starpu.texi 137 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance feedback:: Performance debugging tools
  31. * Configuring StarPU:: How to configure StarPU
  32. * StarPU API:: The API to use StarPU
  33. * Advanced Topics:: Advanced use of StarPU
  34. * Full source code for the 'Scaling a Vector' example::
  35. @end menu
  36. @c ---------------------------------------------------------------------
  37. @c Introduction to StarPU
  38. @c ---------------------------------------------------------------------
  39. @node Introduction
  40. @chapter Introduction to StarPU
  41. @menu
  42. * Motivation:: Why StarPU ?
  43. * StarPU in a Nutshell:: The Fundamentals of StarPU
  44. @end menu
  45. @node Motivation
  46. @section Motivation
  47. @c complex machines with heterogeneous cores/devices
  48. The use of specialized hardware such as accelerators or coprocessors offers an
  49. interesting approach to overcome the physical limits encountered by processor
  50. architects. As a result, many machines are now equipped with one or several
  51. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  52. efforts have been devoted to offload computation onto such accelerators, very
  53. little attention as been paid to portability concerns on the one hand, and to the
  54. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  55. StarPU is a runtime system that offers support for heterogeneous multicore
  56. architectures, it not only offers a unified view of the computational resources
  57. (i.e. CPUs and accelerators at the same time), but it also takes care of
  58. efficiently mapping and executing tasks onto an heterogeneous machine while
  59. transparently handling low-level issues in a portable fashion.
  60. @c this leads to a complicated distributed memory design
  61. @c which is not (easily) manageable by hand
  62. @c added value/benefits of StarPU
  63. @c - portability
  64. @c - scheduling, perf. portability
  65. @node StarPU in a Nutshell
  66. @section StarPU in a Nutshell
  67. @menu
  68. * Codelet and Tasks::
  69. * StarPU Data Management Library::
  70. * Research Papers::
  71. @end menu
  72. From a programming point of view, StarPU is not a new language but a library
  73. that executes tasks explicitly submitted by the application. The data that a
  74. task manipulates are automatically transferred onto the accelerator so that the
  75. programmer does not have to take care of complex data movements. StarPU also
  76. takes particular care of scheduling those tasks efficiently and allows
  77. scheduling experts to implement custom scheduling policies in a portable
  78. fashion.
  79. @c explain the notion of codelet and task (i.e. g(A, B)
  80. @node Codelet and Tasks
  81. @subsection Codelet and Tasks
  82. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  83. computational kernel that can possibly be implemented on multiple architectures
  84. such as a CPU, a CUDA device or a Cell's SPU.
  85. @c TODO insert illustration f : f_spu, f_cpu, ...
  86. Another important data structure is the @b{task}. Executing a StarPU task
  87. consists in applying a codelet on a data set, on one of the architectures on
  88. which the codelet is implemented. In addition to the codelet that a task
  89. implements, it also describes which data are accessed, and how they are
  90. accessed during the computation (read and/or write).
  91. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  92. operation. The task structure can also specify a @b{callback} function that is
  93. called once StarPU has properly executed the task. It also contains optional
  94. fields that the application may use to give hints to the scheduler (such as
  95. priority levels).
  96. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  97. Task dependencies can be enforced either by the means of callback functions, or
  98. by expressing dependencies between tags.
  99. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  100. @c DSM
  101. @node StarPU Data Management Library
  102. @subsection StarPU Data Management Library
  103. Because StarPU schedules tasks at runtime, data transfers have to be
  104. done automatically and ``just-in-time'' between processing units,
  105. relieving the application programmer from explicit data transfers.
  106. Moreover, to avoid unnecessary transfers, StarPU keeps data
  107. where it was last needed, even if was modified there, and it
  108. allows multiple copies of the same data to reside at the same time on
  109. several processing units as long as it is not modified.
  110. @node Research Papers
  111. @subsection Research Papers
  112. Research papers about StarPU can be found at
  113. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  114. Notably a good overview in the research report
  115. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  116. @c ---------------------------------------------------------------------
  117. @c Installing StarPU
  118. @c ---------------------------------------------------------------------
  119. @node Installing StarPU
  120. @chapter Installing StarPU
  121. @menu
  122. * Downloading StarPU::
  123. * Configuration of StarPU::
  124. * Building and Installing StarPU::
  125. @end menu
  126. StarPU can be built and installed by the standard means of the GNU
  127. autotools. The following chapter is intended to briefly remind how these tools
  128. can be used to install StarPU.
  129. @node Downloading StarPU
  130. @section Downloading StarPU
  131. @menu
  132. * Getting Sources::
  133. * Optional dependencies::
  134. @end menu
  135. @node Getting Sources
  136. @subsection Getting Sources
  137. The source code is managed by a Subversion server hosted by the
  138. InriaGforge. To get the source code, you need:
  139. @itemize
  140. @item
  141. To install the client side of the software Subversion if it is
  142. not already available on your system. The software can be obtained from
  143. @indicateurl{http://subversion.tigris.org}.
  144. @item
  145. You can check out the project's SVN repository through anonymous
  146. access. This will provide you with a read access to the
  147. repository.
  148. You can also choose to become a member of the project @code{starpu}.
  149. For this, you first need to get an account to the gForge server. You
  150. can then send a request to join the project
  151. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  152. @item
  153. More information on how to get a gForge account, to become a member of
  154. a project, or on any other related task can be obtained from the
  155. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  156. thing is to upload your public SSH key on the gForge server (see the
  157. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  158. instructions).
  159. @end itemize
  160. You can now check out the latest version from the Subversion server:
  161. @itemize
  162. @item
  163. using the anonymous access via svn:
  164. @example
  165. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  166. @end example
  167. @item
  168. using the anonymous access via https:
  169. @example
  170. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  171. @end example
  172. The password is @code{anonsvn}.
  173. @item
  174. using your gForge account
  175. @example
  176. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  177. @end example
  178. @end itemize
  179. These steps require to run autoconf and automake to generate the
  180. @code{./configure} script. This can be done by calling
  181. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  182. higher.
  183. @example
  184. % ./autogen.sh
  185. @end example
  186. If the autotools are not available on your machine or not recent
  187. enough, you can choose to download the latest nightly tarball, which
  188. is provided with a @code{configure} script.
  189. @example
  190. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  191. @end example
  192. @node Optional dependencies
  193. @subsection Optional dependencies
  194. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  195. but strongly recommended. It allows to increase performance, and to
  196. perform some topology aware scheduling.
  197. @code{hwloc} is available in major distributions and for most OSes and can be
  198. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  199. @node Configuration of StarPU
  200. @section Configuration of StarPU
  201. @menu
  202. * Generating Makefiles and configuration scripts::
  203. * Running the configuration::
  204. @end menu
  205. @node Generating Makefiles and configuration scripts
  206. @subsection Generating Makefiles and configuration scripts
  207. This step is not necessary when using the tarball releases of StarPU. If you
  208. are using the source code from the svn repository, you first need to generate
  209. the configure scripts and the Makefiles.
  210. @example
  211. % ./autogen.sh
  212. @end example
  213. @node Running the configuration
  214. @subsection Running the configuration
  215. @example
  216. % ./configure
  217. @end example
  218. Details about options that are useful to give to @code{./configure} are given in
  219. @ref{Compilation configuration}.
  220. @node Building and Installing StarPU
  221. @section Building and Installing StarPU
  222. @menu
  223. * Building::
  224. * Sanity Checks::
  225. * Installing::
  226. @end menu
  227. @node Building
  228. @subsection Building
  229. @example
  230. % make
  231. @end example
  232. @node Sanity Checks
  233. @subsection Sanity Checks
  234. In order to make sure that StarPU is working properly on the system, it is also
  235. possible to run a test suite.
  236. @example
  237. % make check
  238. @end example
  239. @node Installing
  240. @subsection Installing
  241. In order to install StarPU at the location that was specified during
  242. configuration:
  243. @example
  244. % make install
  245. @end example
  246. @c ---------------------------------------------------------------------
  247. @c Using StarPU
  248. @c ---------------------------------------------------------------------
  249. @node Using StarPU
  250. @chapter Using StarPU
  251. @menu
  252. * Setting flags for compiling and linking applications::
  253. * Running a basic StarPU application::
  254. * Using accelerators::
  255. @end menu
  256. @node Setting flags for compiling and linking applications
  257. @section Setting flags for compiling and linking applications
  258. Compiling and linking an application against StarPU may require to use
  259. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  260. To this end, it is possible to use the @code{pkg-config} tool.
  261. If StarPU was not installed at some standard location, the path of StarPU's
  262. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  263. that @code{pkg-config} can find it. For example if StarPU was installed in
  264. @code{$prefix_dir}:
  265. @example
  266. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  267. @end example
  268. The flags required to compile or link against StarPU are then
  269. accessible with the following commands:
  270. @example
  271. % pkg-config --cflags libstarpu # options for the compiler
  272. % pkg-config --libs libstarpu # options for the linker
  273. @end example
  274. @node Running a basic StarPU application
  275. @section Running a basic StarPU application
  276. Basic examples using StarPU have been built in the directory
  277. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  278. example @code{vector_scal}.
  279. @example
  280. % $prefix_dir/lib/starpu/examples/vector_scal
  281. BEFORE : First element was 1.000000
  282. AFTER First element is 3.140000
  283. %
  284. @end example
  285. When StarPU is used for the first time, the directory
  286. @code{$HOME/.starpu/} is created, performance models will be stored in
  287. that directory.
  288. Please note that buses are benchmarked when StarPU is launched for the
  289. first time. This may take a few minutes, or less if @code{hwloc} is
  290. installed. This step is done only once per user and per machine.
  291. @node Using accelerators
  292. @section Using accelerators
  293. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  294. OpenCL worker only if CUDA is not already running on the GPU.
  295. This design choice was necessary as OpenCL and CUDA can not run at the
  296. same time on the same GPU, as there is currently no interoperability
  297. between them.
  298. Details on how to specify devices running OpenCL and the ones running
  299. CUDA are given in @ref{Enabling OpenCL}.
  300. @c ---------------------------------------------------------------------
  301. @c Basic Examples
  302. @c ---------------------------------------------------------------------
  303. @node Basic Examples
  304. @chapter Basic Examples
  305. @menu
  306. * Compiling and linking options::
  307. * Hello World:: Submitting Tasks
  308. * Scaling a Vector:: Manipulating Data
  309. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  310. * Task and Worker Profiling::
  311. * Partitioning Data:: Partitioning Data
  312. * Performance model example::
  313. * Theoretical lower bound on execution time::
  314. * More examples:: More examples shipped with StarPU
  315. @end menu
  316. @node Compiling and linking options
  317. @section Compiling and linking options
  318. Let's suppose StarPU has been installed in the directory
  319. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  320. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  321. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  322. libraries at runtime.
