_args;
  688. /* length of the vector */
  689. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  690. /* CUDA copy of the vector pointer */
  691. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  692. unsigned threads_per_block = 64;
  693. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  694. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  695. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  696. @}
  697. @end smallexample
  698. @end cartouche
  699. @node Definition of the OpenCL Kernel
  700. @subsection Definition of the OpenCL Kernel
  701. The OpenCL implementation can be written as follows. StarPU provides
  702. tools to compile a OpenCL kernel stored in a file.
  703. @cartouche
  704. @smallexample
  705. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  706. @{
  707. const int i = get_global_id(0);
  708. if (i < nx) @{
  709. val[i] *= factor;
  710. @}
  711. @}
  712. @end smallexample
  713. @end cartouche
  714. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  715. a device pointer, so that it is passed as such to the OpenCL kernel.
  716. @cartouche
  717. @smallexample
  718. #include <starpu.h>
  719. @i{#include <starpu_opencl.h>}
  720. @i{extern struct starpu_opencl_program programs;}
  721. void scal_opencl_func(void *buffers[], void *_args)
  722. @{
  723. float *factor = _args;
  724. @i{ int id, devid, err;}
  725. @i{ cl_kernel kernel;}
  726. @i{ cl_command_queue queue;}
  727. @i{ cl_event event;}
  728. /* length of the vector */
  729. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  730. /* OpenCL copy of the vector pointer */
  731. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  732. @i{ id = starpu_worker_get_id();}
  733. @i{ devid = starpu_worker_get_devid(id);}
  734. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  735. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  736. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  737. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  738. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  739. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  740. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  741. @i{ @{}
  742. @i{ size_t global=1;}
  743. @i{ size_t local=1;}
  744. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  745. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  746. @i{ @}}
  747. @i{ clFinish(queue);}
  748. @i{ starpu_opencl_collect_stats(event);}
  749. @i{ clReleaseEvent(event);}
  750. @i{ starpu_opencl_release_kernel(kernel);}
  751. @}
  752. @end smallexample
  753. @end cartouche
  754. @node Definition of the Main Code
  755. @subsection Definition of the Main Code
  756. The CPU implementation is the same as in the previous section.
  757. Here is the source of the main application. You can notice the value of the
  758. field @code{where} for the codelet. We specify
  759. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  760. can be executed either on a CPU or on a CUDA or an OpenCL device.
  761. @cartouche
  762. @smallexample
  763. #include <starpu.h>
  764. #define NX 2048
  765. extern void scal_cuda_func(void *buffers[], void *_args);
  766. extern void scal_cpu_func(void *buffers[], void *_args);
  767. extern void scal_opencl_func(void *buffers[], void *_args);
  768. /* @b{Definition of the codelet} */
  769. static starpu_codelet cl = @{
  770. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  771. /* @b{on a CUDA device, or on an OpenCL device} */
  772. .cuda_func = scal_cuda_func;
  773. .cpu_func = scal_cpu_func;
  774. .opencl_func = scal_opencl_func;
  775. .nbuffers = 1;
  776. @}
  777. #ifdef STARPU_USE_OPENCL
  778. /* @b{The compiled version of the OpenCL program} */
  779. struct starpu_opencl_program programs;
  780. #endif
  781. int main(int argc, char **argv)
  782. @{
  783. float *vector;
  784. int i, ret;
  785. float factor=3.0;
  786. struct starpu_task *task;
  787. starpu_data_handle vector_handle;
  788. starpu_init(NULL); /* @b{Initialising StarPU} */
  789. #ifdef STARPU_USE_OPENCL
  790. starpu_opencl_load_opencl_from_file(
  791. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  792. &programs, NULL);
  793. #endif
  794. vector = malloc(NX*sizeof(vector[0]));
  795. assert(vector);
  796. for(i=0 ; i<NX ; i++) vector[i] = i;
  797. @end smallexample
  798. @end cartouche
  799. @cartouche
  800. @smallexample
  801. /* @b{Registering data within StarPU} */
  802. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  803. NX, sizeof(vector[0]));
  804. /* @b{Definition of the task} */
  805. task = starpu_task_create();
  806. task->cl = &cl;
  807. task->buffers[0].handle = vector_handle;
  808. task->buffers[0].mode = STARPU_RW;
  809. task->cl_arg = &factor;
  810. task->cl_arg_size = sizeof(factor);
  811. @end smallexample
  812. @end cartouche
  813. @cartouche
  814. @smallexample
  815. /* @b{Submitting the task} */
  816. ret = starpu_task_submit(task);
  817. if (ret == -ENODEV) @{
  818. fprintf(stderr, "No worker may execute this task\n");
  819. return 1;
  820. @}
  821. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  822. /* @b{Waiting for its termination} */
  823. starpu_task_wait_for_all();
  824. /* @b{Update the vector in RAM} */
  825. starpu_data_acquire(vector_handle, STARPU_R);
  826. @end smallexample
  827. @end cartouche
  828. @cartouche
  829. @smallexample
  830. /* @b{Access the data} */
  831. for(i=0 ; i<NX; i++) @{
  832. fprintf(stderr, "%f ", vector[i]);
  833. @}
  834. fprintf(stderr, "\n");
  835. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  836. starpu_data_release(vector_handle);
  837. starpu_data_unregister(vector_handle);
  838. starpu_shutdown();
  839. return 0;
  840. @}
  841. @end smallexample
  842. @end cartouche
  843. @node Execution of Hybrid Vector Scaling
  844. @subsection Execution of Hybrid Vector Scaling
  845. The Makefile given at the beginning of the section must be extended to
  846. give the rules to compile the CUDA source code. Note that the source
  847. file of the OpenCL kernel does not need to be compiled now, it will
  848. be compiled at run-time when calling the function
  849. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  850. @cartouche
  851. @smallexample
  852. CFLAGS += $(shell pkg-config --cflags libstarpu)
  853. LDFLAGS += $(shell pkg-config --libs libstarpu)
  854. CC = gcc
  855. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  856. %.o: %.cu
  857. nvcc $(CFLAGS) $< -c $@
  858. clean:
  859. rm -f vector_scal *.o
  860. @end smallexample
  861. @end cartouche
  862. @smallexample
  863. % make
  864. @end smallexample
  865. and to execute it, with the default configuration:
  866. @smallexample
  867. % ./vector_scal
  868. 0.000000 3.000000 6.000000 9.000000 12.000000
  869. @end smallexample
  870. or for example, by disabling CPU devices:
  871. @smallexample
  872. % STARPU_NCPUS=0 ./vector_scal
  873. 0.000000 3.000000 6.000000 9.000000 12.000000
  874. @end smallexample
  875. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  876. see @ref{Using accelerators}):
  877. @smallexample
  878. % STARPU_NCUDA=0 ./vector_scal
  879. 0.000000 3.000000 6.000000 9.000000 12.000000
  880. @end smallexample
  881. @node Task and Worker Profiling
  882. @section Task and Worker Profiling
  883. A full example showing how to use the profiling API is available in
  884. the StarPU sources in the directory @code{examples/profiling/}.
  885. @cartouche
  886. @smallexample
  887. struct starpu_task *task = starpu_task_create();
  888. task->cl = &cl;
  889. task->synchronous = 1;
  890. /* We will destroy the task structure by hand so that we can
  891. * query the profiling info before the task is destroyed. */
  892. task->destroy = 0;
  893. /* Submit and wait for completion (since synchronous was set to 1) */
  894. starpu_task_submit(task);
  895. /* The task is finished, get profiling information */
  896. struct starpu_task_profiling_info *info = task->profiling_info;
  897. /* How much time did it take before the task started ? */
  898. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  899. /* How long was the task execution ? */
  900. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  901. /* We don't need the task structure anymore */
  902. starpu_task_destroy(task);
  903. @end smallexample
  904. @end cartouche
  905. @cartouche
  906. @smallexample
  907. /* Display the occupancy of all workers during the test */
  908. int worker;
  909. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  910. @{
  911. struct starpu_worker_profiling_info worker_info;
  912. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  913. STARPU_ASSERT(!ret);
  914. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  915. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  916. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  917. float executing_ratio = 100.0*executing_time/total_time;
  918. float sleeping_ratio = 100.0*sleeping_time/total_time;
  919. char workername[128];
  920. starpu_worker_get_name(worker, workername, 128);
  921. fprintf(stderr, "Worker %s:\n", workername);
  922. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  923. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  924. executing_ratio);
  925. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  926. sleeping_ratio);
  927. @}
  928. @end smallexample
  929. @end cartouche
  930. @node Partitioning Data
  931. @section Partitioning Data
  932. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  933. @cartouche
  934. @smallexample
  935. int vector[NX];
  936. starpu_data_handle handle;
  937. /* Declare data to StarPU */
  938. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  939. /* Partition the vector in PARTS sub-vectors */
  940. starpu_filter f =
  941. @{
  942. .filter_func = starpu_block_filter_func_vector,
  943. .nchildren = PARTS
  944. @};
  945. starpu_data_partition(handle, &f);
  946. @end smallexample
  947. @end cartouche
  948. @cartouche
  949. @smallexample
  950. /* Submit a task on each sub-vector */
  951. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  952. /* Get subdata number i (there is only 1 dimension) */
  953. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  954. struct starpu_task *task = starpu_task_create();
  955. task->buffers[0].handle = sub_handle;
  956. task->buffers[0].mode = STARPU_RW;
  957. task->cl = &cl;
  958. task->synchronous = 1;
  959. task->cl_arg = &factor;
  960. task->cl_arg_size = sizeof(factor);
  961. starpu_task_submit(task);
  962. @}
  963. @end smallexample
  964. @end cartouche
  965. Partitioning can be applied several times, see
  966. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  967. @node Performance model example
  968. @section Performance model example
  969. To achieve good scheduling, StarPU scheduling policies need to be able to
  970. estimate in advance the duration of a task. This is done by giving to codelets a
  971. performance model. There are several kinds of performance models.
  972. @itemize
  973. @item
  974. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  975. see for instance
  976. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  977. @item
  978. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  979. given set of data input/output sizes, the performance will always be about the
  980. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  981. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  982. few different sets of data input/output sizes. StarPU will then keep record of
  983. the average time of previous executions on the various processing units, and use
  984. it as an estimation. History is done per task size, by using a hash of the input
  985. and ouput sizes as an index.
  986. It will also save it in @code{~/.starpu/sampling/codelets}
  987. for further executions, and can be observed by using the
  988. @code{starpu_perfmodel_display} command, or drawn by using
  989. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  990. share the models between machines (e.g. for a homogeneous cluster), use
  991. @code{export STARPU_HOSTNAME=some_global_name}. The following is a small code
  992. example.
  993. If e.g. the code is recompiled with other compilation options, or several
  994. variants of the code are used, the symbol string should be changed to reflect
  995. that, in order to recalibrate a new model from zero. The symbol string can even
  996. be constructed dynamically at execution time, as long as this is done before
  997. submitting any task using it.
  998. @cartouche
  999. @smallexample
  1000. static struct starpu_perfmodel_t mult_perf_model = @{
  1001. .type = STARPU_HISTORY_BASED,
  1002. .symbol = "mult_perf_model"
  1003. @};
  1004. starpu_codelet cl = @{
  1005. .where = STARPU_CPU,
  1006. .cpu_func = cpu_mult,
  1007. .nbuffers = 3,
  1008. /* for the scheduling policy to be able to use performance models */
  1009. .model = &mult_perf_model
  1010. @};
  1011. @end smallexample
  1012. @end cartouche
  1013. @item
  1014. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1015. model type). This still assumes performance regularity, but can work
  1016. with various data input sizes, by applying regression over observed
  1017. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1018. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1019. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  1020. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  1021. model for the @code{memset} operation.
  1022. @item
  1023. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1024. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1025. functions which return the expected duration of the task in micro-seconds, one
  1026. per architecture.
  1027. @end itemize
  1028. How to use schedulers which can benefit from such performance model is explained
  1029. in @ref{Task scheduling policy}.
  1030. The same can be done for task power consumption estimation, by setting the
  1031. @code{power_model} field the same way as the @code{model} field. Note: for
  1032. now, the application has to give to the power consumption performance model
  1033. a name which is different from the execution time performance model.
  1034. The application can request time estimations from the StarPU performance
  1035. models by filling a task structure as usual without actually submitting
  1036. it. The data handles can be created by calling @code{starpu_data_register}
  1037. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  1038. and the desired data sizes. The @code{starpu_task_expected_length} and
  1039. @code{starpu_task_expected_power} functions can then be called to get an
  1040. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  1041. needs to be called to destroy the dummy task afterwards. See
  1042. @code{tests/perfmodels/regression_based.c} for an example.
  1043. @node Theoretical lower bound on execution time
  1044. @section Theoretical lower bound on execution time
  1045. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1046. bound for the execution time of a whole set of tasks. See for
  1047. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1048. call @code{starpu_bound_start}, and after complete execution, call
  1049. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1050. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1051. problem corresponding to the schedule of your tasks. Run it through
  1052. @code{lp_solve} or any other linear programming solver, and that will give you a
  1053. lower bound for the total execution time of your tasks. If StarPU was compiled
  1054. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1055. solve it immediately and get the optimized minimum. Its @code{integer}
  1056. parameter allows to decide whether integer resolution should be computed
  1057. and returned.
  1058. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1059. dependencies into account. It must be understood that the linear programming
  1060. problem size is quadratic with the number of tasks and thus the time to solve it
  1061. will be very long, it could be minutes for just a few dozen tasks. You should
  1062. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1063. problem to MPS format and then use a better solver, @code{glpsol} might be
  1064. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1065. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1066. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1067. of @code{lp_solve}. For instance, we often just use
  1068. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1069. the @code{-gr} option can also be quite useful.
  1070. Setting @code{deps} to 0 will only take into account the actual computations
  1071. on processing units. It however still properly takes into account the varying
  1072. performances of kernels and processing units, which is quite more accurate than
  1073. just comparing StarPU performances with the fastest of the kernels being used.
  1074. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1075. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1076. tasks before less prioritized tasks, to check to which extend this results
  1077. to a less optimal solution. This increases even more computation time.
  1078. Note that for simplicity, all this however doesn't take into account data
  1079. transfers, which are assumed to be completely overlapped.
  1080. @node Insert Task Utility
  1081. @section Insert Task Utility
  1082. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1083. the creation and submission of tasks.
  1084. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1085. Create and submit a task corresponding to @var{cl} with the following
  1086. arguments. The argument list must be zero-terminated.
  1087. The arguments following the codelets can be of the following types:
  1088. @itemize
  1089. @item
  1090. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1091. @item
  1092. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1093. the size of the constant;
  1094. @item
  1095. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1096. @item
  1097. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1098. argument to the callback function;
  1099. @item
  1100. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1101. @end itemize
  1102. Parameters to be passed to the codelet implementation are defined
  1103. through the type @code{STARPU_VALUE}. The function
  1104. @code{starpu_unpack_cl_args} must be called within the codelet
  1105. implementation to retrieve them.