  323. @example
  324. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  325. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  326. @end example
  327. The Makefile could for instance contain the following lines to define which
  328. options must be given to the compiler and to the linker:
  329. @cartouche
  330. @example
  331. CFLAGS += $$(pkg-config --cflags libstarpu)
  332. LDFLAGS += $$(pkg-config --libs libstarpu)
  333. @end example
  334. @end cartouche
  335. @node Hello World
  336. @section Hello World
  337. @menu
  338. * Required Headers::
  339. * Defining a Codelet::
  340. * Submitting a Task::
  341. * Execution of Hello World::
  342. @end menu
  343. In this section, we show how to implement a simple program that submits a task to StarPU.
  344. @node Required Headers
  345. @subsection Required Headers
  346. The @code{starpu.h} header should be included in any code using StarPU.
  347. @cartouche
  348. @smallexample
  349. #include <starpu.h>
  350. @end smallexample
  351. @end cartouche
  352. @node Defining a Codelet
  353. @subsection Defining a Codelet
  354. @cartouche
  355. @smallexample
  356. struct params @{
  357. int i;
  358. float f;
  359. @};
  360. void cpu_func(void *buffers[], void *cl_arg)
  361. @{
  362. struct params *params = cl_arg;
  363. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  364. @}
  365. starpu_codelet cl =
  366. @{
  367. .where = STARPU_CPU,
  368. .cpu_func = cpu_func,
  369. .nbuffers = 0
  370. @};
  371. @end smallexample
  372. @end cartouche
  373. A codelet is a structure that represents a computational kernel. Such a codelet
  374. may contain an implementation of the same kernel on different architectures
  375. (e.g. CUDA, Cell's SPU, x86, ...).
  376. The @code{nbuffers} field specifies the number of data buffers that are
  377. manipulated by the codelet: here the codelet does not access or modify any data
  378. that is controlled by our data management library. Note that the argument
  379. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  380. structure) does not count as a buffer since it is not managed by our data
  381. management library.
  382. @c TODO need a crossref to the proper description of "where" see bla for more ...
  383. We create a codelet which may only be executed on the CPUs. The @code{where}
  384. field is a bitmask that defines where the codelet may be executed. Here, the
  385. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  386. (@pxref{Codelets and Tasks} for more details on this field).
  387. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  388. which @emph{must} have the following prototype:
  389. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  390. In this example, we can ignore the first argument of this function which gives a
  391. description of the input and output buffers (e.g. the size and the location of
  392. the matrices). The second argument is a pointer to a buffer passed as an
  393. argument to the codelet by the means of the @code{cl_arg} field of the
  394. @code{starpu_task} structure.
  395. @c TODO rewrite so that it is a little clearer ?
  396. Be aware that this may be a pointer to a
  397. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  398. if the codelet modifies this buffer, there is no guarantee that the initial
  399. buffer will be modified as well: this for instance implies that the buffer
  400. cannot be used as a synchronization medium.
  401. @node Submitting a Task
  402. @subsection Submitting a Task
  403. @cartouche
  404. @smallexample
  405. void callback_func(void *callback_arg)
  406. @{
  407. printf("Callback function (arg %x)\n", callback_arg);
  408. @}
  409. int main(int argc, char **argv)
  410. @{
  411. /* @b{initialize StarPU} */
  412. starpu_init(NULL);
  413. struct starpu_task *task = starpu_task_create();
  414. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  415. struct params params = @{ 1, 2.0f @};
  416. task->cl_arg = &params;
  417. task->cl_arg_size = sizeof(params);
  418. task->callback_func = callback_func;
  419. task->callback_arg = 0x42;
  420. /* @b{starpu_task_submit will be a blocking call} */
  421. task->synchronous = 1;
  422. /* @b{submit the task to StarPU} */
  423. starpu_task_submit(task);
  424. /* @b{terminate StarPU} */
  425. starpu_shutdown();
  426. return 0;
  427. @}
  428. @end smallexample
  429. @end cartouche
  430. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  431. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  432. be submitted after the termination of StarPU by a call to
  433. @code{starpu_shutdown}.
  434. In the example above, a task structure is allocated by a call to
  435. @code{starpu_task_create}. This function only allocates and fills the
  436. corresponding structure with the default settings (@pxref{starpu_task_create}),
  437. but it does not submit the task to StarPU.
  438. @c not really clear ;)
  439. The @code{cl} field is a pointer to the codelet which the task will
  440. execute: in other words, the codelet structure describes which computational
  441. kernel should be offloaded on the different architectures, and the task
  442. structure is a wrapper containing a codelet and the piece of data on which the
  443. codelet should operate.
  444. The optional @code{cl_arg} field is a pointer to a buffer (of size
  445. @code{cl_arg_size}) with some parameters for the kernel
  446. described by the codelet. For instance, if a codelet implements a computational
  447. kernel that multiplies its input vector by a constant, the constant could be
  448. specified by the means of this buffer, instead of registering it.
  449. Once a task has been executed, an optional callback function can be called.
  450. While the computational kernel could be offloaded on various architectures, the
  451. callback function is always executed on a CPU. The @code{callback_arg}
  452. pointer is passed as an argument of the callback. The prototype of a callback
  453. function must be:
  454. @code{void (*callback_function)(void *);}
  455. If the @code{synchronous} field is non-null, task submission will be
  456. synchronous: the @code{starpu_task_submit} function will not return until the
  457. task was executed. Note that the @code{starpu_shutdown} method does not
  458. guarantee that asynchronous tasks have been executed before it returns.
  459. @node Execution of Hello World
  460. @subsection Execution of Hello World
  461. @smallexample
  462. % make hello_world
  463. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  464. % ./hello_world
  465. Hello world (array = @{1.000000, -1.000000@} )
  466. Callback function (arg 42)
  467. @end smallexample
  468. @node Scaling a Vector
  469. @section Manipulating Data: Scaling a Vector
  470. The previous example has shown how to submit tasks. In this section,
  471. we show how StarPU tasks can manipulate data. The full source code for
  472. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  473. @menu
  474. * Source code of Vector Scaling::
  475. * Execution of Vector Scaling::
  476. @end menu
  477. @node Source code of Vector Scaling
  478. @subsection Source code of Vector Scaling
  479. Programmers can describe the data layout of their application so that StarPU is
  480. responsible for enforcing data coherency and availability across the machine.
  481. Instead of handling complex (and non-portable) mechanisms to perform data
  482. movements, programmers only declare which piece of data is accessed and/or
  483. modified by a task, and StarPU makes sure that when a computational kernel
  484. starts somewhere (e.g. on a GPU), its data are available locally.
  485. Before submitting those tasks, the programmer first needs to declare the
  486. different pieces of data to StarPU using the @code{starpu_*_data_register}
  487. functions. To ease the development of applications for StarPU, it is possible
  488. to describe multiple types of data layout. A type of data layout is called an
  489. @b{interface}. By default, there are different interfaces available in StarPU:
  490. here we will consider the @b{vector interface}.
  491. The following lines show how to declare an array of @code{NX} elements of type
  492. @code{float} using the vector interface:
  493. @cartouche
  494. @smallexample
  495. float vector[NX];
  496. starpu_data_handle vector_handle;
  497. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  498. sizeof(vector[0]));
  499. @end smallexample
  500. @end cartouche
  501. The first argument, called the @b{data handle}, is an opaque pointer which
  502. designates the array in StarPU. This is also the structure which is used to
  503. describe which data is used by a task. The second argument is the node number
  504. where the data currently resides. Here it is 0 since the @code{vector} array is in
  505. the main memory. Then comes the pointer @code{vector} where the data can be found,
  506. the number of elements in the vector and the size of each element.
  507. It is possible to construct a StarPU task that will manipulate the
  508. vector and a constant factor.
  509. @cartouche
  510. @smallexample
  511. float factor = 3.14;
  512. struct starpu_task *task = starpu_task_create();
  513. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  514. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  515. task->buffers[0].mode = STARPU_RW;
  516. task->cl_arg = &factor;
  517. task->cl_arg_size = sizeof(factor);
  518. task->synchronous = 1;
  519. starpu_task_submit(task);
  520. @end smallexample
  521. @end cartouche
  522. Since the factor is a mere float value parameter, it does not need a preliminary registration, and
  523. can just be passed through the @code{cl_arg} pointer like in the previous
  524. example. The vector parameter is described by its handle.
  525. There are two fields in each element of the @code{buffers} array.
  526. @code{handle} is the handle of the data, and @code{mode} specifies how the
  527. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  528. write-only and @code{STARPU_RW} for read and write access).
  529. The definition of the codelet can be written as follows:
  530. @cartouche
  531. @smallexample
  532. void scal_cpu_func(void *buffers[], void *cl_arg)
  533. @{
  534. unsigned i;
  535. float *factor = cl_arg;
  536. /* length of the vector */
  537. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  538. /* local copy of the vector pointer */
  539. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  540. for (i = 0; i < n; i++)
  541. val[i] *= *factor;
  542. @}
  543. starpu_codelet cl = @{
  544. .where = STARPU_CPU,
  545. .cpu_func = scal_cpu_func,
  546. .nbuffers = 1
  547. @};
  548. @end smallexample
  549. @end cartouche
  550. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  551. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  552. constant factor from this pointer. The first argument is an array that gives
  553. a description of all the buffers passed in the @code{task->buffers}@ array. The
  554. size of this array is given by the @code{nbuffers} field of the codelet
  555. structure. For the sake of generality, this array contains pointers to the
  556. different interfaces describing each buffer. In the case of the @b{vector
  557. interface}, the location of the vector (resp. its length) is accessible in the
  558. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  559. read-write fashion, any modification will automatically affect future accesses
  560. to this vector made by other tasks.
  561. @node Execution of Vector Scaling
  562. @subsection Execution of Vector Scaling
  563. @smallexample
  564. % make vector_scal
  565. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  566. % ./vector_scal
  567. 0.000000 3.000000 6.000000 9.000000 12.000000
  568. @end smallexample
  569. @node Vector Scaling on an Hybrid CPU/GPU Machine
  570. @section Vector Scaling on an Hybrid CPU/GPU Machine
  571. Contrary to the previous examples, the task submitted in this example may not
  572. only be executed by the CPUs, but also by a CUDA device.