  1106. @end deftypefun
  1107. Here the implementation of the codelet:
  1108. @smallexample
  1109. void func_cpu(void *descr[], void *_args)
  1110. @{
  1111. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1112. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1113. int ifactor;
  1114. float ffactor;
  1115. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1116. *x0 = *x0 * ifactor;
  1117. *x1 = *x1 * ffactor;
  1118. @}
  1119. starpu_codelet mycodelet = @{
  1120. .where = STARPU_CPU,
  1121. .cpu_func = func_cpu,
  1122. .nbuffers = 2
  1123. @};
  1124. @end smallexample
  1125. And the call to the @code{starpu_insert_task} wrapper:
  1126. @smallexample
  1127. starpu_insert_task(&mycodelet,
  1128. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1129. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1130. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1131. 0);
  1132. @end smallexample
  1133. The call to @code{starpu_insert_task} is equivalent to the following
  1134. code:
  1135. @smallexample
  1136. struct starpu_task *task = starpu_task_create();
  1137. task->cl = &mycodelet;
  1138. task->buffers[0].handle = data_handles[0];
  1139. task->buffers[0].mode = STARPU_RW;
  1140. task->buffers[1].handle = data_handles[1];
  1141. task->buffers[1].mode = STARPU_RW;
  1142. char *arg_buffer;
  1143. size_t arg_buffer_size;
  1144. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1145. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1146. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1147. 0);
  1148. task->cl_arg = arg_buffer;
  1149. task->cl_arg_size = arg_buffer_size;
  1150. int ret = starpu_task_submit(task);
  1151. @end smallexample
  1152. If some part of the task insertion depends on the value of some computation,
  1153. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  1154. instance, assuming that the index variable @code{i} was registered as handle
  1155. @code{i_handle}:
  1156. @smallexample
  1157. /* Compute which portion we will work on, e.g. pivot */
  1158. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  1159. /* And submit the corresponding task */
  1160. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  1161. @end smallexample
  1162. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  1163. acquiring data @code{i} for the main application, and will execute the code
  1164. given as third parameter when it is acquired. In other words, as soon as the
  1165. value of @code{i} computed by the @code{which_index} codelet can be read, the
  1166. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  1167. be executed, and is allowed to read from @code{i} to use it e.g. as an index.
  1168. @node Debugging
  1169. @section Debugging
  1170. StarPU provides several tools to help debugging aplications. Execution traces
  1171. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1172. gdb helpers are also provided to show the whole StarPU state:
  1173. @smallexample
  1174. (gdb) source tools/gdbinit
  1175. (gdb) help starpu
  1176. @end smallexample
  1177. @node More examples
  1178. @section More examples
  1179. More examples are available in the StarPU sources in the @code{examples/}
  1180. directory. Simple examples include:
  1181. @table @asis
  1182. @item @code{incrementer/}:
  1183. Trivial incrementation test.
  1184. @item @code{basic_examples/}:
  1185. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1186. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1187. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1188. interface, and an example using the variable data interface.
  1189. @item @code{matvecmult/}:
  1190. OpenCL example from NVidia, adapted to StarPU.
  1191. @item @code{axpy/}:
  1192. AXPY CUBLAS operation adapted to StarPU.
  1193. @item @code{fortran/}:
  1194. Example of Fortran bindings.
  1195. @end table
  1196. More advanced examples include:
  1197. @table @asis
  1198. @item @code{filters/}:
  1199. Examples using filters, as shown in @ref{Partitioning Data}.
  1200. @item @code{lu/}:
  1201. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1202. @item @code{cholesky/}:
  1203. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1204. @end table
  1205. @c ---------------------------------------------------------------------
  1206. @c Performance options
  1207. @c ---------------------------------------------------------------------
  1208. @node Performance optimization
  1209. @chapter How to optimize performance with StarPU
  1210. TODO: improve!
  1211. @menu
  1212. * Data management::
  1213. * Task submission::
  1214. * Task priorities::
  1215. * Task scheduling policy::
  1216. * Performance model calibration::
  1217. * Task distribution vs Data transfer::
  1218. * Data prefetch::
  1219. * Power-based scheduling::
  1220. * Profiling::
  1221. * CUDA-specific optimizations::
  1222. @end menu
  1223. Simply encapsulating application kernels into tasks already permits to
  1224. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1225. few additional changes are needed.
  1226. @node Data management
  1227. @section Data management
  1228. When the application allocates data, whenever possible it should use the
  1229. @code{starpu_malloc} function, which will ask CUDA or
  1230. OpenCL to make the allocation itself and pin the corresponding allocated
  1231. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1232. transfer to overlap with computations.
  1233. By default, StarPU leaves replicates of data wherever they were used, in case they
  1234. will be re-used by other tasks, thus saving the data transfer time. When some
  1235. task modifies some data, all the other replicates are invalidated, and only the
  1236. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1237. that this data will not be re-used by further tasks, it should advise StarPU to
  1238. immediately replicate it to a desired list of memory nodes (given through a
  1239. bitmask). This can be understood like the write-through mode of CPU caches.
  1240. @example
  1241. starpu_data_set_wt_mask(img_handle, 1<<0);
  1242. @end example
  1243. will for instance request to always transfer a replicate into the main memory (node
  1244. 0), as bit 0 of the write-through bitmask is being set.
  1245. @node Task submission
  1246. @section Task submission
  1247. To let StarPU make online optimizations, tasks should be submitted
  1248. asynchronously as much as possible. Ideally, all the tasks should be
  1249. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1250. @code{starpu_data_unregister} be done to wait for
  1251. termination. StarPU will then be able to rework the whole schedule, overlap
  1252. computation with communication, manage accelerator local memory usage, etc.
  1253. @node Task priorities
  1254. @section Task priorities
  1255. By default, StarPU will consider the tasks in the order they are submitted by
  1256. the application. If the application programmer knows that some tasks should
  1257. be performed in priority (for instance because their output is needed by many
  1258. other tasks and may thus be a bottleneck if not executed early enough), the
  1259. @code{priority} field of the task structure should be set to transmit the
  1260. priority information to StarPU.
  1261. @node Task scheduling policy
  1262. @section Task scheduling policy
  1263. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1264. because it provides correct load balance even if the application codelets do not
  1265. have performance models. If your application codelets have performance models
  1266. (@pxref{Performance model example} for examples showing how to do it),
  1267. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1268. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1269. the list of available schedulers.
  1270. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1271. to work on. This however does not permit to prefetch data since the scheduling
  1272. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1273. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1274. priority (between -5 and 5).
  1275. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1276. overall performance.
  1277. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1278. default. When a worker becomes idle, it steals a task from the most loaded
  1279. worker.
  1280. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1281. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1282. termination time will be minimal.
  1283. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1284. into account data transfer time.
  1285. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1286. it also sorts tasks on per-worker queues by number of already-available data
  1287. buffers.
  1288. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1289. also supports arbitrary priority values.
  1290. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1291. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1292. parallel tasks (still experimental).
  1293. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1294. supports parallel tasks (still experimental).
  1295. @node Performance model calibration
  1296. @section Performance model calibration
  1297. Most schedulers are based on an estimation of codelet duration on each kind
  1298. of processing unit. For this to be possible, the application programmer needs
  1299. to configure a performance model for the codelets of the application (see
  1300. @ref{Performance model example} for instance). History-based performance models
  1301. use on-line calibration. StarPU will automatically calibrate codelets
  1302. which have never been calibrated yet, and save the result in
  1303. @code{~/.starpu/sampling/codelets}.
  1304. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1305. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1306. has not-so-stable performance. StarPU will force calibration (and thus ignore
  1307. the current result) until 10 (STARPU_CALIBRATION_MINIMUM) measurements have been
  1308. made on each architecture, to avoid badly scheduling tasks just because the
  1309. first measurements were not so good. Details on the current performance model status
  1310. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1311. option lists the available performance models, and the @code{-s} option permits
  1312. to choose the performance model to be displayed. The result looks like:
  1313. @example
  1314. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1315. performance model for cpu
  1316. # hash size mean dev n
  1317. 880805ba 98304 2.731309e+02 6.010210e+01 1240
  1318. b50b6605 393216 1.469926e+03 1.088828e+02 1240
  1319. 5c6c3401 1572864 1.125983e+04 3.265296e+03 1240
  1320. @end example
  1321. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1322. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1323. 1240 samples. It is a good idea to check this before doing actual performance
  1324. measurements.
  1325. A graph can be drawn by using the @code{starpu_perfmodel_plot}:
  1326. @example
  1327. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1328. 98304 393216 1572864
  1329. $ gnuplot starpu_starpu_dlu_lu_model_22.gp
  1330. $ gv regression_starpu_dlu_lu_model_22.eps
  1331. @end example
  1332. If a kernel source code was modified (e.g. performance improvement), the
  1333. calibration information is stale and should be dropped, to re-calibrate from
  1334. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1335. Note: due to CUDA limitations, to be able to measure kernel duration,
  1336. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1337. disables data transfer / computation overlapping, and should thus not be used
  1338. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1339. only if a performance-model-based scheduler is chosen.
  1340. @node Task distribution vs Data transfer
  1341. @section Task distribution vs Data transfer
  1342. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1343. thus needs to find a balance between both. The target function that the
  1344. @code{dmda} scheduler of StarPU
  1345. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1346. @code{T_execution} is the estimated execution time of the codelet (usually
  1347. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1348. latter is estimated based on bus calibration before execution start,
  1349. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1350. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1351. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1352. since during real application execution, contention makes transfer times bigger.
  1353. This is of course imprecise, but in practice, a rough estimation already gives
  1354. the good results that a precise estimation would give.
  1355. @node Data prefetch
  1356. @section Data prefetch
  1357. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1358. as soon as a scheduling decision is taken for a task, requests are issued to
  1359. transfer its required data to the target processing unit, if needeed, so that
  1360. when the processing unit actually starts the task, its data will hopefully be
  1361. already available and it will not have to wait for the transfer to finish.
  1362. The application may want to perform some manual prefetching, for several reasons
  1363. such as excluding initial data transfers from performance measurements, or
  1364. setting up an initial statically-computed data distribution on the machine
  1365. before submitting tasks, which will thus guide StarPU toward an initial task
  1366. distribution (since StarPU will try to avoid further transfers).
  1367. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1368. the handle and the desired target memory node.
  1369. @node Power-based scheduling
  1370. @section Power-based scheduling
  1371. If the application can provide some power performance model (through
  1372. the @code{power_model} field of the codelet structure), StarPU will
  1373. take it into account when distributing tasks. The target function that
  1374. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1375. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1376. is the estimated task consumption in Joules. To tune this parameter, use
  1377. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1378. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1379. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1380. This is however not sufficient to correctly optimize power: the scheduler would
  1381. simply tend to run all computations on the most energy-conservative processing
  1382. unit. To account for the consumption of the whole machine (including idle
  1383. processing units), the idle power of the machine should be given by setting
  1384. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1385. be obtained from the machine power supplier.
  1386. The power actually consumed by the total execution can be displayed by setting
  1387. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1388. @node Profiling
  1389. @section Profiling
  1390. A quick view of how many tasks each worker has executed can be obtained by setting
  1391. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1392. execution did happen on accelerators without penalizing performance with
  1393. the profiling overhead.
  1394. A quick view of how much data transfers have been issued can be obtained by setting
  1395. @code{export STARPU_BUS_STATS=1} .
  1396. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1397. calling @code{starpu_profiling_status_set} from the source code.
  1398. Statistics on the execution can then be obtained by using @code{export
  1399. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1400. More details on performance feedback are provided by the next chapter.
  1401. @node CUDA-specific optimizations
  1402. @section CUDA-specific optimizations
  1403. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1404. communications and the codelet computations if the application does not use a
  1405. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1406. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1407. operations. For instance:
  1408. @example
  1409. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1410. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1411. @end example
  1412. StarPU already does appropriate calls for the CUBLAS library.
  1413. Unfortunately, some CUDA libraries do not have stream variants of
  1414. kernels. That will lower the potential for overlapping.
  1415. @c ---------------------------------------------------------------------
  1416. @c Performance feedback
  1417. @c ---------------------------------------------------------------------
  1418. @node Performance feedback
  1419. @chapter Performance feedback
  1420. @menu
  1421. * On-line:: On-line performance feedback
  1422. * Off-line:: Off-line performance feedback
  1423. * Codelet performance:: Performance of codelets
  1424. @end menu
  1425. @node On-line
  1426. @section On-line performance feedback
  1427. @menu
  1428. * Enabling monitoring:: Enabling on-line performance monitoring
  1429. * Task feedback:: Per-task feedback
  1430. * Codelet feedback:: Per-codelet feedback
  1431. * Worker feedback:: Per-worker feedback
  1432. * Bus feedback:: Bus-related feedback
  1433. * StarPU-Top:: StarPU-Top interface
  1434. @end menu
  1435. @node Enabling monitoring
  1436. @subsection Enabling on-line performance monitoring
  1437. In order to enable online performance monitoring, the application can call
  1438. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1439. detect whether monitoring is already enabled or not by calling
  1440. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1441. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1442. can also be set to 1 to achieve the same effect.
  1443. Likewise, performance monitoring is stopped by calling
  1444. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1445. does not reset the performance counters so that the application may consult
  1446. them later on.
  1447. More details about the performance monitoring API are available in section
  1448. @ref{Profiling API}.
  1449. @node Task feedback
  1450. @subsection Per-task feedback
  1451. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1452. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1453. structure when a task terminates.
  1454. This structure is automatically destroyed when the task structure is destroyed,
  1455. either automatically or by calling @code{starpu_task_destroy}.
  1456. The @code{starpu_task_profiling_info} structure indicates the date when the
  1457. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1458. terminated (@code{end_time}), relative to the initialization of
  1459. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1460. that has executed the task (@code{workerid}).
  1461. These date are stored as @code{timespec} structures which the user may convert
  1462. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1463. function.
  1464. It it worth noting that the application may directly access this structure from
  1465. the callback executed at the end of the task. The @code{starpu_task} structure
  1466. associated to the callback currently being executed is indeed accessible with
  1467. the @code{starpu_get_current_task()} function.
  1468. @node Codelet feedback
  1469. @subsection Per-codelet feedback
  1470. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1471. an array of counters. The i-th entry of the array is incremented every time a
  1472. task implementing the codelet is executed on the i-th worker.
  1473. This array is not reinitialized when profiling is enabled or disabled.
  1474. @node Worker feedback
  1475. @subsection Per-worker feedback
  1476. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1477. function is a @code{starpu_worker_profiling_info} structure that gives
  1478. statistics about the specified worker. This structure specifies when StarPU
  1479. started collecting profiling information for that worker (@code{start_time}),
  1480. the duration of the profiling measurement interval (@code{total_time}), the
  1481. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1482. because there is no task to execute at all (@code{sleeping_time}), and the
  1483. number of tasks that were executed while profiling was enabled.
  1484. These values give an estimation of the proportion of time spent do real work,
  1485. and the time spent either sleeping because there are not enough executable
  1486. tasks or simply wasted in pure StarPU overhead.
  1487. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1488. information associated to a worker.
  1489. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1490. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1491. generate a graphic showing the evolution of these values during the time, for
  1492. the different workers.
  1493. @node Bus feedback
  1494. @subsection Bus-related feedback
  1495. TODO
  1496. @c how to enable/disable performance monitoring
  1497. @c what kind of information do we get ?
  1498. @node StarPU-Top
  1499. @subsection StarPU-Top interface
  1500. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  1501. application and permits the user to change parameters on the fly.