  573. @menu
  574. * Definition of the CUDA Kernel::
  575. * Definition of the OpenCL Kernel::
  576. * Definition of the Main Code::
  577. * Execution of Hybrid Vector Scaling::
  578. @end menu
  579. @node Definition of the CUDA Kernel
  580. @subsection Definition of the CUDA Kernel
  581. The CUDA implementation can be written as follows. It needs to be
  582. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  583. driver.
  584. @cartouche
  585. @smallexample
  586. #include <starpu.h>
  587. static __global__ void vector_mult_cuda(float *val, unsigned n,
  588. float factor)
  589. @{
  590. unsigned i;
  591. for(i = 0 ; i < n ; i++)
  592. val[i] *= factor;
  593. @}
  594. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  595. @{
  596. float *factor = (float *)_args;
  597. /* length of the vector */
  598. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  599. /* local copy of the vector pointer */
  600. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  601. @i{ vector_mult_cuda<<<1,1>>>(val, n, *factor);}
  602. @i{ cudaThreadSynchronize();}
  603. @}
  604. @end smallexample
  605. @end cartouche
  606. @node Definition of the OpenCL Kernel
  607. @subsection Definition of the OpenCL Kernel
  608. The OpenCL implementation can be written as follows. StarPU provides
  609. tools to compile a OpenCL kernel stored in a file.
  610. @cartouche
  611. @smallexample
  612. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  613. @{
  614. const int i = get_global_id(0);
  615. if (i < nx) @{
  616. val[i] *= factor;
  617. @}
  618. @}
  619. @end smallexample
  620. @end cartouche
  621. @cartouche
  622. @smallexample
  623. #include <starpu.h>
  624. @i{#include <starpu_opencl.h>}
  625. @i{extern struct starpu_opencl_program programs;}
  626. void scal_opencl_func(void *buffers[], void *_args)
  627. @{
  628. float *factor = _args;
  629. @i{ int id, devid, err;}
  630. @i{ cl_kernel kernel;}
  631. @i{ cl_command_queue queue;}
  632. /* length of the vector */
  633. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  634. /* local copy of the vector pointer */
  635. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  636. @i{ id = starpu_worker_get_id();}
  637. @i{ devid = starpu_worker_get_devid(id);}
  638. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  639. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  640. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  641. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  642. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  643. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  644. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  645. @i{ @{}
  646. @i{ size_t global=1;}
  647. @i{ size_t local=1;}
  648. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  649. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  650. @i{ @}}
  651. @i{ clFinish(queue);}
  652. @i{ starpu_opencl_release_kernel(kernel);}
  653. @}
  654. @end smallexample
  655. @end cartouche
  656. @node Definition of the Main Code
  657. @subsection Definition of the Main Code
  658. The CPU implementation is the same as in the previous section.
  659. Here is the source of the main application. You can notice the value of the
  660. field @code{where} for the codelet. We specify
  661. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  662. can be executed either on a CPU or on a CUDA or an OpenCL device.
  663. @cartouche
  664. @smallexample
  665. #include <starpu.h>
  666. #define NX 2048
  667. extern void scal_cuda_func(void *buffers[], void *_args);
  668. extern void scal_cpu_func(void *buffers[], void *_args);
  669. extern void scal_opencl_func(void *buffers[], void *_args);
  670. /* @b{Definition of the codelet} */
  671. static starpu_codelet cl = @{
  672. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  673. /* @b{on a CUDA device, or on an OpenCL device} */
  674. .cuda_func = scal_cuda_func;
  675. .cpu_func = scal_cpu_func;
  676. .opencl_func = scal_opencl_func;
  677. .nbuffers = 1;
  678. @}
  679. #ifdef STARPU_USE_OPENCL
  680. /* @b{The compiled version of the OpenCL program} */
  681. struct starpu_opencl_program programs;
  682. #endif
  683. int main(int argc, char **argv)
  684. @{
  685. float *vector;
  686. int i, ret;
  687. float factor=3.0;
  688. struct starpu_task *task;
  689. starpu_data_handle vector_handle;
  690. starpu_init(NULL); /* @b{Initialising StarPU} */
  691. #ifdef STARPU_USE_OPENCL
  692. starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_codelet.cl",
  693. &programs);
  694. #endif
  695. vector = malloc(NX*sizeof(vector[0]));
  696. assert(vector);
  697. for(i=0 ; i<NX ; i++) vector[i] = i;
  698. @end smallexample
  699. @end cartouche
  700. @cartouche
  701. @smallexample
  702. /* @b{Registering data within StarPU} */
  703. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  704. NX, sizeof(vector[0]));
  705. /* @b{Definition of the task} */
  706. task = starpu_task_create();
  707. task->cl = &cl;
  708. task->buffers[0].handle = vector_handle;
  709. task->buffers[0].mode = STARPU_RW;
  710. task->cl_arg = &factor;
  711. task->cl_arg_size = sizeof(factor);
  712. @end smallexample
  713. @end cartouche
  714. @cartouche
  715. @smallexample
  716. /* @b{Submitting the task} */
  717. ret = starpu_task_submit(task);
  718. if (ret == -ENODEV) @{
  719. fprintf(stderr, "No worker may execute this task\n");
  720. return 1;
  721. @}
  722. /* @b{Waiting for its termination} */
  723. starpu_task_wait_for_all();
  724. /* @b{Update the vector in RAM} */
  725. starpu_data_acquire(vector_handle, STARPU_R);
  726. @end smallexample
  727. @end cartouche
  728. @cartouche
  729. @smallexample
  730. /* @b{Access the data} */
  731. for(i=0 ; i<NX; i++) @{
  732. fprintf(stderr, "%f ", vector[i]);
  733. @}
  734. fprintf(stderr, "\n");
  735. /* @b{Release the data and shutdown StarPU} */
  736. starpu_data_release(vector_handle);
  737. starpu_shutdown();
  738. return 0;
  739. @}
  740. @end smallexample
  741. @end cartouche
  742. @node Execution of Hybrid Vector Scaling
  743. @subsection Execution of Hybrid Vector Scaling
  744. The Makefile given at the beginning of the section must be extended to
  745. give the rules to compile the CUDA source code. Note that the source
  746. file of the OpenCL kernel does not need to be compiled now, it will
  747. be compiled at run-time when calling the function
  748. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  749. @cartouche
  750. @smallexample
  751. CFLAGS += $(shell pkg-config --cflags libstarpu)
  752. LDFLAGS += $(shell pkg-config --libs libstarpu)
  753. CC = gcc
  754. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  755. %.o: %.cu
  756. nvcc $(CFLAGS) $< -c $@
  757. clean:
  758. rm -f vector_scal *.o
  759. @end smallexample
  760. @end cartouche
  761. @smallexample
  762. % make
  763. @end smallexample
  764. and to execute it, with the default configuration:
  765. @smallexample
  766. % ./vector_scal
  767. 0.000000 3.000000 6.000000 9.000000 12.000000
  768. @end smallexample
  769. or for example, by disabling CPU devices:
  770. @smallexample
  771. % STARPU_NCPUS=0 ./vector_scal
  772. 0.000000 3.000000 6.000000 9.000000 12.000000
  773. @end smallexample
  774. or by disabling CUDA devices:
  775. @smallexample
  776. % STARPU_NCUDA=0 ./vector_scal
  777. 0.000000 3.000000 6.000000 9.000000 12.000000
  778. @end smallexample
  779. @node Task and Worker Profiling
  780. @section Task and Worker Profiling
  781. A full example showing how to use the profiling API is available in
  782. the StarPU sources in the directory @code{examples/profiling/}.
  783. @cartouche
  784. @smallexample
  785. struct starpu_task *task = starpu_task_create();
  786. task->cl = &cl;
  787. task->synchronous = 1;
  788. /* We will destroy the task structure by hand so that we can
  789. * query the profiling info before the task is destroyed. */
  790. task->destroy = 0;
  791. starpu_task_submit(task);
  792. /* The task is finished, get profiling information */
  793. struct starpu_task_profiling_info *info = task->profiling_info;
  794. /* How much time did it take before the task started ? */
  795. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  796. /* How long was the task execution ? */
  797. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  798. /* We don't need the task structure anymore */
  799. starpu_task_destroy(task);
  800. @end smallexample
  801. @end cartouche
  802. @cartouche
  803. @smallexample
  804. /* Display the occupancy of all workers during the test */
  805. int worker;
  806. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  807. @{
  808. struct starpu_worker_profiling_info worker_info;
  809. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  810. STARPU_ASSERT(!ret);
  811. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  812. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  813. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  814. float executing_ratio = 100.0*executing_time/total_time;
  815. float sleeping_ratio = 100.0*sleeping_time/total_time;
  816. char workername[128];
  817. starpu_worker_get_name(worker, workername, 128);
  818. fprintf(stderr, "Worker %s:\n", workername);
  819. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  820. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  821. executing_ratio);
  822. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  823. sleeping_ratio);
  824. @}
  825. @end smallexample
  826. @end cartouche
  827. @node Partitioning Data
  828. @section Partitioning Data
  829. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  830. @cartouche
  831. @smallexample
  832. int vector[NX];
  833. starpu_data_handle handle;
  834. /* Declare data to StarPU */
  835. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  836. /* Partition the vector in PARTS sub-vectors */
  837. starpu_filter f =
  838. @{
  839. .filter_func = starpu_block_filter_func_vector,
  840. .nchildren = PARTS,
  841. .get_nchildren = NULL,
  842. .get_child_ops = NULL
  843. @};
  844. starpu_data_partition(handle, &f);
  845. @end smallexample
  846. @end cartouche
  847. @cartouche
  848. @smallexample
  849. /* Submit a task on each sub-vector */
  850. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  851. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  852. struct starpu_task *task = starpu_task_create();
  853. task->buffers[0].handle = sub_handle;
  854. task->buffers[0].mode = STARPU_RW;
  855. task->cl = &cl;
  856. task->synchronous = 1;
  857. task->cl_arg = &factor;
  858. task->cl_arg_size = sizeof(factor);
  859. starpu_task_submit(task);
  860. @}
  861. @end smallexample
  862. @end cartouche
  863. Partitioning can be applied several times, see
  864. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  865. @node Performance model example
  866. @section Performance model example
  867. To achieve good scheduling, StarPU scheduling policies need to be able to
  868. estimate in advance the duration of a task. This is done by giving to codelets a
  869. performance model. There are several kinds of performance models.