  1502. Variables to be monitored can be registered by calling the
  1503. @code{starputop_add_data_boolean}, @code{starputop_add_data_integer},
  1504. @code{starputop_add_data_float} functions, e.g.:
  1505. @example
  1506. starputop_data *data = starputop_add_data_integer("mynum", 0, 100, 1);
  1507. @end example
  1508. The application should then call @code{starputop_init_and_wait} to give its name
  1509. and wait for StarPU-Top to get a start request from the user. The name is used
  1510. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  1511. @example
  1512. starputop_init_and_wait("the application");
  1513. @end example
  1514. The new values can then be provided thanks to
  1515. @code{starputop_update_data_boolean}, @code{starputop_update_data_integer},
  1516. @code{starputop_update_data_float}, e.g.:
  1517. @example
  1518. starputop_update_data_integer(data, mynum);
  1519. @end example
  1520. Updateable parameters can be registered thanks to @code{starputop_register_parameter_boolean}, @code{starputop_register_parameter_integer}, @code{starputop_register_parameter_float}, e.g.:
  1521. @example
  1522. float apha;
  1523. starputop_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  1524. @end example
  1525. @code{modif_hook} is a function which will be called when the parameter is being modified, it can for instance print the new value:
  1526. @example
  1527. void modif_hook(struct starputop_param_t *d) @{
  1528. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  1529. @}
  1530. @end example
  1531. Task schedulers should notify StarPU-Top when it has decided when a task will be
  1532. scheduled, so that it can show it in its Gantt chart, for instance:
  1533. @example
  1534. starputop_task_prevision(task, workerid, begin, end);
  1535. @end example
  1536. Starting StarPU-Top and the application can be done two ways:
  1537. @itemize
  1538. @item The application is started by hand on some machine (and thus already
  1539. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  1540. checkbox should be unchecked, and the hostname and port (default is 2011) on
  1541. which the application is already running should be specified. Clicking on the
  1542. connection button will thus connect to the already-running application.
  1543. @item StarPU-Top is started first, and clicking on the connection button will
  1544. start the application itself (possibly on a remote machine). The SSH checkbox
  1545. should be checked, and a command line provided, e.g.:
  1546. @example
  1547. ssh myserver STARPU_SCHED=heft ./application
  1548. @end example
  1549. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  1550. @example
  1551. ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application
  1552. @end example
  1553. and "localhost" should be used as IP Address to connect to.
  1554. @end itemize
  1555. @node Off-line
  1556. @section Off-line performance feedback
  1557. @menu
  1558. * Generating traces:: Generating traces with FxT
  1559. * Gantt diagram:: Creating a Gantt Diagram
  1560. * DAG:: Creating a DAG with graphviz
  1561. * starpu-top:: Monitoring activity
  1562. @end menu
  1563. @node Generating traces
  1564. @subsection Generating traces with FxT
  1565. StarPU can use the FxT library (see
  1566. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1567. with a limited runtime overhead.
  1568. You can either get a tarball:
  1569. @example
  1570. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1571. @end example
  1572. or use the FxT library from CVS (autotools are required):
  1573. @example
  1574. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1575. % ./bootstrap
  1576. @end example
  1577. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1578. done following the standard procedure:
  1579. @example
  1580. % ./configure --prefix=$FXTDIR
  1581. % make
  1582. % make install
  1583. @end example
  1584. In order to have StarPU to generate traces, StarPU should be configured with
  1585. the @code{--with-fxt} option:
  1586. @example
  1587. $ ./configure --with-fxt=$FXTDIR
  1588. @end example
  1589. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1590. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1591. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1592. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1593. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1594. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1595. @code{/tmp/} directory by default, or by the directory specified by
  1596. the @code{STARPU_FXT_PREFIX} environment variable.
  1597. @node Gantt diagram
  1598. @subsection Creating a Gantt Diagram
  1599. When the FxT trace file @code{filename} has been generated, it is possible to
  1600. generate a trace in the Paje format by calling:
  1601. @example
  1602. % starpu_fxt_tool -i filename
  1603. @end example
  1604. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1605. to 1 before application execution will make StarPU do it automatically at
  1606. application shutdown.
  1607. This will create a @code{paje.trace} file in the current directory that can be
  1608. inspected with the ViTE trace visualizing open-source tool. More information
  1609. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1610. possible to open the @code{paje.trace} file with ViTE by using the following
  1611. command:
  1612. @example
  1613. % vite paje.trace
  1614. @end example
  1615. @node DAG
  1616. @subsection Creating a DAG with graphviz
  1617. When the FxT trace file @code{filename} has been generated, it is possible to
  1618. generate a task graph in the DOT format by calling:
  1619. @example
  1620. $ starpu_fxt_tool -i filename
  1621. @end example
  1622. This will create a @code{dag.dot} file in the current directory. This file is a
  1623. task graph described using the DOT language. It is possible to get a
  1624. graphical output of the graph by using the graphviz library:
  1625. @example
  1626. $ dot -Tpdf dag.dot -o output.pdf
  1627. @end example
  1628. @node starpu-top
  1629. @subsection Monitoring activity
  1630. When the FxT trace file @code{filename} has been generated, it is possible to
  1631. generate a activity trace by calling:
  1632. @example
  1633. $ starpu_fxt_tool -i filename
  1634. @end example
  1635. This will create an @code{activity.data} file in the current
  1636. directory. A profile of the application showing the activity of StarPU
  1637. during the execution of the program can be generated:
  1638. @example
  1639. $ starpu_top.sh activity.data
  1640. @end example
  1641. This will create a file named @code{activity.eps} in the current directory.
  1642. This picture is composed of two parts.
  1643. The first part shows the activity of the different workers. The green sections
  1644. indicate which proportion of the time was spent executed kernels on the
  1645. processing unit. The red sections indicate the proportion of time spent in
  1646. StartPU: an important overhead may indicate that the granularity may be too
  1647. low, and that bigger tasks may be appropriate to use the processing unit more
  1648. efficiently. The black sections indicate that the processing unit was blocked
  1649. because there was no task to process: this may indicate a lack of parallelism
  1650. which may be alleviated by creating more tasks when it is possible.
  1651. The second part of the @code{activity.eps} picture is a graph showing the
  1652. evolution of the number of tasks available in the system during the execution.
  1653. Ready tasks are shown in black, and tasks that are submitted but not
  1654. schedulable yet are shown in grey.
  1655. @node Codelet performance
  1656. @section Performance of codelets
  1657. The performance model of codelets can be examined by using the
  1658. @code{starpu_perfmodel_display} tool:
  1659. @example
  1660. $ starpu_perfmodel_display -l
  1661. file: <malloc_pinned.hannibal>
  1662. file: <starpu_slu_lu_model_21.hannibal>
  1663. file: <starpu_slu_lu_model_11.hannibal>
  1664. file: <starpu_slu_lu_model_22.hannibal>
  1665. file: <starpu_slu_lu_model_12.hannibal>
  1666. @end example
  1667. Here, the codelets of the lu example are available. We can examine the
  1668. performance of the 22 kernel:
  1669. @example
  1670. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1671. performance model for cpu
  1672. # hash size mean dev n
  1673. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1674. performance model for cuda_0
  1675. # hash size mean dev n
  1676. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1677. performance model for cuda_1
  1678. # hash size mean dev n
  1679. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1680. performance model for cuda_2
  1681. # hash size mean dev n
  1682. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1683. @end example
  1684. We can see that for the given size, over a sample of a few hundreds of
  1685. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1686. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1687. CPUs.
  1688. The @code{starpu_regression_display} tool does the same for regression-based
  1689. performance models. It also writes a @code{.gp} file in the current directory,
  1690. to be run in the @code{gnuplot} tool, which shows the corresponding curve.
  1691. @c ---------------------------------------------------------------------
  1692. @c MPI support
  1693. @c ---------------------------------------------------------------------
  1694. @node StarPU MPI support
  1695. @chapter StarPU MPI support
  1696. The integration of MPI transfers within task parallelism is done in a
  1697. very natural way by the means of asynchronous interactions between the
  1698. application and StarPU. This is implemented in a separate libstarpumpi library
  1699. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1700. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1701. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1702. @menu
  1703. * The API::
  1704. * Simple Example::
  1705. * MPI Insert Task Utility::
  1706. * MPI Collective Operations::
  1707. @end menu
  1708. @node The API
  1709. @section The API
  1710. @subsection Initialisation
  1711. @deftypefun int starpu_mpi_initialize (void)
  1712. Initializes the starpumpi library. This must be called between calling
  1713. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1714. function does not call @code{MPI_Init}, it should be called beforehand.
  1715. @end deftypefun
  1716. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1717. Initializes the starpumpi library. This must be called between calling
  1718. @code{starpu_init} and other @code{starpu_mpi} functions.
  1719. This function calls @code{MPI_Init}, and therefore should be prefered
  1720. to the previous one for MPI implementations which are not thread-safe.
  1721. Returns the current MPI node rank and world size.
  1722. @end deftypefun
  1723. @deftypefun int starpu_mpi_shutdown (void)
  1724. Cleans the starpumpi library. This must be called between calling
  1725. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1726. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1727. by calling @code{starpu_mpi_initialize_extended}.
  1728. @end deftypefun
  1729. @subsection Communication
  1730. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1731. @end deftypefun
  1732. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1733. @end deftypefun
  1734. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1735. @end deftypefun
  1736. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1737. @end deftypefun
  1738. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1739. @end deftypefun
  1740. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1741. @end deftypefun
  1742. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1743. @end deftypefun
  1744. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1745. @end deftypefun
  1746. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1747. @end deftypefun
  1748. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1749. When the transfer is completed, the tag is unlocked
  1750. @end deftypefun
  1751. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1752. @end deftypefun
  1753. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1754. Asynchronously send an array of buffers, and unlocks the tag once all
  1755. of them are transmitted.
  1756. @end deftypefun
  1757. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1758. @end deftypefun
  1759. @page
  1760. @node Simple Example
  1761. @section Simple Example
  1762. @cartouche
  1763. @smallexample
  1764. void increment_token(void)
  1765. @{
  1766. struct starpu_task *task = starpu_task_create();
  1767. task->cl = &increment_cl;
  1768. task->buffers[0].handle = token_handle;
  1769. task->buffers[0].mode = STARPU_RW;
  1770. starpu_task_submit(task);
  1771. @}
  1772. @end smallexample
  1773. @end cartouche
  1774. @cartouche
  1775. @smallexample
  1776. int main(int argc, char **argv)
  1777. @{
  1778. int rank, size;
  1779. starpu_init(NULL);
  1780. starpu_mpi_initialize_extended(&rank, &size);
  1781. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1782. unsigned nloops = NITER;
  1783. unsigned loop;
  1784. unsigned last_loop = nloops - 1;
  1785. unsigned last_rank = size - 1;
  1786. @end smallexample
  1787. @end cartouche
  1788. @cartouche
  1789. @smallexample
  1790. for (loop = 0; loop < nloops; loop++) @{
  1791. int tag = loop*size + rank;
  1792. if (loop == 0 && rank == 0)
  1793. @{
  1794. token = 0;
  1795. fprintf(stdout, "Start with token value %d\n", token);
  1796. @}
  1797. else
  1798. @{
  1799. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1800. MPI_COMM_WORLD, NULL, NULL);
  1801. @}
  1802. increment_token();
  1803. if (loop == last_loop && rank == last_rank)
  1804. @{
  1805. starpu_data_acquire(token_handle, STARPU_R);
  1806. fprintf(stdout, "Finished : token value %d\n", token);
  1807. starpu_data_release(token_handle);
  1808. @}
  1809. else
  1810. @{
  1811. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1812. MPI_COMM_WORLD, NULL, NULL);
  1813. @}
  1814. @}
  1815. starpu_task_wait_for_all();
  1816. @end smallexample
  1817. @end cartouche
  1818. @cartouche
  1819. @smallexample
  1820. starpu_mpi_shutdown();
  1821. starpu_shutdown();
  1822. if (rank == last_rank)
  1823. @{
  1824. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1825. STARPU_ASSERT(token == nloops*size);
  1826. @}
  1827. @end smallexample
  1828. @end cartouche
  1829. @page
  1830. @node MPI Insert Task Utility
  1831. @section MPI Insert Task Utility
  1832. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1833. Create and submit a task corresponding to @var{cl} with the following
  1834. arguments. The argument list must be zero-terminated.
  1835. The arguments following the codelets are the same types as for the
  1836. function @code{starpu_insert_task} defined in @ref{Insert Task
  1837. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1838. integer allows to specify the node to execute the codelet. It is also
  1839. possible to specify that the node owning a specific data will execute
  1840. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1841. handle.
  1842. The algorithm is as follows:
  1843. @enumerate
  1844. @item Find out whether we are to execute the codelet because we own the
  1845. data to be written to. If different tasks own data to be written to,
  1846. the argument @code{STARPU_EXECUTE_ON_NODE} or
  1847. @code{STARPU_EXECUTE_ON_DATA} should be used to specify the executing
  1848. task @code{ET}.
  1849. @item Send and receive data as requested. Tasks owning data which need
  1850. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1851. @item Execute the codelet. This is done by the task selected in the
  1852. 1st step of the algorithm.
  1853. @item In the case when different tasks own data to be written to, send
  1854. W data back to their owners.
  1855. @end enumerate
  1856. The algorithm also includes a cache mechanism that allows not to send
  1857. data twice to the same task, unless the data has been modified.
  1858. @end deftypefun
  1859. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1860. @end deftypefun
  1861. @page
  1862. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1863. first needs to define a distribution function which specifies the
  1864. locality of the data. Note that that distribution information needs to
  1865. be given to StarPU by calling @code{starpu_data_set_rank}.
  1866. @cartouche
  1867. @smallexample
  1868. /* Returns the MPI node number where data is */
  1869. int my_distrib(int x, int y, int nb_nodes) @{
  1870. /* Cyclic distrib */
  1871. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1872. // /* Linear distrib */
  1873. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1874. @}
  1875. @end smallexample
  1876. @end cartouche
  1877. Now the data can be registered within StarPU. Data which are not
  1878. owned but will be needed for computations can be registered through
  1879. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1880. StarPU will automatically allocate the memory when it is used for the
  1881. first time.
  1882. @cartouche
  1883. @smallexample
  1884. unsigned matrix[X][Y];
  1885. starpu_data_handle data_handles[X][Y];
  1886. for(x = 0; x < X; x++) @{
  1887. for (y = 0; y < Y; y++) @{
  1888. int mpi_rank = my_distrib(x, y, size);
  1889. if (mpi_rank == rank)
  1890. /* Owning data */
  1891. starpu_variable_data_register(&data_handles[x][y], 0,
  1892. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1893. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1894. /* I don't own that index, but will need it for my computations */
  1895. starpu_variable_data_register(&data_handles[x][y], -1,
  1896. (uintptr_t)NULL, sizeof(unsigned));
  1897. else
  1898. /* I know it's useless to allocate anything for this */
  1899. data_handles[x][y] = NULL;
  1900. if (data_handles[x][y])
  1901. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1902. @}
  1903. @}
  1904. @end smallexample
  1905. @end cartouche
  1906. Now @code{starpu_mpi_insert_task()} can be called for the different
  1907. steps of the application.
  1908. @cartouche
  1909. @smallexample
  1910. for(loop=0 ; loop<niter; loop++)
  1911. for (x = 1; x < X-1; x++)
  1912. for (y = 1; y < Y-1; y++)
  1913. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1914. STARPU_RW, data_handles[x][y],
  1915. STARPU_R, data_handles[x-1][y],
  1916. STARPU_R, data_handles[x+1][y],
  1917. STARPU_R, data_handles[x][y-1],
  1918. STARPU_R, data_handles[x][y+1],
  1919. 0);
  1920. starpu_task_wait_for_all();
  1921. @end smallexample
  1922. @end cartouche
  1923. @node MPI Collective Operations
  1924. @section MPI Collective Operations
  1925. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1926. Scatter data among processes of the communicator based on the ownership of
  1927. the data. For each data of the array @var{data_handles}, the
  1928. process @var{root} sends the data to the process owning this data.
  1929. Processes receiving data must have valid data handles to receive them.
  1930. @end deftypefun
  1931. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1932. Gather data from the different processes of the communicator onto the
  1933. process @var{root}. Each process owning data handle in the array
  1934. @var{data_handles} will send them to the process @var{root}. The
  1935. process @var{root} must have valid data handles to receive the data.