  870. @itemize
  871. @item
  872. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  873. see for instance
  874. @code{examples/common/blas_model.c} and @code{examples/common/blas_model.h}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  875. @item
  876. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  877. given set of data input/output sizes, the performance will always be about the
  878. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  879. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  880. few different sets of data input/output sizes. StarPU will then keep record of
  881. the average time of previous executions on the various processing units, and use
  882. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  883. for further executions. The following is a small code example.
  884. @cartouche
  885. @smallexample
  886. static struct starpu_perfmodel_t mult_perf_model = @{
  887. .type = STARPU_HISTORY_BASED,
  888. .symbol = "mult_perf_model"
  889. @};
  890. starpu_codelet cl = @{
  891. .where = STARPU_CPU,
  892. .cpu_func = cpu_mult,
  893. .nbuffers = 3,
  894. /* for the scheduling policy to be able to use performance models */
  895. .model = &mult_perf_model
  896. @};
  897. @end smallexample
  898. @end cartouche
  899. @item
  900. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  901. type). This still assumes performance regularity, but can work with various data
  902. input sizes, by applying a*n^b+c regression over observed execution times.
  903. @end itemize
  904. @node Theoretical lower bound on execution time
  905. @section Theoretical lower bound on execution time
  906. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  907. bound for the execution time of a whole set of tasks. See for
  908. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  909. call @code{starpu_bound_start}, and after complete execution, call
  910. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  911. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  912. problem corresponding to the schedule of your tasks. Run it through
  913. @code{lp_solve} or any other linear programming solver, and that will give you a
  914. lower bound for the total execution time of your tasks. If StarPU was compiled
  915. with the glpk library installed, @code{starpu_bound_compute} can be used to
  916. solve it immediately and get the optimized minimum. Its @code{integer}
  917. parameter allows to decide whether integer resolution should be computed
  918. and returned.
  919. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  920. dependencies into account. It must be understood that the linear programming
  921. problem size is quadratic with the number of tasks and thus the time to solve it
  922. will be very long, it could be minutes for just a few dozen tasks. You should
  923. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  924. problem to MPS format and then use a better solver, @code{glpsol} might be
  925. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  926. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  927. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  928. of @code{lp_solve}. For instance, we often just use
  929. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  930. the @code{-gr} option can also be quite useful.
  931. Setting @code{deps} to 0 will only take into account the actual computations
  932. on processing units. It however still properly takes into account the varying
  933. performances of kernels and processing units, which is quite more accurate than
  934. just comparing StarPU performances with the fastest of the kernels being used.
  935. The @code{prio} parameter tells StarPU whether to simulate taking into account
  936. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  937. tasks before less prioritized tasks, to check to which extend this results
  938. to a less optimal solution. This increases even more computation time.
  939. Note that all this however doesn't take into account data transfer, which is
  940. assumed to be completely overlapped.
  941. @node More examples
  942. @section More examples
  943. More examples are available in the StarPU sources in the @code{examples/}
  944. directory. Simple examples include:
  945. @table @asis
  946. @item @code{incrementer/}:
  947. Trivial incrementation test.
  948. @item @code{basic_examples/}:
  949. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  950. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  951. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  952. interface, and an example using the variable data interface.
  953. @item @code{matvecmult/}:
  954. OpenCL example from NVidia, adapted to StarPU.
  955. @item @code{axpy/}:
  956. AXPY CUBLAS operation adapted to StarPU.
  957. @item @code{fortran/}:
  958. Example of Fortran bindings.
  959. @end table
  960. More advanced examples include:
  961. @table @asis
  962. @item @code{filters/}:
  963. Examples using filters, as shown in @ref{Partitioning Data}.
  964. @item @code{lu/}:
  965. LU matrix factorization.
  966. @end table
  967. @c ---------------------------------------------------------------------
  968. @c Performance feedback
  969. @c ---------------------------------------------------------------------
  970. @node Performance feedback
  971. @chapter Performance feedback
  972. @menu
  973. * On-line:: On-line performance feedback
  974. * Off-line:: Off-line performance feedback
  975. @end menu
  976. @node On-line
  977. @section On-line performance feedback
  978. @menu
  979. * Enabling monitoring:: Enabling on-line performance monitoring
  980. * Task feedback:: Per-task feedback
  981. * Codelet feedback:: Per-codelet feedback
  982. * Worker feedback:: Per-worker feedback
  983. * Bus feedback:: Bus-related feedback
  984. @end menu
  985. @node Enabling monitoring
  986. @subsection Enabling on-line performance monitoring
  987. In order to enable online performance monitoring, the application must call
  988. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  989. detect whether monitoring is already enabled or not by calling
  990. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  991. previously collected feedback.
  992. Likewise, performance monitoring is stopped by calling
  993. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  994. does not reset the performance counters so that the application may consult
  995. them later on.
  996. More details about the performance monitoring API are available in section
  997. @ref{Profiling API}.
  998. @node Task feedback
  999. @subsection Per-task feedback
  1000. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1001. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1002. structure when a task terminates.
  1003. This structure is automatically destroyed when the task structure is destroyed,
  1004. either automatically or by calling @code{starpu_task_destroy}.
  1005. The @code{starpu_task_profiling_info} structure indicates the date when the
  1006. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1007. terminated (@code{end_time}), relative to the initialization of
  1008. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1009. that has executed the task (@code{workerid}).
  1010. These date are stored as @code{timespec} structures which the user may convert
  1011. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1012. function.
  1013. It it worth noting that the application may directly access this structure from
  1014. the callback executed at the end of the task. The @code{starpu_task} structure
  1015. associated to the callback currently being executed is indeed accessible with
  1016. the @code{starpu_get_current_task()} function.
  1017. @node Codelet feedback
  1018. @subsection Per-codelet feedback
  1019. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1020. an array of counters. The i-th entry of the array is incremented every time a
  1021. task implementing the codelet is executed on the i-th worker.
  1022. This array is not reinitialized when profiling is enabled or disabled.
  1023. @node Worker feedback
  1024. @subsection Per-worker feedback
  1025. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1026. function is a @code{starpu_worker_profiling_info} structure that gives
  1027. statistics about the specified worker. This structure specifies when StarPU
  1028. started collecting profiling information for that worker (@code{start_time}),
  1029. the duration of the profiling measurement interval (@code{total_time}), the
  1030. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1031. because there is no task to execute at all (@code{sleeping_time}), and the
  1032. number of tasks that were executed while profiling was enabled.
  1033. These values give an estimation of the proportion of time spent do real work,
  1034. and the time spent either sleeping because there are not enough executable
  1035. tasks or simply wasted in pure StarPU overhead.
  1036. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1037. information associated to a worker.
  1038. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1039. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1040. generate a graphic showing the evolution of these values during the time, for
  1041. the different workers.
  1042. @node Bus feedback
  1043. @subsection Bus-related feedback
  1044. TODO
  1045. @c how to enable/disable performance monitoring
  1046. @c what kind of information do we get ?
  1047. @node Off-line
  1048. @section Off-line performance feedback
  1049. @menu
  1050. * Generating traces:: Generating traces with FxT
  1051. * Gantt diagram:: Creating a Gantt Diagram
  1052. * DAG:: Creating a DAG with graphviz
  1053. * starpu-top:: Monitoring activity
  1054. @end menu
  1055. @node Generating traces
  1056. @subsection Generating traces with FxT
  1057. StarPU can use the FxT library (see
  1058. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1059. with a limited runtime overhead.
  1060. You can either get the FxT library from CVS (autotools are required):
  1061. @example
  1062. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1063. % ./bootstrap
  1064. @end example
  1065. If autotools are not available on your machine, or if you prefer to do so,
  1066. FxT's code is also available as a tarball:
  1067. @example
  1068. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1069. @end example
  1070. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1071. done following the standard procedure:
  1072. @example
  1073. % ./configure --prefix=$FXTDIR
  1074. % make
  1075. % make install
  1076. @end example
  1077. In order to have StarPU to generate traces, StarPU should be configured with
  1078. the @code{--with-fxt} option:
  1079. @example
  1080. $ ./configure --with-fxt=$FXTDIR
  1081. @end example
  1082. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1083. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1084. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1085. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1086. @code{/tmp/} directory by default, or by the directory specified by
  1087. the @code{STARPU_FXT_PREFIX} environment variable.
  1088. @node Gantt diagram
  1089. @subsection Creating a Gantt Diagram
  1090. When the FxT trace file @code{filename} has been generated, it is possible to
  1091. generate a trace in the Paje format by calling:
  1092. @example
  1093. % fxt_tool -i filename
  1094. @end example
  1095. This will create a @code{paje.trace} file in the current directory that can be
  1096. inspected with the Vite trace visualizing open-source tool. More information
  1097. about Vite is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1098. possible to open the @code{paje.trace} file with Vite by using the following
  1099. command:
  1100. @example
  1101. % vite paje.trace
  1102. @end example
  1103. @node DAG
  1104. @subsection Creating a DAG with graphviz
  1105. When the FxT trace file @code{filename} has been generated, it is possible to
  1106. generate a task graph in the DOT format by calling:
  1107. @example
  1108. $ fxt_tool -i filename
  1109. @end example
  1110. This will create a @code{dag.dot} file in the current directory. This file is a
  1111. task graph described using the DOT language. It is possible to get a
  1112. graphical output of the graph by using the graphviz library:
  1113. @example
  1114. $ dot -Tpdf dag.dot -o output.pdf
  1115. @end example
  1116. @node starpu-top
  1117. @subsection Monitoring activity
  1118. When the FxT trace file @code{filename} has been generated, it is possible to
  1119. generate a activity trace by calling:
  1120. @example
  1121. $ fxt_tool -i filename
  1122. @end example
  1123. This will create an @code{activity.data} file in the current
  1124. directory. A profile of the application showing the activity of StarPU
  1125. during the execution of the program can be generated:
  1126. @example
  1127. $ starpu_top.sh activity.data
  1128. @end example
  1129. This will create a file named @code{activity.eps} in the current directory.
  1130. This picture is composed of two parts.
  1131. The first part shows the activity of the different workers. The green sections
  1132. indicate which proportion of the time was spent executed kernels on the
  1133. processing unit. The red sections indicate the proportion of time spent in
  1134. StartPU: an important overhead may indicate that the granularity may be too
  1135. low, and that bigger tasks may be appropriate to use the processing unit more
  1136. efficiently. The black sections indicate that the processing unit was blocked
  1137. because there was no task to process: this may indicate a lack of parallelism
  1138. which may be alleviated by creating more tasks when it is possible.
  1139. The second part of the @code{activity.eps} picture is a graph showing the
  1140. evolution of the number of tasks available in the system during the execution.