  1936. @end deftypefun
  1937. @page
  1938. @cartouche
  1939. @smallexample
  1940. if (rank == root)
  1941. @{
  1942. /* Allocate the vector */
  1943. vector = malloc(nblocks * sizeof(float *));
  1944. for(x=0 ; x<nblocks ; x++)
  1945. @{
  1946. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  1947. @}
  1948. @}
  1949. /* Allocate data handles and register data to StarPU */
  1950. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  1951. for(x = 0; x < nblocks ; x++)
  1952. @{
  1953. int mpi_rank = my_distrib(x, nodes);
  1954. if (rank == root) @{
  1955. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  1956. blocks_size, sizeof(float));
  1957. @}
  1958. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  1959. /* I own that index, or i will need it for my computations */
  1960. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  1961. block_size, sizeof(float));
  1962. @}
  1963. else @{
  1964. /* I know it's useless to allocate anything for this */
  1965. data_handles[x] = NULL;
  1966. @}
  1967. if (data_handles[x]) @{
  1968. starpu_data_set_rank(data_handles[x], mpi_rank);
  1969. @}
  1970. @}
  1971. /* Scatter the matrix among the nodes */
  1972. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  1973. /* Calculation */
  1974. for(x = 0; x < nblocks ; x++) @{
  1975. if (data_handles[x]) @{
  1976. int owner = starpu_data_get_rank(data_handles[x]);
  1977. if (owner == rank) @{
  1978. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  1979. @}
  1980. @}
  1981. @}
  1982. /* Gather the matrix on main node */
  1983. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  1984. @end smallexample
  1985. @end cartouche
  1986. @c ---------------------------------------------------------------------
  1987. @c Configuration options
  1988. @c ---------------------------------------------------------------------
  1989. @node Configuring StarPU
  1990. @chapter Configuring StarPU
  1991. @menu
  1992. * Compilation configuration::
  1993. * Execution configuration through environment variables::
  1994. @end menu
  1995. @node Compilation configuration
  1996. @section Compilation configuration
  1997. The following arguments can be given to the @code{configure} script.
  1998. @menu
  1999. * Common configuration::
  2000. * Configuring workers::
  2001. * Advanced configuration::
  2002. @end menu
  2003. @node Common configuration
  2004. @subsection Common configuration
  2005. @menu
  2006. * --enable-debug::
  2007. * --enable-fast::
  2008. * --enable-verbose::
  2009. * --enable-coverage::
  2010. @end menu
  2011. @node --enable-debug
  2012. @subsubsection @code{--enable-debug}
  2013. @table @asis
  2014. @item @emph{Description}:
  2015. Enable debugging messages.
  2016. @end table
  2017. @node --enable-fast
  2018. @subsubsection @code{--enable-fast}
  2019. @table @asis
  2020. @item @emph{Description}:
  2021. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  2022. @end table
  2023. @node --enable-verbose
  2024. @subsubsection @code{--enable-verbose}
  2025. @table @asis
  2026. @item @emph{Description}:
  2027. Augment the verbosity of the debugging messages. This can be disabled
  2028. at runtime by setting the environment variable @code{STARPU_SILENT} to
  2029. any value.
  2030. @smallexample
  2031. % STARPU_SILENT=1 ./vector_scal
  2032. @end smallexample
  2033. @end table
  2034. @node --enable-coverage
  2035. @subsubsection @code{--enable-coverage}
  2036. @table @asis
  2037. @item @emph{Description}:
  2038. Enable flags for the @code{gcov} coverage tool.
  2039. @end table
  2040. @node Configuring workers
  2041. @subsection Configuring workers
  2042. @menu
  2043. * --enable-maxcpus::
  2044. * --disable-cpu::
  2045. * --enable-maxcudadev::
  2046. * --disable-cuda::
  2047. * --with-cuda-dir::
  2048. * --with-cuda-include-dir::
  2049. * --with-cuda-lib-dir::
  2050. * --enable-maxopencldev::
  2051. * --disable-opencl::
  2052. * --with-opencl-dir::
  2053. * --with-opencl-include-dir::
  2054. * --with-opencl-lib-dir::
  2055. * --enable-gordon::
  2056. * --with-gordon-dir::
  2057. @end menu
  2058. @node --enable-maxcpus
  2059. @subsubsection @code{--enable-maxcpus=<number>}
  2060. @table @asis
  2061. @item @emph{Description}:
  2062. Defines the maximum number of CPU cores that StarPU will support, then
  2063. available as the @code{STARPU_MAXCPUS} macro.
  2064. @end table
  2065. @node --disable-cpu
  2066. @subsubsection @code{--disable-cpu}
  2067. @table @asis
  2068. @item @emph{Description}:
  2069. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  2070. @end table
  2071. @node --enable-maxcudadev
  2072. @subsubsection @code{--enable-maxcudadev=<number>}
  2073. @table @asis
  2074. @item @emph{Description}:
  2075. Defines the maximum number of CUDA devices that StarPU will support, then
  2076. available as the @code{STARPU_MAXCUDADEVS} macro.
  2077. @end table
  2078. @node --disable-cuda
  2079. @subsubsection @code{--disable-cuda}
  2080. @table @asis
  2081. @item @emph{Description}:
  2082. Disable the use of CUDA, even if a valid CUDA installation was detected.
  2083. @end table
  2084. @node --with-cuda-dir
  2085. @subsubsection @code{--with-cuda-dir=<path>}
  2086. @table @asis
  2087. @item @emph{Description}:
  2088. Specify the directory where CUDA is installed. This directory should notably contain
  2089. @code{include/cuda.h}.
  2090. @end table
  2091. @node --with-cuda-include-dir
  2092. @subsubsection @code{--with-cuda-include-dir=<path>}
  2093. @table @asis
  2094. @item @emph{Description}:
  2095. Specify the directory where CUDA headers are installed. This directory should
  2096. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  2097. value given to @code{--with-cuda-dir}.
  2098. @end table
  2099. @node --with-cuda-lib-dir
  2100. @subsubsection @code{--with-cuda-lib-dir=<path>}
  2101. @table @asis
  2102. @item @emph{Description}:
  2103. Specify the directory where the CUDA library is installed. This directory should
  2104. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2105. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2106. @end table
  2107. @node --enable-maxopencldev
  2108. @subsubsection @code{--enable-maxopencldev=<number>}
  2109. @table @asis
  2110. @item @emph{Description}:
  2111. Defines the maximum number of OpenCL devices that StarPU will support, then
  2112. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2113. @end table
  2114. @node --disable-opencl
  2115. @subsubsection @code{--disable-opencl}
  2116. @table @asis
  2117. @item @emph{Description}:
  2118. Disable the use of OpenCL, even if the SDK is detected.
  2119. @end table
  2120. @node --with-opencl-dir
  2121. @subsubsection @code{--with-opencl-dir=<path>}
  2122. @table @asis
  2123. @item @emph{Description}:
  2124. Specify the location of the OpenCL SDK. This directory should notably contain
  2125. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2126. @end table
  2127. @node --with-opencl-include-dir
  2128. @subsubsection @code{--with-opencl-include-dir=<path>}
  2129. @table @asis
  2130. @item @emph{Description}:
  2131. Specify the location of OpenCL headers. This directory should notably contain
  2132. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2133. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2134. @end table
  2135. @node --with-opencl-lib-dir
  2136. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2137. @table @asis
  2138. @item @emph{Description}:
  2139. Specify the location of the OpenCL library. This directory should notably
  2140. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2141. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2142. @end table
  2143. @node --enable-gordon
  2144. @subsubsection @code{--enable-gordon}
  2145. @table @asis
  2146. @item @emph{Description}:
  2147. Enable the use of the Gordon runtime for Cell SPUs.
  2148. @c TODO: rather default to enabled when detected
  2149. @end table
  2150. @node --with-gordon-dir
  2151. @subsubsection @code{--with-gordon-dir=<path>}
  2152. @table @asis
  2153. @item @emph{Description}:
  2154. Specify the location of the Gordon SDK.
  2155. @end table
  2156. @node Advanced configuration
  2157. @subsection Advanced configuration
  2158. @menu
  2159. * --enable-perf-debug::
  2160. * --enable-model-debug::
  2161. * --enable-stats::
  2162. * --enable-maxbuffers::
  2163. * --enable-allocation-cache::
  2164. * --enable-opengl-render::
  2165. * --enable-blas-lib::
  2166. * --with-magma::
  2167. * --with-fxt::
  2168. * --with-perf-model-dir::
  2169. * --with-mpicc::
  2170. * --with-goto-dir::
  2171. * --with-atlas-dir::
  2172. * --with-mkl-cflags::
  2173. * --with-mkl-ldflags::
  2174. @end menu
  2175. @node --enable-perf-debug
  2176. @subsubsection @code{--enable-perf-debug}
  2177. @table @asis
  2178. @item @emph{Description}:
  2179. Enable performance debugging through gprof.
  2180. @end table
  2181. @node --enable-model-debug
  2182. @subsubsection @code{--enable-model-debug}
  2183. @table @asis
  2184. @item @emph{Description}:
  2185. Enable performance model debugging.
  2186. @end table
  2187. @node --enable-stats
  2188. @subsubsection @code{--enable-stats}
  2189. @table @asis
  2190. @item @emph{Description}:
  2191. Enable statistics.
  2192. @end table
  2193. @node --enable-maxbuffers
  2194. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2195. @table @asis
  2196. @item @emph{Description}:
  2197. Define the maximum number of buffers that tasks will be able to take
  2198. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2199. @end table
  2200. @node --enable-allocation-cache
  2201. @subsubsection @code{--enable-allocation-cache}
  2202. @table @asis
  2203. @item @emph{Description}:
  2204. Enable the use of a data allocation cache to avoid the cost of it with
  2205. CUDA. Still experimental.
  2206. @end table
  2207. @node --enable-opengl-render
  2208. @subsubsection @code{--enable-opengl-render}
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. Enable the use of OpenGL for the rendering of some examples.
  2212. @c TODO: rather default to enabled when detected
  2213. @end table
  2214. @node --enable-blas-lib
  2215. @subsubsection @code{--enable-blas-lib=<name>}
  2216. @table @asis
  2217. @item @emph{Description}:
  2218. Specify the blas library to be used by some of the examples. The
  2219. library has to be 'atlas' or 'goto'.
  2220. @end table
  2221. @node --with-magma
  2222. @subsubsection @code{--with-magma=<path>}
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. Specify where magma is installed. This directory should notably contain
  2226. @code{include/magmablas.h}.
  2227. @end table
  2228. @node --with-fxt
  2229. @subsubsection @code{--with-fxt=<path>}
  2230. @table @asis
  2231. @item @emph{Description}:
  2232. Specify the location of FxT (for generating traces and rendering them
  2233. using ViTE). This directory should notably contain
  2234. @code{include/fxt/fxt.h}.
  2235. @c TODO add ref to other section
  2236. @end table
  2237. @node --with-perf-model-dir
  2238. @subsubsection @code{--with-perf-model-dir=<dir>}
  2239. @table @asis
  2240. @item @emph{Description}:
  2241. Specify where performance models should be stored (instead of defaulting to the
  2242. current user's home).
  2243. @end table
  2244. @node --with-mpicc
  2245. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2246. @table @asis
  2247. @item @emph{Description}:
  2248. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2249. @end table
  2250. @node --with-goto-dir
  2251. @subsubsection @code{--with-goto-dir=<dir>}
  2252. @table @asis
  2253. @item @emph{Description}:
  2254. Specify the location of GotoBLAS.
  2255. @end table
  2256. @node --with-atlas-dir
  2257. @subsubsection @code{--with-atlas-dir=<dir>}
  2258. @table @asis
  2259. @item @emph{Description}:
  2260. Specify the location of ATLAS. This directory should notably contain
  2261. @code{include/cblas.h}.
  2262. @end table
  2263. @node --with-mkl-cflags
  2264. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2265. @table @asis
  2266. @item @emph{Description}:
  2267. Specify the compilation flags for the MKL Library.
  2268. @end table
  2269. @node --with-mkl-ldflags
  2270. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2271. @table @asis
  2272. @item @emph{Description}:
  2273. Specify the linking flags for the MKL Library. Note that the
  2274. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2275. website provides a script to determine the linking flags.
  2276. @end table
  2277. @c ---------------------------------------------------------------------
  2278. @c Environment variables
  2279. @c ---------------------------------------------------------------------
  2280. @node Execution configuration through environment variables
  2281. @section Execution configuration through environment variables
  2282. @menu
  2283. * Workers:: Configuring workers
  2284. * Scheduling:: Configuring the Scheduling engine
  2285. * Misc:: Miscellaneous and debug
  2286. @end menu
  2287. Note: the values given in @code{starpu_conf} structure passed when
  2288. calling @code{starpu_init} will override the values of the environment
  2289. variables.
  2290. @node Workers
  2291. @subsection Configuring workers
  2292. @menu
  2293. * STARPU_NCPUS:: Number of CPU workers
  2294. * STARPU_NCUDA:: Number of CUDA workers
  2295. * STARPU_NOPENCL:: Number of OpenCL workers
  2296. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2297. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2298. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2299. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2300. @end menu
  2301. @node STARPU_NCPUS
  2302. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2303. @table @asis
  2304. @item @emph{Description}:
  2305. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2306. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2307. the accelerators.
  2308. @end table
  2309. @node STARPU_NCUDA
  2310. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2311. @table @asis
  2312. @item @emph{Description}:
  2313. Specify the number of CUDA devices that StarPU can use. If
  2314. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2315. possible to select which CUDA devices should be used by the means of the
  2316. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2317. create as many CUDA workers as there are CUDA devices.
  2318. @end table
  2319. @node STARPU_NOPENCL
  2320. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2321. @table @asis
  2322. @item @emph{Description}:
  2323. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2324. @end table
  2325. @node STARPU_NGORDON
  2326. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2327. @table @asis
  2328. @item @emph{Description}:
  2329. Specify the number of SPUs that StarPU can use.
  2330. @end table
  2331. @node STARPU_WORKERS_CPUID
  2332. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2336. specifies on which logical CPU the different workers should be
  2337. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2338. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2339. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2340. determined by the OS, or provided by the @code{hwloc} library in case it is
  2341. available.
  2342. Note that the first workers correspond to the CUDA workers, then come the
  2343. OpenCL and the SPU, and finally the CPU workers. For example if
  2344. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2345. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2346. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2347. the logical CPUs #1 and #3 will be used by the CPU workers.
  2348. If the number of workers is larger than the array given in
  2349. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2350. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2351. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2352. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2353. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2354. @end table
  2355. @node STARPU_WORKERS_CUDAID
  2356. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2357. @table @asis
  2358. @item @emph{Description}:
  2359. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2360. possible to select which CUDA devices should be used by StarPU. On a machine
  2361. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2362. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2363. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2364. the one reported by CUDA).
  2365. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2366. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2367. @end table
  2368. @node STARPU_WORKERS_OPENCLID
  2369. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2370. @table @asis
  2371. @item @emph{Description}:
  2372. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2373. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2374. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2375. @end table
  2376. @node Scheduling
  2377. @subsection Configuring the Scheduling engine
  2378. @menu
  2379. * STARPU_SCHED:: Scheduling policy
  2380. * STARPU_CALIBRATE:: Calibrate performance models
  2381. * STARPU_PREFETCH:: Use data prefetch
  2382. * STARPU_SCHED_ALPHA:: Computation factor
  2383. * STARPU_SCHED_BETA:: Communication factor
  2384. @end menu
  2385. @node STARPU_SCHED
  2386. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2387. @table @asis
  2388. @item @emph{Description}:
  2389. This chooses between the different scheduling policies proposed by StarPU: work
  2390. random, stealing, greedy, with performance models, etc.
  2391. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2392. @end table
  2393. @node STARPU_CALIBRATE
  2394. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2395. @table @asis
  2396. @item @emph{Description}:
  2397. If this variable is set to 1, the performance models are calibrated during
  2398. the execution. If it is set to 2, the previous values are dropped to restart
  2399. calibration from scratch. Setting this variable to 0 disable calibration, this
  2400. is the default behaviour.
  2401. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2402. @end table
  2403. @node STARPU_PREFETCH
  2404. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2405. @table @asis
  2406. @item @emph{Description}:
  2407. This variable indicates whether data prefetching should be enabled (0 means
  2408. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2409. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2410. advance, so that data is already present on the GPU when the task starts. As a
  2411. result, computation and data transfers are overlapped.
  2412. Note that prefetching is enabled by default in StarPU.
  2413. @end table
  2414. @node STARPU_SCHED_ALPHA
  2415. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2416. @table @asis
  2417. @item @emph{Description}:
  2418. To estimate the cost of a task StarPU takes into account the estimated
  2419. computation time (obtained thanks to performance models). The alpha factor is
  2420. the coefficient to be applied to it before adding it to the communication part.
  2421. @end table
  2422. @node STARPU_SCHED_BETA
  2423. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. To estimate the cost of a task StarPU takes into account the estimated
  2427. data transfer time (obtained thanks to performance models). The beta factor is
  2428. the coefficient to be applied to it before adding it to the computation part.
  2429. @end table
  2430. @node Misc
  2431. @subsection Miscellaneous and debug
  2432. @menu
  2433. * STARPU_SILENT:: Disable verbose mode
  2434. * STARPU_LOGFILENAME:: Select debug file name
  2435. * STARPU_FXT_PREFIX:: FxT trace location
  2436. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2437. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2438. @end menu
  2439. @node STARPU_SILENT
  2440. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2441. @table @asis
  2442. @item @emph{Description}:
  2443. This variable allows to disable verbose mode at runtime when StarPU
  2444. has been configured with the option @code{--enable-verbose}.
  2445. @end table
  2446. @node STARPU_LOGFILENAME
  2447. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2448. @table @asis
  2449. @item @emph{Description}:
  2450. This variable specifies in which file the debugging output should be saved to.
  2451. @end table
  2452. @node STARPU_FXT_PREFIX
  2453. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2454. @table @asis
  2455. @item @emph{Description}
  2456. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2457. @end table
  2458. @node STARPU_LIMIT_GPU_MEM
  2459. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2460. @table @asis
  2461. @item @emph{Description}
  2462. This variable specifies the maximum number of megabytes that should be
  2463. available to the application on each GPUs. In case this value is smaller than
  2464. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2465. on the device. This variable is intended to be used for experimental purposes
  2466. as it emulates devices that have a limited amount of memory.
  2467. @end table
  2468. @node STARPU_GENERATE_TRACE
  2469. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2470. @table @asis
  2471. @item @emph{Description}
  2472. When set to 1, this variable indicates that StarPU should automatically
  2473. generate a Paje trace when starpu_shutdown is called.
  2474. @end table
  2475. @c ---------------------------------------------------------------------
  2476. @c StarPU API
  2477. @c ---------------------------------------------------------------------
  2478. @node StarPU API
  2479. @chapter StarPU API
  2480. @menu
  2481. * Initialization and Termination:: Initialization and Termination methods
  2482. * Workers' Properties:: Methods to enumerate workers' properties
  2483. * Data Library:: Methods to manipulate data
  2484. * Data Interfaces::
  2485. * Data Partition::
  2486. * Codelets and Tasks:: Methods to construct tasks
  2487. * Explicit Dependencies:: Explicit Dependencies
  2488. * Implicit Data Dependencies:: Implicit Data Dependencies
  2489. * Performance Model API::
  2490. * Profiling API:: Profiling API
  2491. * CUDA extensions:: CUDA extensions
  2492. * OpenCL extensions:: OpenCL extensions
  2493. * Cell extensions:: Cell extensions
  2494. * Miscellaneous helpers::
  2495. @end menu
  2496. @node Initialization and Termination
  2497. @section Initialization and Termination
  2498. @menu
  2499. * starpu_init:: Initialize StarPU
  2500. * struct starpu_conf:: StarPU runtime configuration
  2501. * starpu_conf_init:: Initialize starpu_conf structure
  2502. * starpu_shutdown:: Terminate StarPU
  2503. @end menu
  2504. @node starpu_init
  2505. @subsection @code{starpu_init} -- Initialize StarPU
  2506. @table @asis
  2507. @item @emph{Description}:
  2508. This is StarPU initialization method, which must be called prior to any other
  2509. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2510. policy, number of cores, ...) by passing a non-null argument. Default
  2511. configuration is used if the passed argument is @code{NULL}.
  2512. @item @emph{Return value}:
  2513. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2514. indicates that no worker was available (so that StarPU was not initialized).
  2515. @item @emph{Prototype}:
  2516. @code{int starpu_init(struct starpu_conf *conf);}
  2517. @end table
  2518. @node struct starpu_conf
  2519. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2520. @table @asis
  2521. @item @emph{Description}:
  2522. This structure is passed to the @code{starpu_init} function in order
  2523. to configure StarPU.
  2524. When the default value is used, StarPU automatically selects the number
  2525. of processing units and takes the default scheduling policy. This parameter
  2526. overwrites the equivalent environment variables.
  2527. @item @emph{Fields}:
  2528. @table @asis
  2529. @item @code{sched_policy_name} (default = NULL):
  2530. This is the name of the scheduling policy. This can also be specified with the
  2531. @code{STARPU_SCHED} environment variable.
  2532. @item @code{sched_policy} (default = NULL):
  2533. This is the definition of the scheduling policy. This field is ignored
  2534. if @code{sched_policy_name} is set.
  2535. @item @code{ncpus} (default = -1):
  2536. This is the number of CPU cores that StarPU can use. This can also be
  2537. specified with the @code{STARPU_NCPUS} environment variable.
  2538. @item @code{ncuda} (default = -1):
  2539. This is the number of CUDA devices that StarPU can use. This can also be
  2540. specified with the @code{STARPU_NCUDA} environment variable.
  2541. @item @code{nopencl} (default = -1):
  2542. This is the number of OpenCL devices that StarPU can use. This can also be
  2543. specified with the @code{STARPU_NOPENCL} environment variable.
  2544. @item @code{nspus} (default = -1):
  2545. This is the number of Cell SPUs that StarPU can use. This can also be
  2546. specified with the @code{STARPU_NGORDON} environment variable.
  2547. @item @code{use_explicit_workers_bindid} (default = 0)
  2548. If this flag is set, the @code{workers_bindid} array indicates where the
  2549. different workers are bound, otherwise StarPU automatically selects where to
  2550. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2551. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2552. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2553. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2554. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2555. where to bind the different workers. The i-th entry of the
  2556. @code{workers_bindid} indicates the logical identifier of the processor which
  2557. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2558. either determined by the OS, or provided by the @code{hwloc} library in case it
  2559. is available.
  2560. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2561. ignored.
  2562. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2563. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2564. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2565. CUDA devices in a round-robin fashion.
  2566. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2567. ignored.
  2568. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2569. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2570. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2571. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2572. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2573. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2574. OpenCL devices in a round-robin fashion.
  2575. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2576. @item @code{calibrate} (default = 0):
  2577. If this flag is set, StarPU will calibrate the performance models when
  2578. executing tasks. If this value is equal to -1, the default value is used. The
  2579. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2580. variable when it is set.
  2581. @end table
  2582. @end table
  2583. @node starpu_conf_init
  2584. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2585. @table @asis
  2586. This function initializes the @code{starpu_conf} structure passed as argument
  2587. with the default values. In case some configuration parameters are already
  2588. specified through environment variables, @code{starpu_conf_init} initializes
  2589. the fields of the structure according to the environment variables. For
  2590. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2591. @code{.ncuda} field of the structure passed as argument.
  2592. @item @emph{Return value}:
  2593. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2594. indicates that the argument was NULL.
  2595. @item @emph{Prototype}:
  2596. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2597. @end table
  2598. @node starpu_shutdown
  2599. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2600. @deftypefun void starpu_shutdown (void)
  2601. This is StarPU termination method. It must be called at the end of the
  2602. application: statistics and other post-mortem debugging information are not
  2603. guaranteed to be available until this method has been called.
  2604. @end deftypefun
  2605. @node Workers' Properties
  2606. @section Workers' Properties
  2607. @menu
  2608. * starpu_worker_get_count:: Get the number of processing units
  2609. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2610. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2611. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2612. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2613. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2614. * starpu_worker_get_id:: Get the identifier of the current worker
  2615. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2616. * starpu_worker_get_devid:: Get the device identifier of a worker
  2617. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2618. * starpu_worker_get_name:: Get the name of a worker
  2619. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2620. @end menu
  2621. @node starpu_worker_get_count
  2622. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2623. @deftypefun unsigned starpu_worker_get_count (void)
  2624. This function returns the number of workers (i.e. processing units executing
  2625. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2626. @end deftypefun
  2627. @node starpu_worker_get_count_by_type
  2628. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2629. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2630. Returns the number of workers of the type indicated by the argument. A positive
  2631. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2632. the type is not valid otherwise.
  2633. @end deftypefun
  2634. @node starpu_cpu_worker_get_count
  2635. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2636. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2637. This function returns the number of CPUs controlled by StarPU. The returned
  2638. value should be at most @code{STARPU_MAXCPUS}.
  2639. @end deftypefun
  2640. @node starpu_cuda_worker_get_count
  2641. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2642. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2643. This function returns the number of CUDA devices controlled by StarPU. The returned
  2644. value should be at most @code{STARPU_MAXCUDADEVS}.
  2645. @end deftypefun
  2646. @node starpu_opencl_worker_get_count
  2647. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2648. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2649. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2650. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2651. @end deftypefun
  2652. @node starpu_spu_worker_get_count
  2653. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2654. @deftypefun unsigned starpu_spu_worker_get_count (void)
  2655. This function returns the number of Cell SPUs controlled by StarPU.
  2656. @end deftypefun
  2657. @node starpu_worker_get_id
  2658. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2659. @deftypefun int starpu_worker_get_id (void)
  2660. This function returns the identifier of the worker associated to the calling
  2661. thread. The returned value is either -1 if the current context is not a StarPU
  2662. worker (i.e. when called from the application outside a task or a callback), or
  2663. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2664. @end deftypefun
  2665. @node starpu_worker_get_ids_by_type
  2666. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2667. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2668. Fill the workerids array with the identifiers of the workers that have the type
  2669. indicated in the first argument. The maxsize argument indicates the size of the
  2670. workids array. The returned value gives the number of identifiers that were put
  2671. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2672. workers with the appropriate type: in that case, the array is filled with the
  2673. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2674. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2675. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2676. @end deftypefun
  2677. @node starpu_worker_get_devid
  2678. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2679. @deftypefun int starpu_worker_get_devid (int @var{id})
  2680. This functions returns the device id of the worker associated to an identifier
  2681. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2682. CUDA worker, this device identifier is the logical device identifier exposed by
  2683. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2684. identifier of a CPU worker is the logical identifier of the core on which the
  2685. worker was bound; this identifier is either provided by the OS or by the
  2686. @code{hwloc} library in case it is available.
  2687. @end deftypefun
  2688. @node starpu_worker_get_type
  2689. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2690. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2691. This function returns the type of worker associated to an identifier (as
  2692. returned by the @code{starpu_worker_get_id} function). The returned value
  2693. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2694. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2695. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2696. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2697. identifier is unspecified.
  2698. @end deftypefun
  2699. @node starpu_worker_get_name
  2700. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2701. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2702. StarPU associates a unique human readable string to each processing unit. This
  2703. function copies at most the @var{maxlen} first bytes of the unique string
  2704. associated to a worker identified by its identifier @var{id} into the
  2705. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2706. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2707. function on an invalid identifier results in an unspecified behaviour.
  2708. @end deftypefun
  2709. @node starpu_worker_get_memory_node
  2710. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2711. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2712. This function returns the identifier of the memory node associated to the
  2713. worker identified by @var{workerid}.
  2714. @end deftypefun
  2715. @node Data Library
  2716. @section Data Library
  2717. This section describes the data management facilities provided by StarPU.
  2718. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2719. design their own data interfaces if required.
  2720. @menu
  2721. * starpu_malloc:: Allocate data and pin it
  2722. * starpu_access_mode:: Data access mode
  2723. * unsigned memory_node:: Memory node
  2724. * starpu_data_handle:: StarPU opaque data handle
  2725. * void *interface:: StarPU data interface
  2726. * starpu_data_register:: Register a piece of data to StarPU
  2727. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2728. * starpu_data_invalidate:: Invalidate all data replicates
  2729. * starpu_data_acquire:: Access registered data from the application
  2730. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2731. * STARPU_DATA_ACQUIRE_CB:: Access registered data from the application asynchronously, macro
  2732. * starpu_data_release:: Release registered data from the application
  2733. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2734. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2735. @end menu
  2736. @node starpu_malloc
  2737. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2738. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2739. This function allocates data of the given size in main memory. It will also try to pin it in
  2740. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2741. thus permit data transfer and computation overlapping. The allocated buffer must
  2742. be freed thanks to the @code{starpu_free} function.
  2743. @end deftypefun
  2744. @node starpu_access_mode
  2745. @subsection @code{starpu_access_mode} -- Data access mode
  2746. This datatype describes a data access mode. The different available modes are:
  2747. @table @asis
  2748. @table @asis
  2749. @item @code{STARPU_R} read-only mode.
  2750. @item @code{STARPU_W} write-only mode.
  2751. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2752. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2753. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2754. @end table
  2755. @end table
  2756. @node unsigned memory_node
  2757. @subsection @code{unsigned memory_node} -- Memory node
  2758. @table @asis
  2759. @item @emph{Description}:
  2760. Every worker is associated to a memory node which is a logical abstraction of
  2761. the address space from which the processing unit gets its data. For instance,
  2762. the memory node associated to the different CPU workers represents main memory
  2763. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2764. Every memory node is identified by a logical index which is accessible from the
  2765. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2766. to StarPU, the specified memory node indicates where the piece of data
  2767. initially resides (we also call this memory node the home node of a piece of
  2768. data).
  2769. @end table
  2770. @node starpu_data_handle
  2771. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2772. @table @asis
  2773. @item @emph{Description}:
  2774. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2775. data. Once a piece of data has been registered to StarPU, it is associated to a
  2776. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2777. over the entire machine, so that we can maintain data consistency and locate
  2778. data replicates for instance.
  2779. @end table
  2780. @node void *interface
  2781. @subsection @code{void *interface} -- StarPU data interface
  2782. @table @asis
  2783. @item @emph{Description}:
  2784. Data management is done at a high-level in StarPU: rather than accessing a mere
  2785. list of contiguous buffers, the tasks may manipulate data that are described by
  2786. a high-level construct which we call data interface.
  2787. An example of data interface is the "vector" interface which describes a
  2788. contiguous data array on a spefic memory node. This interface is a simple
  2789. structure containing the number of elements in the array, the size of the
  2790. elements, and the address of the array in the appropriate address space (this
  2791. address may be invalid if there is no valid copy of the array in the memory
  2792. node). More informations on the data interfaces provided by StarPU are
  2793. given in @ref{Data Interfaces}.