  1141. Ready tasks are shown in black, and tasks that are submitted but not
  1142. schedulable yet are shown in grey.
  1143. @c ---------------------------------------------------------------------
  1144. @c Configuration options
  1145. @c ---------------------------------------------------------------------
  1146. @node Configuring StarPU
  1147. @chapter Configuring StarPU
  1148. @menu
  1149. * Compilation configuration::
  1150. * Execution configuration through environment variables::
  1151. @end menu
  1152. @node Compilation configuration
  1153. @section Compilation configuration
  1154. The following arguments can be given to the @code{configure} script.
  1155. @menu
  1156. * Common configuration::
  1157. * Configuring workers::
  1158. * Advanced configuration::
  1159. @end menu
  1160. @node Common configuration
  1161. @subsection Common configuration
  1162. @menu
  1163. * --enable-debug::
  1164. * --enable-fast::
  1165. * --enable-verbose::
  1166. * --enable-coverage::
  1167. @end menu
  1168. @node --enable-debug
  1169. @subsubsection @code{--enable-debug}
  1170. @table @asis
  1171. @item @emph{Description}:
  1172. Enable debugging messages.
  1173. @end table
  1174. @node --enable-fast
  1175. @subsubsection @code{--enable-fast}
  1176. @table @asis
  1177. @item @emph{Description}:
  1178. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1179. @end table
  1180. @node --enable-verbose
  1181. @subsubsection @code{--enable-verbose}
  1182. @table @asis
  1183. @item @emph{Description}:
  1184. Augment the verbosity of the debugging messages.
  1185. @end table
  1186. @node --enable-coverage
  1187. @subsubsection @code{--enable-coverage}
  1188. @table @asis
  1189. @item @emph{Description}:
  1190. Enable flags for the coverage tool.
  1191. @end table
  1192. @node Configuring workers
  1193. @subsection Configuring workers
  1194. @menu
  1195. * --enable-nmaxcpus::
  1196. * --disable-cpu::
  1197. * --enable-maxcudadev::
  1198. * --disable-cuda::
  1199. * --with-cuda-dir::
  1200. * --with-cuda-include-dir::
  1201. * --with-cuda-lib-dir::
  1202. * --enable-maxopencldev::
  1203. * --disable-opencl::
  1204. * --with-opencl-dir::
  1205. * --with-opencl-include-dir::
  1206. * --with-opencl-lib-dir::
  1207. * --enable-gordon::
  1208. * --with-gordon-dir::
  1209. @end menu
  1210. @node --enable-nmaxcpus
  1211. @subsubsection @code{--enable-nmaxcpus=<number>}
  1212. @table @asis
  1213. @item @emph{Description}:
  1214. Defines the maximum number of CPU cores that StarPU will support, then
  1215. available as the @code{STARPU_NMAXCPUS} macro.
  1216. @end table
  1217. @node --disable-cpu
  1218. @subsubsection @code{--disable-cpu}
  1219. @table @asis
  1220. @item @emph{Description}:
  1221. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1222. @end table
  1223. @node --enable-maxcudadev
  1224. @subsubsection @code{--enable-maxcudadev=<number>}
  1225. @table @asis
  1226. @item @emph{Description}:
  1227. Defines the maximum number of CUDA devices that StarPU will support, then
  1228. available as the @code{STARPU_MAXCUDADEVS} macro.
  1229. @end table
  1230. @node --disable-cuda
  1231. @subsubsection @code{--disable-cuda}
  1232. @table @asis
  1233. @item @emph{Description}:
  1234. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1235. @end table
  1236. @node --with-cuda-dir
  1237. @subsubsection @code{--with-cuda-dir=<path>}
  1238. @table @asis
  1239. @item @emph{Description}:
  1240. Specify the directory where CUDA is installed. This directory should notably contain
  1241. @code{include/cuda.h}.
  1242. @end table
  1243. @node --with-cuda-include-dir
  1244. @subsubsection @code{--with-cuda-include-dir=<path>}
  1245. @table @asis
  1246. @item @emph{Description}:
  1247. Specify the directory where CUDA headers are installed. This directory should
  1248. notably contain @code{cuda.h}.
  1249. @end table
  1250. @node --with-cuda-lib-dir
  1251. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1252. @table @asis
  1253. @item @emph{Description}:
  1254. Specify the directory where the CUDA library is installed.
  1255. @end table
  1256. @node --enable-maxopencldev
  1257. @subsubsection @code{--enable-maxopencldev=<number>}
  1258. @table @asis
  1259. @item @emph{Description}:
  1260. Defines the maximum number of OpenCL devices that StarPU will support, then
  1261. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1262. @end table
  1263. @node --disable-opencl
  1264. @subsubsection @code{--disable-opencl}
  1265. @table @asis
  1266. @item @emph{Description}:
  1267. Disable the use of OpenCL, even if the SDK is detected.
  1268. @end table
  1269. @node --with-opencl-dir
  1270. @subsubsection @code{--with-opencl-dir=<path>}
  1271. @table @asis
  1272. @item @emph{Description}:
  1273. Specify the location of the OpenCL SDK. This directory should notably contain
  1274. @code{include/CL/cl.h}.
  1275. @end table
  1276. @node --with-opencl-include-dir
  1277. @subsubsection @code{--with-opencl-include-dir=<path>}
  1278. @table @asis
  1279. @item @emph{Description}:
  1280. Specify the location of OpenCL headers. This directory should notably contain
  1281. @code{CL/cl.h}.
  1282. @end table
  1283. @node --with-opencl-lib-dir
  1284. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1285. @table @asis
  1286. @item @emph{Description}:
  1287. Specify the location of the OpenCL library.
  1288. @code{include/CL/cl.h}.
  1289. @end table
  1290. @node --enable-gordon
  1291. @subsubsection @code{--enable-gordon}
  1292. @table @asis
  1293. @item @emph{Description}:
  1294. Enable the use of the Gordon runtime for Cell SPUs.
  1295. @c TODO: rather default to enabled when detected
  1296. @end table
  1297. @node --with-gordon-dir
  1298. @subsubsection @code{--with-gordon-dir=<path>}
  1299. @table @asis
  1300. @item @emph{Description}:
  1301. Specify the location of the Gordon SDK.
  1302. @end table
  1303. @node Advanced configuration
  1304. @subsection Advanced configuration
  1305. @menu
  1306. * --enable-perf-debug::
  1307. * --enable-model-debug::
  1308. * --enable-stats::
  1309. * --enable-maxbuffers::
  1310. * --enable-allocation-cache::
  1311. * --enable-opengl-render::
  1312. * --enable-blas-lib::
  1313. * --with-magma::
  1314. * --with-fxt::
  1315. * --with-perf-model-dir::
  1316. * --with-mpicc::
  1317. * --with-goto-dir::
  1318. * --with-atlas-dir::
  1319. * --with-mkl-cflags::
  1320. * --with-mkl-ldflags::
  1321. @end menu
  1322. @node --enable-perf-debug
  1323. @subsubsection @code{--enable-perf-debug}
  1324. @table @asis
  1325. @item @emph{Description}:
  1326. Enable performance debugging.
  1327. @end table
  1328. @node --enable-model-debug
  1329. @subsubsection @code{--enable-model-debug}
  1330. @table @asis
  1331. @item @emph{Description}:
  1332. Enable performance model debugging.
  1333. @end table
  1334. @node --enable-stats
  1335. @subsubsection @code{--enable-stats}
  1336. @table @asis
  1337. @item @emph{Description}:
  1338. Enable statistics.
  1339. @end table
  1340. @node --enable-maxbuffers
  1341. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1342. @table @asis
  1343. @item @emph{Description}:
  1344. Define the maximum number of buffers that tasks will be able to take
  1345. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1346. @end table
  1347. @node --enable-allocation-cache
  1348. @subsubsection @code{--enable-allocation-cache}
  1349. @table @asis
  1350. @item @emph{Description}:
  1351. Enable the use of a data allocation cache to avoid the cost of it with
  1352. CUDA. Still experimental.
  1353. @end table
  1354. @node --enable-opengl-render
  1355. @subsubsection @code{--enable-opengl-render}
  1356. @table @asis
  1357. @item @emph{Description}:
  1358. Enable the use of OpenGL for the rendering of some examples.
  1359. @c TODO: rather default to enabled when detected
  1360. @end table
  1361. @node --enable-blas-lib
  1362. @subsubsection @code{--enable-blas-lib=<name>}
  1363. @table @asis
  1364. @item @emph{Description}:
  1365. Specify the blas library to be used by some of the examples. The
  1366. library has to be 'atlas' or 'goto'.
  1367. @end table
  1368. @node --with-magma
  1369. @subsubsection @code{--with-magma=<path>}
  1370. @table @asis
  1371. @item @emph{Description}:
  1372. Specify where magma is installed.
  1373. @end table
  1374. @node --with-fxt
  1375. @subsubsection @code{--with-fxt=<path>}
  1376. @table @asis
  1377. @item @emph{Description}:
  1378. Specify the location of FxT (for generating traces and rendering them
  1379. using ViTE). This directory should notably contain
  1380. @code{include/fxt/fxt.h}.
  1381. @c TODO add ref to other section
  1382. @end table
  1383. @node --with-perf-model-dir
  1384. @subsubsection @code{--with-perf-model-dir=<dir>}
  1385. @table @asis
  1386. @item @emph{Description}:
  1387. Specify where performance models should be stored (instead of defaulting to the
  1388. current user's home).
  1389. @end table
  1390. @node --with-mpicc
  1391. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1392. @table @asis
  1393. @item @emph{Description}:
  1394. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1395. @end table
  1396. @node --with-goto-dir
  1397. @subsubsection @code{--with-goto-dir=<dir>}
  1398. @table @asis
  1399. @item @emph{Description}:
  1400. Specify the location of GotoBLAS.
  1401. @end table
  1402. @node --with-atlas-dir
  1403. @subsubsection @code{--with-atlas-dir=<dir>}
  1404. @table @asis
  1405. @item @emph{Description}:
  1406. Specify the location of ATLAS. This directory should notably contain
  1407. @code{include/cblas.h}.
  1408. @end table
  1409. @node --with-mkl-cflags
  1410. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1411. @table @asis
  1412. @item @emph{Description}:
  1413. Specify the compilation flags for the MKL Library.
  1414. @end table
  1415. @node --with-mkl-ldflags
  1416. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1417. @table @asis
  1418. @item @emph{Description}:
  1419. Specify the linking flags for the MKL Library. Note that the
  1420. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1421. website provides a script to determine the linking flags.