  2794. When a piece of data managed by StarPU is used by a task, the task
  2795. implementation is given a pointer to an interface describing a valid copy of
  2796. the data that is accessible from the current processing unit.
  2797. @end table
  2798. @node starpu_data_register
  2799. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2800. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2801. Register a piece of data into the handle located at the @var{handleptr}
  2802. address. The @var{interface} buffer contains the initial description of the
  2803. data in the home node. The @var{ops} argument is a pointer to a structure
  2804. describing the different methods used to manipulate this type of interface. See
  2805. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2806. If @code{home_node} is -1, StarPU will automatically
  2807. allocate the memory when it is used for the
  2808. first time in write-only mode. Once such data handle has been automatically
  2809. allocated, it is possible to access it using any access mode.
  2810. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2811. matrix) which can be registered by the means of helper functions (e.g.
  2812. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2813. @end deftypefun
  2814. @node starpu_data_unregister
  2815. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2816. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2817. This function unregisters a data handle from StarPU. If the data was
  2818. automatically allocated by StarPU because the home node was -1, all
  2819. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2820. is put back into the home node in the buffer that was initially registered.
  2821. Using a data handle that has been unregistered from StarPU results in an
  2822. undefined behaviour.
  2823. @end deftypefun
  2824. @node starpu_data_invalidate
  2825. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2826. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2827. Destroy all replicates of the data handle. After data invalidation, the first
  2828. access to the handle must be performed in write-only mode. Accessing an
  2829. invalidated data in read-mode results in undefined behaviour.
  2830. @end deftypefun
  2831. @c TODO create a specific sections about user interaction with the DSM ?
  2832. @node starpu_data_acquire
  2833. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2834. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2835. The application must call this function prior to accessing registered data from
  2836. main memory outside tasks. StarPU ensures that the application will get an
  2837. up-to-date copy of the data in main memory located where the data was
  2838. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2839. be consistent with the access mode specified in the @var{mode} argument.
  2840. @code{starpu_data_release} must be called once the application does not need to
  2841. access the piece of data anymore. Note that implicit data
  2842. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2843. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2844. the data, unless that they have not been disabled explictly by calling
  2845. @code{starpu_data_set_default_sequential_consistency_flag} or
  2846. @code{starpu_data_set_sequential_consistency_flag}.
  2847. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2848. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2849. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2850. @end deftypefun
  2851. @node starpu_data_acquire_cb
  2852. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2853. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2854. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2855. @code{starpu_data_release}. When the data specified in the first argument is
  2856. available in the appropriate access mode, the callback function is executed.
  2857. The application may access the requested data during the execution of this
  2858. callback. The callback function must call @code{starpu_data_release} once the
  2859. application does not need to access the piece of data anymore.
  2860. Note that implicit data dependencies are also enforced by
  2861. @code{starpu_data_acquire_cb} in case they are enabled.
  2862. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2863. be called from task callbacks. Upon successful completion, this function
  2864. returns 0.
  2865. @end deftypefun
  2866. @node STARPU_DATA_ACQUIRE_CB
  2867. @subsection @code{STARPU_DATA_ACQUIRE_CB} -- Access registered data from the application asynchronously, macro
  2868. @deftypefun STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  2869. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  2870. except that the code to be executed in a callback is directly provided as a
  2871. macro parameter, and the data handle is automatically released after it. This
  2872. permit to easily execute code which depends on the value of some registered
  2873. data. This is non-blocking too and may be called from task callbacks.
  2874. @end deftypefun
  2875. @node starpu_data_release
  2876. @subsection @code{starpu_data_release} -- Release registered data from the application
  2877. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2878. This function releases the piece of data acquired by the application either by
  2879. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2880. @end deftypefun
  2881. @node starpu_data_set_wt_mask
  2882. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2883. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2884. This function sets the write-through mask of a given data, i.e. a bitmask of
  2885. nodes where the data should be always replicated after modification.
  2886. @end deftypefun
  2887. @node starpu_data_prefetch_on_node
  2888. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2889. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2890. Issue a prefetch request for a given data to a given node, i.e.
  2891. requests that the data be replicated to the given node, so that it is available
  2892. there for tasks. If the @var{async} parameter is 0, the call will block until
  2893. the transfer is achieved, else the call will return as soon as the request is
  2894. scheduled (which may however have to wait for a task completion).
  2895. @end deftypefun
  2896. @node Data Interfaces
  2897. @section Data Interfaces
  2898. @menu
  2899. * Variable Interface::
  2900. * Vector Interface::
  2901. * Matrix Interface::
  2902. * 3D Matrix Interface::
  2903. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2904. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2905. @end menu
  2906. @node Variable Interface
  2907. @subsection Variable Interface
  2908. @table @asis
  2909. @item @emph{Description}:
  2910. This variant of @code{starpu_data_register} uses the variable interface,
  2911. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2912. and @code{elemsize} is the size of the variable.
  2913. @item @emph{Prototype}:
  2914. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2915. uint32_t home_node,
  2916. uintptr_t ptr, size_t elemsize);}
  2917. @item @emph{Example}:
  2918. @cartouche
  2919. @smallexample
  2920. float var;
  2921. starpu_data_handle var_handle;
  2922. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2923. @end smallexample
  2924. @end cartouche
  2925. @end table
  2926. @node Vector Interface
  2927. @subsection Vector Interface
  2928. @table @asis
  2929. @item @emph{Description}:
  2930. This variant of @code{starpu_data_register} uses the vector interface,
  2931. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2932. element in the home node. @code{nx} is the number of elements in the vector.
  2933. @code{elemsize} is the size of each element.
  2934. @item @emph{Prototype}:
  2935. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2936. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2937. @item @emph{Example}:
  2938. @cartouche
  2939. @smallexample
  2940. float vector[NX];
  2941. starpu_data_handle vector_handle;
  2942. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2943. sizeof(vector[0]));
  2944. @end smallexample
  2945. @end cartouche
  2946. @end table
  2947. @node Matrix Interface
  2948. @subsection Matrix Interface
  2949. @table @asis
  2950. @item @emph{Description}:
  2951. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2952. matrices of elements. @code{ptr} is the address of the first element in the home
  2953. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2954. of elements in a row (this can be different from @code{ld} if there are extra
  2955. elements for alignment for instance). @code{ny} is the number of rows.
  2956. @code{elemsize} is the size of each element.
  2957. @item @emph{Prototype}:
  2958. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2959. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2960. uint32_t ny, size_t elemsize);}
  2961. @item @emph{Example}:
  2962. @cartouche
  2963. @smallexample
  2964. float *matrix;
  2965. starpu_data_handle matrix_handle;
  2966. matrix = (float*)malloc(width * height * sizeof(float));
  2967. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2968. width, width, height, sizeof(float));
  2969. @end smallexample
  2970. @end cartouche
  2971. @end table
  2972. @node 3D Matrix Interface
  2973. @subsection 3D Matrix Interface
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2977. @code{ptr} is the address of the array of first element in the home node.
  2978. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2979. of rows between z planes. @code{nx} is the number of elements in a row (this
  2980. can be different from @code{ldy} if there are extra elements for alignment
  2981. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2982. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2983. each element.
  2984. @item @emph{Prototype}:
  2985. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2986. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2987. uint32_t ny, uint32_t nz, size_t elemsize);}
  2988. @item @emph{Example}:
  2989. @cartouche
  2990. @smallexample
  2991. float *block;
  2992. starpu_data_handle block_handle;
  2993. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2994. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2995. nx, nx*ny, nx, ny, nz, sizeof(float));
  2996. @end smallexample
  2997. @end cartouche
  2998. @end table
  2999. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  3000. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  3001. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  3002. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  3003. TODO
  3004. @end deftypefun
  3005. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  3006. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  3007. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  3008. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  3009. TODO
  3010. @end deftypefun
  3011. @node Data Partition
  3012. @section Data Partition
  3013. @menu
  3014. * struct starpu_data_filter:: StarPU filter structure
  3015. * starpu_data_partition:: Partition Data
  3016. * starpu_data_unpartition:: Unpartition Data
  3017. * starpu_data_get_nb_children::
  3018. * starpu_data_get_sub_data::
  3019. * Predefined filter functions::
  3020. @end menu
  3021. @node struct starpu_data_filter
  3022. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  3023. @table @asis
  3024. @item @emph{Description}:
  3025. The filter structure describes a data partitioning operation, to be given to the
  3026. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  3027. @item @emph{Fields}:
  3028. @table @asis
  3029. @item @code{filter_func}:
  3030. This function fills the @code{child_interface} structure with interface
  3031. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  3032. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  3033. @item @code{nchildren}:
  3034. This is the number of parts to partition the data into.
  3035. @item @code{get_nchildren}:
  3036. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  3037. children depends on the actual data (e.g. the number of blocks in a sparse
  3038. matrix).
  3039. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  3040. @item @code{get_child_ops}:
  3041. In case the resulting children use a different data interface, this function
  3042. returns which interface is used by child number @code{id}.
  3043. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  3044. @item @code{filter_arg}:
  3045. Some filters take an addition parameter, but this is usually unused.
  3046. @item @code{filter_arg_ptr}:
  3047. Some filters take an additional array parameter like the sizes of the parts, but
  3048. this is usually unused.
  3049. @end table
  3050. @end table
  3051. @node starpu_data_partition
  3052. @subsection starpu_data_partition -- Partition Data
  3053. @table @asis
  3054. @item @emph{Description}:
  3055. This requests partitioning one StarPU data @code{initial_handle} into several
  3056. subdata according to the filter @code{f}
  3057. @item @emph{Prototype}:
  3058. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  3059. @item @emph{Example}:
  3060. @cartouche
  3061. @smallexample
  3062. struct starpu_data_filter f = @{
  3063. .filter_func = starpu_vertical_block_filter_func,
  3064. .nchildren = nslicesx,
  3065. .get_nchildren = NULL,
  3066. .get_child_ops = NULL
  3067. @};
  3068. starpu_data_partition(A_handle, &f);
  3069. @end smallexample
  3070. @end cartouche
  3071. @end table
  3072. @node starpu_data_unpartition
  3073. @subsection starpu_data_unpartition -- Unpartition data
  3074. @table @asis
  3075. @item @emph{Description}:
  3076. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  3077. collected back into one big piece in the @code{gathering_node} (usually 0).
  3078. @item @emph{Prototype}:
  3079. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  3080. @item @emph{Example}:
  3081. @cartouche
  3082. @smallexample
  3083. starpu_data_unpartition(A_handle, 0);
  3084. @end smallexample
  3085. @end cartouche
  3086. @end table
  3087. @node starpu_data_get_nb_children
  3088. @subsection starpu_data_get_nb_children
  3089. @table @asis
  3090. @item @emph{Description}:
  3091. This function returns the number of children.
  3092. @item @emph{Return value}:
  3093. The number of children.
  3094. @item @emph{Prototype}:
  3095. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  3096. @end table
  3097. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  3098. @node starpu_data_get_sub_data
  3099. @subsection starpu_data_get_sub_data
  3100. @table @asis
  3101. @item @emph{Description}:
  3102. After partitioning a StarPU data by applying a filter,
  3103. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  3104. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  3105. is the number of filters to traverse (in case several filters have been applied,
  3106. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  3107. parameters are the indexes.
  3108. @item @emph{Return value}:
  3109. A handle to the subdata.
  3110. @item @emph{Prototype}:
  3111. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  3112. @item @emph{Example}:
  3113. @cartouche
  3114. @smallexample
  3115. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3116. @end smallexample
  3117. @end cartouche
  3118. @end table
  3119. @node Predefined filter functions
  3120. @subsection Predefined filter functions
  3121. @menu
  3122. * Partitioning BCSR Data::
  3123. * Partitioning BLAS interface::
  3124. * Partitioning Vector Data::
  3125. * Partitioning Block Data::
  3126. @end menu
  3127. This section gives a partial list of the predefined partitioning functions.
  3128. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3129. list can be found in @code{starpu_data_filters.h} .
  3130. @node Partitioning BCSR Data
  3131. @subsubsection Partitioning BCSR Data
  3132. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3133. TODO
  3134. @end deftypefun
  3135. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3136. TODO
  3137. @end deftypefun
  3138. @node Partitioning BLAS interface
  3139. @subsubsection Partitioning BLAS interface
  3140. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3141. This partitions a dense Matrix into horizontal blocks.
  3142. @end deftypefun
  3143. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3144. This partitions a dense Matrix into vertical blocks.
  3145. @end deftypefun
  3146. @node Partitioning Vector Data
  3147. @subsubsection Partitioning Vector Data
  3148. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3149. This partitions a vector into blocks of the same size.
  3150. @end deftypefun
  3151. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3152. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  3153. @end deftypefun
  3154. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3155. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  3156. @end deftypefun
  3157. @node Partitioning Block Data
  3158. @subsubsection Partitioning Block Data
  3159. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3160. This partitions a 3D matrix along the X axis.
  3161. @end deftypefun
  3162. @node Codelets and Tasks
  3163. @section Codelets and Tasks
  3164. This section describes the interface to manipulate codelets and tasks.
  3165. @deftp {Data Type} {struct starpu_codelet}
  3166. The codelet structure describes a kernel that is possibly implemented on various
  3167. targets. For compatibility, make sure to initialize the whole structure to zero.
  3168. @table @asis
  3169. @item @code{where}
  3170. Indicates which types of processing units are able to execute the codelet.
  3171. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3172. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3173. indicates that it is only available on Cell SPUs.
  3174. @item @code{cpu_func} (optional)
  3175. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3176. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3177. argument being the array of data managed by the data management library, and
  3178. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3179. field of the @code{starpu_task} structure.
  3180. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3181. the @code{where} field, it must be non-null otherwise.
  3182. @item @code{cuda_func} (optional)
  3183. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3184. must be a host-function written in the CUDA runtime API}. Its prototype must
  3185. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3186. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3187. field, it must be non-null otherwise.
  3188. @item @code{opencl_func} (optional)
  3189. Is a function pointer to the OpenCL implementation of the codelet. Its
  3190. prototype must be:
  3191. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3192. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3193. @code{where} field, it must be non-null otherwise.
  3194. @item @code{gordon_func} (optional)
  3195. This is the index of the Cell SPU implementation within the Gordon library.
  3196. See Gordon documentation for more details on how to register a kernel and
  3197. retrieve its index.
  3198. @item @code{nbuffers}
  3199. Specifies the number of arguments taken by the codelet. These arguments are
  3200. managed by the DSM and are accessed from the @code{void *buffers[]}
  3201. array. The constant argument passed with the @code{cl_arg} field of the
  3202. @code{starpu_task} structure is not counted in this number. This value should
  3203. not be above @code{STARPU_NMAXBUFS}.
  3204. @item @code{model} (optional)
  3205. This is a pointer to the task duration performance model associated to this
  3206. codelet. This optional field is ignored when set to @code{NULL}.
  3207. TODO
  3208. @item @code{power_model} (optional)
  3209. This is a pointer to the task power consumption performance model associated
  3210. to this codelet. This optional field is ignored when set to @code{NULL}.
  3211. In the case of parallel codelets, this has to account for all processing units
  3212. involved in the parallel execution.
  3213. TODO
  3214. @end table
  3215. @end deftp
  3216. @deftp {Data Type} {struct starpu_task}
  3217. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3218. processing units managed by StarPU. It instantiates a codelet. It can either be
  3219. allocated dynamically with the @code{starpu_task_create} method, or declared
  3220. statically. In the latter case, the programmer has to zero the
  3221. @code{starpu_task} structure and to fill the different fields properly. The
  3222. indicated default values correspond to the configuration of a task allocated
  3223. with @code{starpu_task_create}.