  1422. @end table
  1423. @c ---------------------------------------------------------------------
  1424. @c Environment variables
  1425. @c ---------------------------------------------------------------------
  1426. @node Execution configuration through environment variables
  1427. @section Execution configuration through environment variables
  1428. @menu
  1429. * Workers:: Configuring workers
  1430. * Scheduling:: Configuring the Scheduling engine
  1431. * Misc:: Miscellaneous and debug
  1432. @end menu
  1433. Note: the values given in @code{starpu_conf} structure passed when
  1434. calling @code{starpu_init} will override the values of the environment
  1435. variables.
  1436. @node Workers
  1437. @subsection Configuring workers
  1438. @menu
  1439. * STARPU_NCPUS:: Number of CPU workers
  1440. * STARPU_NCUDA:: Number of CUDA workers
  1441. * STARPU_NOPENCL:: Number of OpenCL workers
  1442. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1443. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1444. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1445. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1446. @end menu
  1447. @node STARPU_NCPUS
  1448. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1449. @table @asis
  1450. @item @emph{Description}:
  1451. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1452. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1453. the accelerators.
  1454. @end table
  1455. @node STARPU_NCUDA
  1456. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1457. @table @asis
  1458. @item @emph{Description}:
  1459. Specify the number of CUDA devices that StarPU can use. If
  1460. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1461. possible to select which CUDA devices should be used by the means of the
  1462. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1463. create as many CUDA workers as there are CUDA devices.
  1464. @end table
  1465. @node STARPU_NOPENCL
  1466. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1467. @table @asis
  1468. @item @emph{Description}:
  1469. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1470. @end table
  1471. @node STARPU_NGORDON
  1472. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1473. @table @asis
  1474. @item @emph{Description}:
  1475. Specify the number of SPUs that StarPU can use.
  1476. @end table
  1477. @node STARPU_WORKERS_CPUID
  1478. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1479. @table @asis
  1480. @item @emph{Description}:
  1481. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1482. specifies on which logical CPU the different workers should be
  1483. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  1484. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  1485. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  1486. determined by the OS, or provided by the @code{hwloc} library in case it is
  1487. available.
  1488. Note that the first workers correspond to the CUDA workers, then come the
  1489. OpenCL and the SPU, and finally the CPU workers. For example if
  1490. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1491. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1492. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1493. the logical CPUs #1 and #3 will be used by the CPU workers.
  1494. If the number of workers is larger than the array given in
  1495. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1496. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1497. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1498. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1499. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1500. @end table
  1501. @node STARPU_WORKERS_CUDAID
  1502. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1503. @table @asis
  1504. @item @emph{Description}:
  1505. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1506. possible to select which CUDA devices should be used by StarPU. On a machine
  1507. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1508. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1509. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1510. the one reported by CUDA).
  1511. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1512. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1513. @end table
  1514. @node STARPU_WORKERS_OPENCLID
  1515. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1516. @table @asis
  1517. @item @emph{Description}:
  1518. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1519. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1520. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1521. @end table
  1522. @node Scheduling
  1523. @subsection Configuring the Scheduling engine
  1524. @menu
  1525. * STARPU_SCHED:: Scheduling policy
  1526. * STARPU_CALIBRATE:: Calibrate performance models
  1527. * STARPU_PREFETCH:: Use data prefetch
  1528. * STARPU_SCHED_ALPHA:: Computation factor
  1529. * STARPU_SCHED_BETA:: Communication factor
  1530. @end menu
  1531. @node STARPU_SCHED
  1532. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1533. @table @asis
  1534. @item @emph{Description}:
  1535. This chooses between the different scheduling policies proposed by StarPU: work
  1536. random, stealing, greedy, with performance models, etc.
  1537. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1538. @end table
  1539. @node STARPU_CALIBRATE
  1540. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1541. @table @asis
  1542. @item @emph{Description}:
  1543. If this variable is set to 1, the performance models are calibrated during
  1544. the execution. If it is set to 2, the previous values are dropped to restart
  1545. calibration from scratch.
  1546. Note: this currently only applies to dm and dmda scheduling policies.
  1547. @end table
  1548. @node STARPU_PREFETCH
  1549. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1550. @table @asis
  1551. @item @emph{Description}:
  1552. This variable indicates whether data prefetching should be enabled (0 means
  1553. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1554. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1555. advance, so that data is already present on the GPU when the task starts. As a
  1556. result, computation and data transfers are overlapped.
  1557. @end table
  1558. @node STARPU_SCHED_ALPHA
  1559. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1560. @table @asis
  1561. @item @emph{Description}:
  1562. To estimate the cost of a task StarPU takes into account the estimated
  1563. computation time (obtained thanks to performance models). The alpha factor is
  1564. the coefficient to be applied to it before adding it to the communication part.
  1565. @end table
  1566. @node STARPU_SCHED_BETA
  1567. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. To estimate the cost of a task StarPU takes into account the estimated
  1571. data transfer time (obtained thanks to performance models). The beta factor is
  1572. the coefficient to be applied to it before adding it to the computation part.
  1573. @end table
  1574. @node Misc
  1575. @subsection Miscellaneous and debug
  1576. @menu
  1577. * STARPU_LOGFILENAME:: Select debug file name
  1578. * STARPU_FXT_PREFIX:: FxT trace location
  1579. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1580. @end menu
  1581. @node STARPU_LOGFILENAME
  1582. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1583. @table @asis
  1584. @item @emph{Description}:
  1585. This variable specifies in which file the debugging output should be saved to.
  1586. @end table
  1587. @node STARPU_FXT_PREFIX
  1588. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1589. @table @asis
  1590. @item @emph{Description}
  1591. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1592. @end table
  1593. @node STARPU_LIMIT_GPU_MEM
  1594. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1595. @table @asis
  1596. @item @emph{Description}
  1597. This variable specifies the maximum number of megabytes that should be
  1598. available to the application on each GPUs. In case this value is smaller than
  1599. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1600. on the device. This variable is intended to be used for experimental purposes
  1601. as it emulates devices that have a limited amount of memory.
  1602. @end table
  1603. @c ---------------------------------------------------------------------
  1604. @c StarPU API
  1605. @c ---------------------------------------------------------------------
  1606. @node StarPU API
  1607. @chapter StarPU API
  1608. @menu
  1609. * Initialization and Termination:: Initialization and Termination methods
  1610. * Workers' Properties:: Methods to enumerate workers' properties
  1611. * Data Library:: Methods to manipulate data
  1612. * Data Interfaces::
  1613. * Data Partition::
  1614. * Codelets and Tasks:: Methods to construct tasks
  1615. * Explicit Dependencies:: Explicit Dependencies
  1616. * Implicit Data Dependencies:: Implicit Data Dependencies
  1617. * Performance Model API::
  1618. * Profiling API:: Profiling API
  1619. * CUDA extensions:: CUDA extensions
  1620. * OpenCL extensions:: OpenCL extensions
  1621. * Cell extensions:: Cell extensions
  1622. * Miscellaneous helpers::
  1623. @end menu
  1624. @node Initialization and Termination
  1625. @section Initialization and Termination
  1626. @menu
  1627. * starpu_init:: Initialize StarPU
  1628. * struct starpu_conf:: StarPU runtime configuration
  1629. * starpu_conf_init:: Initialize starpu_conf structure
  1630. * starpu_shutdown:: Terminate StarPU
  1631. @end menu
  1632. @node starpu_init
  1633. @subsection @code{starpu_init} -- Initialize StarPU
  1634. @table @asis
  1635. @item @emph{Description}:
  1636. This is StarPU initialization method, which must be called prior to any other
  1637. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1638. policy, number of cores, ...) by passing a non-null argument. Default
  1639. configuration is used if the passed argument is @code{NULL}.
  1640. @item @emph{Return value}:
  1641. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1642. indicates that no worker was available (so that StarPU was not initialized).
  1643. @item @emph{Prototype}:
  1644. @code{int starpu_init(struct starpu_conf *conf);}
  1645. @end table
  1646. @node struct starpu_conf
  1647. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1648. @table @asis
  1649. @item @emph{Description}:
  1650. This structure is passed to the @code{starpu_init} function in order
  1651. to configure StarPU.
  1652. When the default value is used, StarPU automatically selects the number
  1653. of processing units and takes the default scheduling policy. This parameter
  1654. overwrites the equivalent environment variables.
  1655. @item @emph{Fields}:
  1656. @table @asis
  1657. @item @code{sched_policy_name} (default = NULL):
  1658. This is the name of the scheduling policy. This can also be specified with the
  1659. @code{STARPU_SCHED} environment variable.
  1660. @item @code{sched_policy} (default = NULL):
  1661. This is the definition of the scheduling policy. This field is ignored
  1662. if @code{sched_policy_name} is set.
  1663. @item @code{ncpus} (default = -1):
  1664. This is the number of CPU cores that StarPU can use. This can also be
  1665. specified with the @code{STARPU_NCPUS} environment variable.
  1666. @item @code{ncuda} (default = -1):
  1667. This is the number of CUDA devices that StarPU can use. This can also be
  1668. specified with the @code{STARPU_NCUDA} environment variable.
  1669. @item @code{nopencl} (default = -1):
  1670. This is the number of OpenCL devices that StarPU can use. This can also be
  1671. specified with the @code{STARPU_NOPENCL} environment variable.
  1672. @item @code{nspus} (default = -1):
  1673. This is the number of Cell SPUs that StarPU can use. This can also be
  1674. specified with the @code{STARPU_NGORDON} environment variable.
  1675. @item @code{use_explicit_workers_bindid} (default = 0)
  1676. If this flag is set, the @code{workers_bindid} array indicates where the
  1677. different workers are bound, otherwise StarPU automatically selects where to
  1678. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1679. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1680. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1681. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1682. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1683. where to bind the different workers. The i-th entry of the
  1684. @code{workers_bindid} indicates the logical identifier of the processor which
  1685. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1686. either determined by the OS, or provided by the @code{hwloc} library in case it
  1687. is available.
  1688. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1689. ignored.
  1690. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1691. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1692. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1693. CUDA devices in a round-robin fashion.
  1694. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1695. ignored.
  1696. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1697. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1698. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1699. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1700. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1701. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1702. OpenCL devices in a round-robin fashion.
  1703. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1704. @item @code{calibrate} (default = 0):
  1705. If this flag is set, StarPU will calibrate the performance models when
  1706. executing tasks. If this value is equal to -1, the default value is used. The
  1707. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1708. variable when it is set.
  1709. @end table
  1710. @end table
  1711. @node starpu_conf_init
  1712. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1713. @table @asis
  1714. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1715. @item @emph{Return value}:
  1716. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1717. indicates that the argument was NULL.
  1718. @item @emph{Prototype}:
  1719. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1720. @end table
  1721. @node starpu_shutdown
  1722. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1723. @table @asis
  1724. @item @emph{Description}:
  1725. This is StarPU termination method. It must be called at the end of the
  1726. application: statistics and other post-mortem debugging information are not
  1727. guaranteed to be available until this method has been called.
  1728. @item @emph{Prototype}:
  1729. @code{void starpu_shutdown(void);}
  1730. @end table
  1731. @node Workers' Properties
  1732. @section Workers' Properties
  1733. @menu
  1734. * starpu_worker_get_count:: Get the number of processing units
  1735. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1736. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1737. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1738. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1739. * starpu_worker_get_id:: Get the identifier of the current worker
  1740. * starpu_worker_get_devid:: Get the device identifier of a worker
  1741. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1742. * starpu_worker_get_name:: Get the name of a worker
  1743. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1744. @end menu
  1745. @node starpu_worker_get_count
  1746. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1747. @table @asis
  1748. @item @emph{Description}:
  1749. This function returns the number of workers (i.e. processing units executing
  1750. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1751. @item @emph{Prototype}:
  1752. @code{unsigned starpu_worker_get_count(void);}
  1753. @end table
  1754. @node starpu_cpu_worker_get_count
  1755. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1756. @table @asis
  1757. @item @emph{Description}:
  1758. This function returns the number of CPUs controlled by StarPU. The returned
  1759. value should be at most @code{STARPU_NMAXCPUS}.
  1760. @item @emph{Prototype}:
  1761. @code{unsigned starpu_cpu_worker_get_count(void);}
  1762. @end table
  1763. @node starpu_cuda_worker_get_count
  1764. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1765. @table @asis
  1766. @item @emph{Description}:
  1767. This function returns the number of CUDA devices controlled by StarPU. The returned
  1768. value should be at most @code{STARPU_MAXCUDADEVS}.
  1769. @item @emph{Prototype}:
  1770. @code{unsigned starpu_cuda_worker_get_count(void);}
  1771. @end table
  1772. @node starpu_opencl_worker_get_count
  1773. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1774. @table @asis
  1775. @item @emph{Description}:
  1776. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1777. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1778. @item @emph{Prototype}:
  1779. @code{unsigned starpu_opencl_worker_get_count(void);}
  1780. @end table
  1781. @node starpu_spu_worker_get_count
  1782. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1783. @table @asis
  1784. @item @emph{Description}:
  1785. This function returns the number of Cell SPUs controlled by StarPU.
  1786. @item @emph{Prototype}:
  1787. @code{unsigned starpu_opencl_worker_get_count(void);}
  1788. @end table
  1789. @node starpu_worker_get_id
  1790. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1791. @table @asis
  1792. @item @emph{Description}:
  1793. This function returns the identifier of the worker associated to the calling
  1794. thread. The returned value is either -1 if the current context is not a StarPU
  1795. worker (i.e. when called from the application outside a task or a callback), or
  1796. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1797. @item @emph{Prototype}:
  1798. @code{int starpu_worker_get_id(void);}
  1799. @end table
  1800. @node starpu_worker_get_devid
  1801. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1802. @table @asis
  1803. @item @emph{Description}:
  1804. This functions returns the device id of the worker associated to an identifier
  1805. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1806. CUDA worker, this device identifier is the logical device identifier exposed by
  1807. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1808. identifier of a CPU worker is the logical identifier of the core on which the
  1809. worker was bound; this identifier is either provided by the OS or by the
  1810. @code{hwloc} library in case it is available.
  1811. @item @emph{Prototype}:
  1812. @code{int starpu_worker_get_devid(int id);}
  1813. @end table
  1814. @node starpu_worker_get_type
  1815. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1816. @table @asis
  1817. @item @emph{Description}:
  1818. This function returns the type of worker associated to an identifier (as
  1819. returned by the @code{starpu_worker_get_id} function). The returned value
  1820. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1821. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1822. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1823. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1824. identifier is unspecified.
  1825. @item @emph{Prototype}:
  1826. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1827. @end table
  1828. @node starpu_worker_get_name
  1829. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1830. @table @asis
  1831. @item @emph{Description}:
  1832. StarPU associates a unique human readable string to each processing unit. This
  1833. function copies at most the @code{maxlen} first bytes of the unique string
  1834. associated to a worker identified by its identifier @code{id} into the
  1835. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1836. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1837. function on an invalid identifier results in an unspecified behaviour.
  1838. @item @emph{Prototype}:
  1839. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1840. @end table
  1841. @node starpu_worker_get_memory_node
  1842. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1843. @table @asis
  1844. @item @emph{Description}:
  1845. This function returns the identifier of the memory node associated to the
  1846. worker identified by @code{workerid}.
  1847. @item @emph{Prototype}:
  1848. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1849. @end table
  1850. @node Data Library
  1851. @section Data Library
  1852. This section describes the data management facilities provided by StarPU.
  1853. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1854. design their own data interfaces if required.
  1855. @menu
  1856. * starpu_access_mode:: starpu_access_mode
  1857. * unsigned memory_node:: Memory node
  1858. * starpu_data_handle:: StarPU opaque data handle
  1859. * void *interface:: StarPU data interface
  1860. * starpu_data_register:: Register a piece of data to StarPU
  1861. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1862. * starpu_data_invalidate:: Invalidate all data replicates
  1863. * starpu_data_acquire:: Access registered data from the application
  1864. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1865. * starpu_data_release:: Release registered data from the application
  1866. @end menu
  1867. @node starpu_access_mode
  1868. @subsection @code{starpu_access_mode} -- Data access mode
  1869. This datatype describes a data access mode. The different available modes are:
  1870. @table @asis
  1871. @table @asis
  1872. @item @code{STARPU_R} read-only mode.
  1873. @item @code{STARPU_W} write-only mode.
  1874. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1875. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1876. @end table
  1877. @end table
  1878. @node unsigned memory_node
  1879. @subsection @code{unsigned memory_node} -- Memory node
  1880. @table @asis
  1881. @item @emph{Description}:
  1882. Every worker is associated to a memory node which is a logical abstraction of
  1883. the address space from which the processing unit gets its data. For instance,
  1884. the memory node associated to the different CPU workers represents main memory
  1885. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1886. Every memory node is identified by a logical index which is accessible from the
  1887. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1888. to StarPU, the specified memory node indicates where the piece of data
  1889. initially resides (we also call this memory node the home node of a piece of
  1890. data).
  1891. @end table
  1892. @node starpu_data_handle
  1893. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1894. @table @asis
  1895. @item @emph{Description}:
  1896. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1897. data. Once a piece of data has been registered to StarPU, it is associated to a
  1898. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1899. over the entire machine, so that we can maintain data consistency and locate
  1900. data replicates for instance.
  1901. @end table
  1902. @node void *interface
  1903. @subsection @code{void *interface} -- StarPU data interface
  1904. @table @asis
  1905. @item @emph{Description}:
  1906. Data management is done at a high-level in StarPU: rather than accessing a mere
  1907. list of contiguous buffers, the tasks may manipulate data that are described by
  1908. a high-level construct which we call data interface.
  1909. An example of data interface is the "vector" interface which describes a
  1910. contiguous data array on a spefic memory node. This interface is a simple
  1911. structure containing the number of elements in the array, the size of the
  1912. elements, and the address of the array in the appropriate address space (this
  1913. address may be invalid if there is no valid copy of the array in the memory
  1914. node). More informations on the data interfaces provided by StarPU are
  1915. given in @ref{Data Interfaces}.
  1916. When a piece of data managed by StarPU is used by a task, the task
  1917. implementation is given a pointer to an interface describing a valid copy of
  1918. the data that is accessible from the current processing unit.
  1919. @end table
  1920. @node starpu_data_register
  1921. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1922. @table @asis
  1923. @item @emph{Description}:
  1924. Register a piece of data into the handle located at the @code{handleptr}
  1925. address. The @code{interface} buffer contains the initial description of the
  1926. data in the home node. The @code{ops} argument is a pointer to a structure
  1927. describing the different methods used to manipulate this type of interface. See
  1928. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1929. If @code{home_node} is not a valid memory node, StarPU will automatically
  1930. allocate the memory described by the interface the data handle is used for the
  1931. first time in write-only mode. Once such data handle has been automatically
  1932. allocated, it is possible to access it using any access mode.
  1933. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1934. matrix) which can be registered by the means of helper functions (e.g.
  1935. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1936. @item @emph{Prototype}:
  1937. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1938. uint32_t home_node,
  1939. void *interface,
  1940. struct starpu_data_interface_ops_t *ops);}
  1941. @end table
  1942. @node starpu_data_unregister
  1943. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1944. @table @asis
  1945. @item @emph{Description}:
  1946. This function unregisters a data handle from StarPU. If the data was
  1947. automatically allocated by StarPU because the home node was not valid, all
  1948. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1949. is put back into the home node in the buffer that was initially registered.
  1950. Using a data handle that has been unregistered from StarPU results in an
  1951. undefined behaviour.
  1952. @item @emph{Prototype}:
  1953. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1954. @end table
  1955. @node starpu_data_invalidate
  1956. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1957. @table @asis
  1958. @item @emph{Description}:
  1959. Destroy all replicates of the data handle. After data invalidation, the first
  1960. access to the handle must be performed in write-only mode. Accessing an
  1961. invalidated data in read-mode results in undefined behaviour.
  1962. @item @emph{Prototype}:
  1963. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  1964. @end table
  1965. @c TODO create a specific sections about user interaction with the DSM ?
  1966. @node starpu_data_acquire
  1967. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  1968. @table @asis
  1969. @item @emph{Description}:
  1970. The application must call this function prior to accessing registered data from
  1971. main memory outside tasks. StarPU ensures that the application will get an
  1972. up-to-date copy of the data in main memory located where the data was
  1973. originally registered, and that all concurrent accesses (e.g. from tasks) will
  1974. be consistent with the access mode specified in the @code{mode} argument.
  1975. @code{starpu_data_release} must be called once the application does not need to
  1976. access the piece of data anymore.
  1977. Note that implicit data dependencies are also enforced by
  1978. @code{starpu_data_acquire} in case they are enabled.