  3224. @table @asis
  3225. @item @code{cl}
  3226. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3227. describes where the kernel should be executed, and supplies the appropriate
  3228. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3229. such empty tasks can be useful for synchronization purposes.
  3230. @item @code{buffers}
  3231. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3232. different pieces of data accessed by the task, and how they should be accessed.
  3233. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3234. @code{handle} field specifies the handle of the piece of data, and the
  3235. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3236. of entries in this array must be specified in the @code{nbuffers} field of the
  3237. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3238. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3239. option when configuring StarPU.
  3240. @item @code{cl_arg} (optional; default: @code{NULL})
  3241. This pointer is passed to the codelet through the second argument
  3242. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3243. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3244. argument.
  3245. @item @code{cl_arg_size} (optional, Cell-specific)
  3246. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3247. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3248. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3249. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3250. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3251. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3252. codelets, where the @code{cl_arg} pointer is given as such.
  3253. @item @code{callback_func} (optional) (default: @code{NULL})
  3254. This is a function pointer of prototype @code{void (*f)(void *)} which
  3255. specifies a possible callback. If this pointer is non-null, the callback
  3256. function is executed @emph{on the host} after the execution of the task. The
  3257. callback is passed the value contained in the @code{callback_arg} field. No
  3258. callback is executed if the field is set to @code{NULL}.
  3259. @item @code{callback_arg} (optional) (default: @code{NULL})
  3260. This is the pointer passed to the callback function. This field is ignored if
  3261. the @code{callback_func} is set to @code{NULL}.
  3262. @item @code{use_tag} (optional) (default: @code{0})
  3263. If set, this flag indicates that the task should be associated with the tag
  3264. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3265. with the task and to express task dependencies easily.
  3266. @item @code{tag_id}
  3267. This fields contains the tag associated to the task if the @code{use_tag} field
  3268. was set, it is ignored otherwise.
  3269. @item @code{synchronous}
  3270. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3271. returns only when the task has been executed (or if no worker is able to
  3272. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3273. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3274. This field indicates a level of priority for the task. This is an integer value
  3275. that must be set between the return values of the
  3276. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3277. and that of the @code{starpu_sched_get_max_priority} for the most important
  3278. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3279. are provided for convenience and respectively returns value of
  3280. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3281. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3282. order to allow static task initialization. Scheduling strategies that take
  3283. priorities into account can use this parameter to take better scheduling
  3284. decisions, but the scheduling policy may also ignore it.
  3285. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3286. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3287. task to the worker specified by the @code{workerid} field.
  3288. @item @code{workerid} (optional)
  3289. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3290. which is the identifier of the worker that should process this task (as
  3291. returned by @code{starpu_worker_get_id}). This field is ignored if
  3292. @code{execute_on_a_specific_worker} field is set to 0.
  3293. @item @code{detach} (optional) (default: @code{1})
  3294. If this flag is set, it is not possible to synchronize with the task
  3295. by the means of @code{starpu_task_wait} later on. Internal data structures
  3296. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3297. flag is not set.
  3298. @item @code{destroy} (optional) (default: @code{1})
  3299. If this flag is set, the task structure will automatically be freed, either
  3300. after the execution of the callback if the task is detached, or during
  3301. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3302. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3303. called explicitly. Setting this flag for a statically allocated task structure
  3304. will result in undefined behaviour.
  3305. @item @code{predicted} (output field)
  3306. Predicted duration of the task. This field is only set if the scheduling
  3307. strategy used performance models.
  3308. @end table
  3309. @end deftp
  3310. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3311. Initialize @var{task} with default values. This function is implicitly
  3312. called by @code{starpu_task_create}. By default, tasks initialized with
  3313. @code{starpu_task_init} must be deinitialized explicitly with
  3314. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3315. constant @code{STARPU_TASK_INITIALIZER}.
  3316. @end deftypefun
  3317. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3318. Allocate a task structure and initialize it with default values. Tasks
  3319. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3320. task is terminated. If the destroy flag is explicitly unset, the resources used
  3321. by the task are freed by calling
  3322. @code{starpu_task_destroy}.
  3323. @end deftypefun
  3324. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3325. Release all the structures automatically allocated to execute @var{task}. This is
  3326. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3327. freed. This should be used for statically allocated tasks for instance.
  3328. @end deftypefun
  3329. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3330. Free the resource allocated during @code{starpu_task_create} and
  3331. associated with @var{task}. This function can be called automatically
  3332. after the execution of a task by setting the @code{destroy} flag of the
  3333. @code{starpu_task} structure (default behaviour). Calling this function
  3334. on a statically allocated task results in an undefined behaviour.
  3335. @end deftypefun
  3336. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3337. This function blocks until @var{task} has been executed. It is not possible to
  3338. synchronize with a task more than once. It is not possible to wait for
  3339. synchronous or detached tasks.
  3340. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3341. indicates that the specified task was either synchronous or detached.
  3342. @end deftypefun
  3343. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3344. This function submits @var{task} to StarPU. Calling this function does
  3345. not mean that the task will be executed immediately as there can be data or task
  3346. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3347. scheduling this task with respect to such dependencies.
  3348. This function returns immediately if the @code{synchronous} field of the
  3349. @code{starpu_task} structure was set to 0, and block until the termination of
  3350. the task otherwise. It is also possible to synchronize the application with
  3351. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3352. function for instance.
  3353. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3354. means that there is no worker able to process this task (e.g. there is no GPU
  3355. available and this task is only implemented for CUDA devices).
  3356. @end deftypefun
  3357. @deftypefun int starpu_task_wait_for_all (void)
  3358. This function blocks until all the tasks that were submitted are terminated.
  3359. @end deftypefun
  3360. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3361. This function returns the task currently executed by the worker, or
  3362. NULL if it is called either from a thread that is not a task or simply
  3363. because there is no task being executed at the moment.
  3364. @end deftypefun
  3365. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3366. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3367. @end deftypefun
  3368. @c Callbacks : what can we put in callbacks ?
  3369. @node Explicit Dependencies
  3370. @section Explicit Dependencies
  3371. @menu
  3372. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3373. * starpu_tag_t:: Task logical identifier
  3374. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3375. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3376. * starpu_tag_wait:: Block until a Tag is terminated
  3377. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3378. * starpu_tag_remove:: Destroy a Tag
  3379. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3380. @end menu
  3381. @node starpu_task_declare_deps_array
  3382. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3383. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3384. Declare task dependencies between a @var{task} and an array of tasks of length
  3385. @var{ndeps}. This function must be called prior to the submission of the task,
  3386. but it may called after the submission or the execution of the tasks in the
  3387. array provided the tasks are still valid (ie. they were not automatically
  3388. destroyed). Calling this function on a task that was already submitted or with
  3389. an entry of @var{task_array} that is not a valid task anymore results in an
  3390. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3391. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3392. same task, in this case, the dependencies are added. It is possible to have
  3393. redundancy in the task dependencies.
  3394. @end deftypefun
  3395. @node starpu_tag_t
  3396. @subsection @code{starpu_tag_t} -- Task logical identifier
  3397. @table @asis
  3398. @item @emph{Description}:
  3399. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3400. dependencies between tasks by the means of those tags. To do so, fill the
  3401. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3402. be arbitrary) and set the @code{use_tag} field to 1.
  3403. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3404. not be started until the tasks which holds the declared dependency tags are
  3405. completed.
  3406. @end table
  3407. @node starpu_tag_declare_deps
  3408. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3409. @table @asis
  3410. @item @emph{Description}:
  3411. Specify the dependencies of the task identified by tag @code{id}. The first
  3412. argument specifies the tag which is configured, the second argument gives the
  3413. number of tag(s) on which @code{id} depends. The following arguments are the
  3414. tags which have to be terminated to unlock the task.
  3415. This function must be called before the associated task is submitted to StarPU
  3416. with @code{starpu_task_submit}.
  3417. @item @emph{Remark}
  3418. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3419. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3420. typically need to be explicitly casted. Using the
  3421. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3422. @item @emph{Prototype}:
  3423. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3424. @item @emph{Example}:
  3425. @cartouche
  3426. @example
  3427. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3428. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3429. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3430. @end example
  3431. @end cartouche
  3432. @end table
  3433. @node starpu_tag_declare_deps_array
  3434. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3435. @table @asis
  3436. @item @emph{Description}:
  3437. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3438. does not take a variable number of arguments but an array of tags of size
  3439. @code{ndeps}.
  3440. @item @emph{Prototype}:
  3441. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3442. @item @emph{Example}:
  3443. @cartouche
  3444. @example
  3445. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3446. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3447. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3448. @end example
  3449. @end cartouche
  3450. @end table
  3451. @node starpu_tag_wait
  3452. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3453. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3454. This function blocks until the task associated to tag @var{id} has been
  3455. executed. This is a blocking call which must therefore not be called within
  3456. tasks or callbacks, but only from the application directly. It is possible to
  3457. synchronize with the same tag multiple times, as long as the
  3458. @code{starpu_tag_remove} function is not called. Note that it is still
  3459. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3460. data structure was freed (e.g. if the @code{destroy} flag of the
  3461. @code{starpu_task} was enabled).
  3462. @end deftypefun
  3463. @node starpu_tag_wait_array
  3464. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3465. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3466. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3467. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3468. terminated.
  3469. @end deftypefun
  3470. @node starpu_tag_remove
  3471. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3472. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3473. This function releases the resources associated to tag @var{id}. It can be
  3474. called once the corresponding task has been executed and when there is
  3475. no other tag that depend on this tag anymore.
  3476. @end deftypefun
  3477. @node starpu_tag_notify_from_apps
  3478. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3479. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3480. This function explicitly unlocks tag @var{id}. It may be useful in the
  3481. case of applications which execute part of their computation outside StarPU
  3482. tasks (e.g. third-party libraries). It is also provided as a
  3483. convenient tool for the programmer, for instance to entirely construct the task
  3484. DAG before actually giving StarPU the opportunity to execute the tasks.
  3485. @end deftypefun
  3486. @node Implicit Data Dependencies
  3487. @section Implicit Data Dependencies
  3488. @menu
  3489. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3490. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3491. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3492. @end menu
  3493. In this section, we describe how StarPU makes it possible to insert implicit
  3494. task dependencies in order to enforce sequential data consistency. When this
  3495. data consistency is enabled on a specific data handle, any data access will
  3496. appear as sequentially consistent from the application. For instance, if the
  3497. application submits two tasks that access the same piece of data in read-only
  3498. mode, and then a third task that access it in write mode, dependencies will be
  3499. added between the two first tasks and the third one. Implicit data dependencies
  3500. are also inserted in the case of data accesses from the application.
  3501. @node starpu_data_set_default_sequential_consistency_flag
  3502. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3503. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3504. Set the default sequential consistency flag. If a non-zero value is passed, a
  3505. sequential data consistency will be enforced for all handles registered after
  3506. this function call, otherwise it is disabled. By default, StarPU enables
  3507. sequential data consistency. It is also possible to select the data consistency
  3508. mode of a specific data handle with the
  3509. @code{starpu_data_set_sequential_consistency_flag} function.
  3510. @end deftypefun
  3511. @node starpu_data_get_default_sequential_consistency_flag
  3512. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3513. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3514. This function returns the current default sequential consistency flag.
  3515. @end deftypefun
  3516. @node starpu_data_set_sequential_consistency_flag
  3517. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3518. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3519. Select the data consistency mode associated to a data handle. The consistency
  3520. mode set using this function has the priority over the default mode which can
  3521. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3522. @end deftypefun
  3523. @node Performance Model API
  3524. @section Performance Model API
  3525. @menu
  3526. * starpu_load_history_debug::
  3527. * starpu_perfmodel_debugfilepath::
  3528. * starpu_perfmodel_get_arch_name::
  3529. * starpu_force_bus_sampling::
  3530. @end menu
  3531. @node starpu_load_history_debug
  3532. @subsection @code{starpu_load_history_debug}
  3533. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3534. TODO
  3535. @end deftypefun
  3536. @node starpu_perfmodel_debugfilepath
  3537. @subsection @code{starpu_perfmodel_debugfilepath}
  3538. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3539. TODO
  3540. @end deftypefun
  3541. @node starpu_perfmodel_get_arch_name
  3542. @subsection @code{starpu_perfmodel_get_arch_name}
  3543. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3544. TODO
  3545. @end deftypefun
  3546. @node starpu_force_bus_sampling
  3547. @subsection @code{starpu_force_bus_sampling}
  3548. @deftypefun void starpu_force_bus_sampling (void)
  3549. This forces sampling the bus performance model again.
  3550. @end deftypefun
  3551. @node Profiling API
  3552. @section Profiling API
  3553. @menu
  3554. * starpu_profiling_status_set:: starpu_profiling_status_set
  3555. * starpu_profiling_status_get:: starpu_profiling_status_get
  3556. * struct starpu_task_profiling_info:: task profiling information
  3557. * struct starpu_worker_profiling_info:: worker profiling information
  3558. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3559. * struct starpu_bus_profiling_info:: bus profiling information
  3560. * starpu_bus_get_count::
  3561. * starpu_bus_get_id::
  3562. * starpu_bus_get_src::
  3563. * starpu_bus_get_dst::
  3564. * starpu_timing_timespec_delay_us::
  3565. * starpu_timing_timespec_to_us::
  3566. * starpu_bus_profiling_helper_display_summary::
  3567. * starpu_worker_profiling_helper_display_summary::
  3568. @end menu
  3569. @node starpu_profiling_status_set
  3570. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3571. @table @asis
  3572. @item @emph{Description}:
  3573. Thie function sets the profiling status. Profiling is activated by passing
  3574. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3575. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3576. resets all profiling measurements. When profiling is enabled, the
  3577. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3578. to a valid @code{struct starpu_task_profiling_info} structure containing
  3579. information about the execution of the task.
  3580. @item @emph{Return value}:
  3581. Negative return values indicate an error, otherwise the previous status is
  3582. returned.
  3583. @item @emph{Prototype}:
  3584. @code{int starpu_profiling_status_set(int status);}
  3585. @end table
  3586. @node starpu_profiling_status_get
  3587. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3588. @deftypefun int starpu_profiling_status_get (void)
  3589. Return the current profiling status or a negative value in case there was an error.
  3590. @end deftypefun
  3591. @node struct starpu_task_profiling_info
  3592. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3593. @table @asis
  3594. @item @emph{Description}:
  3595. This structure contains information about the execution of a task. It is
  3596. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3597. structure if profiling was enabled.
  3598. @item @emph{Fields}:
  3599. @table @asis
  3600. @item @code{submit_time}:
  3601. Date of task submission (relative to the initialization of StarPU).
  3602. @item @code{start_time}:
  3603. Date of task execution beginning (relative to the initialization of StarPU).
  3604. @item @code{end_time}:
  3605. Date of task execution termination (relative to the initialization of StarPU).
  3606. @item @code{workerid}:
  3607. Identifier of the worker which has executed the task.
  3608. @end table
  3609. @end table
  3610. @node struct starpu_worker_profiling_info
  3611. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3612. @table @asis
  3613. @item @emph{Description}:
  3614. This structure contains the profiling information associated to a worker.
  3615. @item @emph{Fields}:
  3616. @table @asis
  3617. @item @code{start_time}:
  3618. Starting date for the reported profiling measurements.
  3619. @item @code{total_time}:
  3620. Duration of the profiling measurement interval.
  3621. @item @code{executing_time}:
  3622. Time spent by the worker to execute tasks during the profiling measurement interval.
  3623. @item @code{sleeping_time}:
  3624. Time spent idling by the worker during the profiling measurement interval.
  3625. @item @code{executed_tasks}:
  3626. Number of tasks executed by the worker during the profiling measurement interval.
  3627. @end table
  3628. @end table
  3629. @node starpu_worker_get_profiling_info
  3630. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3631. @table @asis
  3632. @item @emph{Description}:
  3633. Get the profiling info associated to the worker identified by @code{workerid},
  3634. and reset the profiling measurements. If the @code{worker_info} argument is
  3635. NULL, only reset the counters associated to worker @code{workerid}.
  3636. @item @emph{Return value}:
  3637. Upon successful completion, this function returns 0. Otherwise, a negative
  3638. value is returned.
  3639. @item @emph{Prototype}:
  3640. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3641. @end table
  3642. @node struct starpu_bus_profiling_info
  3643. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3644. @table @asis
  3645. @item @emph{Description}:
  3646. TODO
  3647. @item @emph{Fields}:
  3648. @table @asis
  3649. @item @code{start_time}:
  3650. TODO
  3651. @item @code{total_time}:
  3652. TODO
  3653. @item @code{transferred_bytes}:
  3654. TODO
  3655. @item @code{transfer_count}:
  3656. TODO
  3657. @end table
  3658. @end table
  3659. @node starpu_bus_get_count
  3660. @subsection @code{starpu_bus_get_count}
  3661. @deftypefun int starpu_bus_get_count (void)
  3662. TODO
  3663. @end deftypefun
  3664. @node starpu_bus_get_id
  3665. @subsection @code{starpu_bus_get_id}
  3666. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3667. TODO
  3668. @end deftypefun
  3669. @node starpu_bus_get_src
  3670. @subsection @code{starpu_bus_get_src}
  3671. @deftypefun int starpu_bus_get_src (int @var{busid})
  3672. TODO
  3673. @end deftypefun
  3674. @node starpu_bus_get_dst
  3675. @subsection @code{starpu_bus_get_dst}
  3676. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3677. TODO
  3678. @end deftypefun
  3679. @node starpu_timing_timespec_delay_us
  3680. @subsection @code{starpu_timing_timespec_delay_us}
  3681. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3682. TODO
  3683. @end deftypefun
  3684. @node starpu_timing_timespec_to_us
  3685. @subsection @code{starpu_timing_timespec_to_us}
  3686. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3687. TODO
  3688. @end deftypefun
  3689. @node starpu_bus_profiling_helper_display_summary
  3690. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3691. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3692. TODO
  3693. @end deftypefun
  3694. @node starpu_worker_profiling_helper_display_summary
  3695. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3696. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3697. TODO
  3698. @end deftypefun
  3699. @node CUDA extensions
  3700. @section CUDA extensions
  3701. @c void starpu_malloc(float **A, size_t dim);
  3702. @menu
  3703. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3704. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3705. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3706. @end menu
  3707. @node starpu_cuda_get_local_stream
  3708. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3709. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3710. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3711. function is only provided for convenience so that programmers can easily use
  3712. asynchronous operations within codelets without having to create a stream by
  3713. hand. Note that the application is not forced to use the stream provided by
  3714. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3715. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3716. the likelihood of having all transfers overlapped.
  3717. @end deftypefun
  3718. @node starpu_helper_cublas_init
  3719. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3720. @deftypefun void starpu_helper_cublas_init (void)
  3721. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3722. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3723. controlled by StarPU. This call blocks until CUBLAS has been properly
  3724. initialized on every device.
  3725. @end deftypefun
  3726. @node starpu_helper_cublas_shutdown
  3727. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3728. @deftypefun void starpu_helper_cublas_shutdown (void)
  3729. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3730. @end deftypefun
  3731. @node OpenCL extensions
  3732. @section OpenCL extensions
  3733. @menu
  3734. * Enabling OpenCL:: Enabling OpenCL
  3735. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3736. * Loading OpenCL kernels:: Loading OpenCL kernels
  3737. * OpenCL statistics:: Collecting statistics from OpenCL
  3738. @end menu
  3739. @node Enabling OpenCL
  3740. @subsection Enabling OpenCL
  3741. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3742. enabled by default. To enable OpenCL, you need either to disable CUDA
  3743. when configuring StarPU:
  3744. @example
  3745. % ./configure --disable-cuda
  3746. @end example
  3747. or when running applications:
  3748. @example
  3749. % STARPU_NCUDA=0 ./application
  3750. @end example
  3751. OpenCL will automatically be started on any device not yet used by
  3752. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3753. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3754. so:
  3755. @example
  3756. % STARPU_NCUDA=2 ./application
  3757. @end example
  3758. @node Compiling OpenCL kernels
  3759. @subsection Compiling OpenCL kernels
  3760. Source codes for OpenCL kernels can be stored in a file or in a
  3761. string. StarPU provides functions to build the program executable for
  3762. each available OpenCL device as a @code{cl_program} object. This
  3763. program executable can then be loaded within a specific queue as
  3764. explained in the next section. These are only helpers, Applications
  3765. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3766. use (e.g. different programs on the different OpenCL devices, for
  3767. relocation purpose for instance).
  3768. @menu
  3769. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3770. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3771. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3772. @end menu
  3773. @node starpu_opencl_load_opencl_from_file
  3774. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3775. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3776. TODO
  3777. @end deftypefun
  3778. @node starpu_opencl_load_opencl_from_string
  3779. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3780. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3781. TODO
  3782. @end deftypefun
  3783. @node starpu_opencl_unload_opencl
  3784. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3785. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3786. TODO
  3787. @end deftypefun
  3788. @node Loading OpenCL kernels
  3789. @subsection Loading OpenCL kernels
  3790. @menu
  3791. * starpu_opencl_load_kernel:: Loading a kernel
  3792. * starpu_opencl_relase_kernel:: Releasing a kernel
  3793. @end menu
  3794. @node starpu_opencl_load_kernel
  3795. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3796. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3797. TODO
  3798. @end deftypefun
  3799. @node starpu_opencl_relase_kernel
  3800. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3801. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3802. TODO
  3803. @end deftypefun
  3804. @node OpenCL statistics
  3805. @subsection OpenCL statistics
  3806. @menu
  3807. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3808. @end menu
  3809. @node starpu_opencl_collect_stats
  3810. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3811. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3812. After termination of the kernels, the OpenCL codelet should call this function
  3813. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3814. collect statistics about the kernel execution (used cycles, consumed power).
  3815. @end deftypefun
  3816. @node Cell extensions
  3817. @section Cell extensions
  3818. nothing yet.
  3819. @node Miscellaneous helpers
  3820. @section Miscellaneous helpers
  3821. @menu
  3822. * starpu_data_cpy:: Copy a data handle into another data handle
  3823. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3824. @end menu
  3825. @node starpu_data_cpy
  3826. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3827. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3828. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3829. The @var{asynchronous} parameter indicates whether the function should
  3830. block or not. In the case of an asynchronous call, it is possible to
  3831. synchronize with the termination of this operation either by the means of
  3832. implicit dependencies (if enabled) or by calling
  3833. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3834. this callback function is executed after the handle has been copied, and it is
  3835. given the @var{callback_arg} pointer as argument.
  3836. @end deftypefun
  3837. @node starpu_execute_on_each_worker
  3838. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3839. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3840. When calling this method, the offloaded function specified by the first argument is
  3841. executed by every StarPU worker that may execute the function.
  3842. The second argument is passed to the offloaded function.
  3843. The last argument specifies on which types of processing units the function
  3844. should be executed. Similarly to the @var{where} field of the
  3845. @code{starpu_codelet} structure, it is possible to specify that the function
  3846. should be executed on every CUDA device and every CPU by passing
  3847. @code{STARPU_CPU|STARPU_CUDA}.
  3848. This function blocks until the function has been executed on every appropriate
  3849. processing units, so that it may not be called from a callback function for
  3850. instance.
  3851. @end deftypefun
  3852. @c ---------------------------------------------------------------------
  3853. @c Advanced Topics
  3854. @c ---------------------------------------------------------------------
  3855. @node Advanced Topics
  3856. @chapter Advanced Topics
  3857. @menu
  3858. * Defining a new data interface::
  3859. * Defining a new scheduling policy::
  3860. @end menu
  3861. @node Defining a new data interface
  3862. @section Defining a new data interface
  3863. @menu
  3864. * struct starpu_data_interface_ops_t:: Per-interface methods
  3865. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3866. * An example of data interface:: An example of data interface
  3867. @end menu
  3868. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3869. @node struct starpu_data_interface_ops_t
  3870. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3871. @table @asis
  3872. @item @emph{Description}:
  3873. TODO describe all the different fields
  3874. @end table
  3875. @node struct starpu_data_copy_methods
  3876. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3877. @table @asis
  3878. @item @emph{Description}:
  3879. TODO describe all the different fields
  3880. @end table
  3881. @node An example of data interface
  3882. @subsection An example of data interface
  3883. @table @asis
  3884. TODO
  3885. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3886. @end table
  3887. @node Defining a new scheduling policy
  3888. @section Defining a new scheduling policy
  3889. TODO
  3890. A full example showing how to define a new scheduling policy is available in
  3891. the StarPU sources in the directory @code{examples/scheduler/}.
  3892. @menu
  3893. * struct starpu_sched_policy_s::
  3894. * starpu_worker_set_sched_condition::
  3895. * starpu_sched_set_min_priority:: Set the minimum priority level
  3896. * starpu_sched_set_max_priority:: Set the maximum priority level
  3897. * starpu_push_local_task:: Assign a task to a worker
  3898. * Source code::
  3899. @end menu
  3900. @node struct starpu_sched_policy_s
  3901. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3902. @table @asis
  3903. @item @emph{Description}:
  3904. This structure contains all the methods that implement a scheduling policy. An
  3905. application may specify which scheduling strategy in the @code{sched_policy}
  3906. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3907. function.
  3908. @item @emph{Fields}:
  3909. @table @asis
  3910. @item @code{init_sched}:
  3911. Initialize the scheduling policy.
  3912. @item @code{deinit_sched}:
  3913. Cleanup the scheduling policy.
  3914. @item @code{push_task}:
  3915. Insert a task into the scheduler.
  3916. @item @code{push_prio_task}:
  3917. Insert a priority task into the scheduler.
  3918. @item @code{push_prio_notify}:
  3919. Notify the scheduler that a task was pushed on the worker. This method is
  3920. called when a task that was explicitely assigned to a worker is scheduled. This
  3921. method therefore permits to keep the state of of the scheduler coherent even
  3922. when StarPU bypasses the scheduling strategy.
  3923. @item @code{pop_task}:
  3924. Get a task from the scheduler. The mutex associated to the worker is already
  3925. taken when this method is called. If this method is defined as @code{NULL}, the
  3926. worker will only execute tasks from its local queue. In this case, the
  3927. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3928. assign tasks to the different workers.
  3929. @item @code{pop_every_task}:
  3930. Remove all available tasks from the scheduler (tasks are chained by the means
  3931. of the prev and next fields of the starpu_task structure). The mutex associated
  3932. to the worker is already taken when this method is called.
  3933. @item @code{post_exec_hook} (optionnal):
  3934. This method is called every time a task has been executed.
  3935. @item @code{policy_name}:
  3936. Name of the policy (optionnal).
  3937. @item @code{policy_description}:
  3938. Description of the policy (optionnal).
  3939. @end table
  3940. @end table
  3941. @node starpu_worker_set_sched_condition
  3942. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3943. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3944. When there is no available task for a worker, StarPU blocks this worker on a
  3945. condition variable. This function specifies which condition variable (and the
  3946. associated mutex) should be used to block (and to wake up) a worker. Note that
  3947. multiple workers may use the same condition variable. For instance, in the case
  3948. of a scheduling strategy with a single task queue, the same condition variable
  3949. would be used to block and wake up all workers.
  3950. The initialization method of a scheduling strategy (@code{init_sched}) must
  3951. call this function once per worker.
  3952. @end deftypefun
  3953. @node starpu_sched_set_min_priority
  3954. @subsection @code{starpu_sched_set_min_priority}
  3955. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3956. Defines the minimum priority level supported by the scheduling policy. The
  3957. default minimum priority level is the same as the default priority level which
  3958. is 0 by convention. The application may access that value by calling the
  3959. @code{starpu_sched_get_min_priority} function. This function should only be
  3960. called from the initialization method of the scheduling policy, and should not
  3961. be used directly from the application.
  3962. @end deftypefun
  3963. @node starpu_sched_set_max_priority
  3964. @subsection @code{starpu_sched_set_max_priority}
  3965. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3966. Defines the maximum priority level supported by the scheduling policy. The
  3967. default maximum priority level is 1. The application may access that value by
  3968. calling the @code{starpu_sched_get_max_priority} function. This function should
  3969. only be called from the initialization method of the scheduling policy, and
  3970. should not be used directly from the application.
  3971. @end deftypefun
  3972. @node starpu_push_local_task
  3973. @subsection @code{starpu_push_local_task}
  3974. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3975. The scheduling policy may put tasks directly into a worker's local queue so
  3976. that it is not always necessary to create its own queue when the local queue
  3977. is sufficient. If "back" not null, the task is put at the back of the queue
  3978. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3979. a FIFO ordering.
  3980. @end deftypefun
  3981. @node Source code
  3982. @subsection Source code
  3983. @cartouche
  3984. @smallexample
  3985. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3986. .init_sched = init_dummy_sched,
  3987. .deinit_sched = deinit_dummy_sched,
  3988. .push_task = push_task_dummy,
  3989. .push_prio_task = NULL,
  3990. .pop_task = pop_task_dummy,
  3991. .post_exec_hook = NULL,
  3992. .pop_every_task = NULL,
  3993. .policy_name = "dummy",
  3994. .policy_description = "dummy scheduling strategy"
  3995. @};
  3996. @end smallexample
  3997. @end cartouche
  3998. @c ---------------------------------------------------------------------
  3999. @c Appendices
  4000. @c ---------------------------------------------------------------------
  4001. @c ---------------------------------------------------------------------
  4002. @c Full source code for the 'Scaling a Vector' example
  4003. @c ---------------------------------------------------------------------
  4004. @node Full source code for the 'Scaling a Vector' example
  4005. @appendix Full source code for the 'Scaling a Vector' example
  4006. @menu
  4007. * Main application::
  4008. * CPU Kernel::
  4009. * CUDA Kernel::
  4010. * OpenCL Kernel::
  4011. @end menu
  4012. @node Main application
  4013. @section Main application
  4014. @smallexample
  4015. @include vector_scal_c.texi
  4016. @end smallexample
  4017. @node CPU Kernel
  4018. @section CPU Kernel
  4019. @smallexample
  4020. @include vector_scal_cpu.texi
  4021. @end smallexample
  4022. @node CUDA Kernel
  4023. @section CUDA Kernel
  4024. @smallexample
  4025. @include vector_scal_cuda.texi
  4026. @end smallexample
  4027. @node OpenCL Kernel
  4028. @section OpenCL Kernel
  4029. @menu
  4030. * Invoking the kernel::
  4031. * Source of the kernel::
  4032. @end menu
  4033. @node Invoking the kernel
  4034. @subsection Invoking the kernel
  4035. @smallexample
  4036. @include vector_scal_opencl.texi
  4037. @end smallexample
  4038. @node Source of the kernel
  4039. @subsection Source of the kernel
  4040. @smallexample
  4041. @include vector_scal_opencl_codelet.texi
  4042. @end smallexample
  4043. @c
  4044. @c Indices.
  4045. @c
  4046. @node Function Index
  4047. @unnumbered Function Index
  4048. @printindex fn
  4049. @bye