  1979. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  1980. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  1981. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  1982. @item @emph{Prototype}:
  1983. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  1984. @end table
  1985. @node starpu_data_acquire_cb
  1986. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  1987. @table @asis
  1988. @item @emph{Description}:
  1989. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  1990. @code{starpu_data_release}. When the data specified in the first argument is
  1991. available in the appropriate access mode, the callback function is executed.
  1992. The application may access the requested data during the execution of this
  1993. callback. The callback function must call @code{starpu_data_release} once the
  1994. application does not need to access the piece of data anymore.
  1995. Note that implicit data dependencies are also enforced by
  1996. @code{starpu_data_acquire} in case they are enabled.
  1997. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  1998. be called from task callbacks. Upon successful completion, this function
  1999. returns 0.
  2000. @item @emph{Prototype}:
  2001. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2002. @end table
  2003. @node starpu_data_release
  2004. @subsection @code{starpu_data_release} -- Release registered data from the application
  2005. @table @asis
  2006. @item @emph{Description}:
  2007. This function releases the piece of data acquired by the application either by
  2008. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2009. @item @emph{Prototype}:
  2010. @code{void starpu_data_release(starpu_data_handle handle);}
  2011. @end table
  2012. @node Data Interfaces
  2013. @section Data Interfaces
  2014. @menu
  2015. * Variable Interface::
  2016. * Vector Interface::
  2017. * Matrix Interface::
  2018. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2019. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2020. * Block Interface::
  2021. @end menu
  2022. @node Variable Interface
  2023. @subsection Variable Interface
  2024. @table @asis
  2025. @item @emph{Description}:
  2026. @item @emph{Prototype}:
  2027. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2028. uint32_t home_node,
  2029. uintptr_t ptr, size_t elemsize);}
  2030. @item @emph{Example}:
  2031. @cartouche
  2032. @smallexample
  2033. float var;
  2034. starpu_data_handle var_handle;
  2035. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2036. @end smallexample
  2037. @end cartouche
  2038. @end table
  2039. @node Vector Interface
  2040. @subsection Vector Interface
  2041. @table @asis
  2042. @item @emph{Description}:
  2043. @item @emph{Prototype}:
  2044. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2045. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2046. @item @emph{Example}:
  2047. @cartouche
  2048. @smallexample
  2049. float vector[NX];
  2050. starpu_data_handle vector_handle;
  2051. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2052. sizeof(vector[0]));
  2053. @end smallexample
  2054. @end cartouche
  2055. @end table
  2056. @node Matrix Interface
  2057. @subsection Matrix Interface
  2058. @table @asis
  2059. @item @emph{Description}:
  2060. @item @emph{Prototype}:
  2061. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2062. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2063. uint32_t ny, size_t elemsize);}
  2064. @item @emph{Example}:
  2065. @cartouche
  2066. @smallexample
  2067. float *matrix;
  2068. starpu_data_handle matrix_handle;
  2069. matrix = (float*)malloc(width * height * sizeof(float));
  2070. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2071. width, width, height, sizeof(float));
  2072. @end smallexample
  2073. @end cartouche
  2074. @end table
  2075. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2076. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2077. @table @asis
  2078. @item @emph{Description}:
  2079. @item @emph{Prototype}:
  2080. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2081. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2082. @item @emph{Example}:
  2083. @cartouche
  2084. @smallexample
  2085. @end smallexample
  2086. @end cartouche
  2087. @end table
  2088. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2089. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. @item @emph{Prototype}:
  2093. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2094. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2095. @item @emph{Example}:
  2096. @cartouche
  2097. @smallexample
  2098. @end smallexample
  2099. @end cartouche
  2100. @end table
  2101. @node Block Interface
  2102. @subsection Block Interface
  2103. @table @asis
  2104. @item @emph{Description}:
  2105. @item @emph{Prototype}:
  2106. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2107. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2108. uint32_t ny, uint32_t nz, size_t elemsize);}
  2109. @item @emph{Example}:
  2110. @cartouche
  2111. @smallexample
  2112. float *block;
  2113. starpu_data_handle block_handle;
  2114. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2115. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2116. nx, nx*ny, nx, ny, nz, sizeof(float));
  2117. @end smallexample
  2118. @end cartouche
  2119. @end table
  2120. @node Data Partition
  2121. @section Data Partition
  2122. @menu
  2123. * struct starpu_data_filter:: StarPU filter structure
  2124. * starpu_data_partition:: Partition Data
  2125. * starpu_data_unpartition:: Unpartition Data
  2126. * starpu_data_get_nb_children::
  2127. * starpu_data_get_sub_data::
  2128. * Predefined filter functions::
  2129. @end menu
  2130. @node struct starpu_data_filter
  2131. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2132. @table @asis
  2133. @item @emph{Description}:
  2134. The filter structure describes a data partitioning function.
  2135. @item @emph{Fields}:
  2136. @table @asis
  2137. @item @code{filter_func}:
  2138. TODO
  2139. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2140. @item @code{get_nchildren}:
  2141. TODO
  2142. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2143. @item @code{get_child_ops}:
  2144. TODO
  2145. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2146. @item @code{filter_arg}:
  2147. TODO
  2148. @item @code{nchildren}:
  2149. TODO
  2150. @item @code{filter_arg_ptr}:
  2151. TODO
  2152. @end table
  2153. @end table
  2154. @node starpu_data_partition
  2155. @subsection starpu_data_partition -- Partition Data
  2156. @table @asis
  2157. @item @emph{Description}:
  2158. TODO
  2159. @item @emph{Prototype}:
  2160. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2161. @end table
  2162. @node starpu_data_unpartition
  2163. @subsection starpu_data_unpartition -- Unpartition data
  2164. @table @asis
  2165. @item @emph{Description}:
  2166. TODO
  2167. @item @emph{Prototype}:
  2168. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2169. @end table
  2170. @node starpu_data_get_nb_children
  2171. @subsection starpu_data_get_nb_children
  2172. @table @asis
  2173. @item @emph{Description}:
  2174. TODO
  2175. @item @emph{Return value}:
  2176. This function returns returns the number of children.
  2177. @item @emph{Prototype}:
  2178. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2179. @end table
  2180. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2181. @node starpu_data_get_sub_data
  2182. @subsection starpu_data_get_sub_data
  2183. @table @asis
  2184. @item @emph{Description}:
  2185. TODO
  2186. @item @emph{Return value}:
  2187. TODO
  2188. @item @emph{Prototype}:
  2189. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2190. @end table
  2191. @node Predefined filter functions
  2192. @subsection Predefined filter functions
  2193. @menu
  2194. * Partitioning BCSR Data::
  2195. * Partitioning BLAS interface::
  2196. * Partitioning Vector Data::
  2197. * Partitioning Block Data::
  2198. @end menu
  2199. This section gives a list of the predefined partitioning functions.
  2200. Examples on how to use them are shown in @ref{Partitioning Data}.
  2201. @node Partitioning BCSR Data
  2202. @subsubsection Partitioning BCSR Data
  2203. @itemize
  2204. @item
  2205. TODO
  2206. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2207. @item
  2208. TODO
  2209. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2210. @end itemize
  2211. @node Partitioning BLAS interface
  2212. @subsubsection Partitioning BLAS interface
  2213. @itemize
  2214. @item
  2215. TODO
  2216. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2217. @item
  2218. TODO
  2219. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2220. @end itemize
  2221. @node Partitioning Vector Data
  2222. @subsubsection Partitioning Vector Data
  2223. @itemize
  2224. @item
  2225. TODO
  2226. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2227. @item
  2228. TODO
  2229. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2230. @item
  2231. TODO
  2232. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2233. @end itemize
  2234. @node Partitioning Block Data
  2235. @subsubsection Partitioning Block Data
  2236. @itemize
  2237. @item
  2238. TODO
  2239. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2240. @end itemize
  2241. @node Codelets and Tasks
  2242. @section Codelets and Tasks
  2243. @menu
  2244. * struct starpu_codelet:: StarPU codelet structure
  2245. * struct starpu_task:: StarPU task structure
  2246. * starpu_task_init:: Initialize a Task
  2247. * starpu_task_create:: Allocate and Initialize a Task
  2248. * starpu_task_deinit:: Release all the resources used by a Task
  2249. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2250. * starpu_task_wait:: Wait for the termination of a Task
  2251. * starpu_task_submit:: Submit a Task
  2252. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2253. * starpu_get_current_task:: Return the task currently executed by the worker
  2254. * starpu_display_codelet_stats:: Display statistics
  2255. @end menu
  2256. @node struct starpu_codelet
  2257. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2258. @table @asis
  2259. @item @emph{Description}:
  2260. The codelet structure describes a kernel that is possibly implemented on
  2261. various targets.
  2262. @item @emph{Fields}:
  2263. @table @asis
  2264. @item @code{where}:
  2265. Indicates which types of processing units are able to execute the codelet.
  2266. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2267. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2268. indicates that it is only available on Cell SPUs.
  2269. @item @code{cpu_func} (optional):
  2270. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2271. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2272. argument being the array of data managed by the data management library, and
  2273. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2274. field of the @code{starpu_task} structure.
  2275. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2276. the @code{where} field, it must be non-null otherwise.
  2277. @item @code{cuda_func} (optional):
  2278. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2279. must be a host-function written in the CUDA runtime API}. Its prototype must
  2280. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2281. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2282. field, it must be non-null otherwise.
  2283. @item @code{opencl_func} (optional):
  2284. Is a function pointer to the OpenCL implementation of the codelet. Its
  2285. prototype must be:
  2286. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2287. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2288. @code{where} field, it must be non-null otherwise.
  2289. @item @code{gordon_func} (optional):
  2290. This is the index of the Cell SPU implementation within the Gordon library.
  2291. See Gordon documentation for more details on how to register a kernel and
  2292. retrieve its index.
  2293. @item @code{nbuffers}:
  2294. Specifies the number of arguments taken by the codelet. These arguments are
  2295. managed by the DSM and are accessed from the @code{void *buffers[]}
  2296. array. The constant argument passed with the @code{cl_arg} field of the
  2297. @code{starpu_task} structure is not counted in this number. This value should
  2298. not be above @code{STARPU_NMAXBUFS}.
  2299. @item @code{model} (optional):
  2300. This is a pointer to the performance model associated to this codelet. This
  2301. optional field is ignored when set to @code{NULL}. TODO
  2302. @end table
  2303. @end table
  2304. @node struct starpu_task
  2305. @subsection @code{struct starpu_task} -- StarPU task structure
  2306. @table @asis
  2307. @item @emph{Description}:
  2308. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2309. processing units managed by StarPU. It instantiates a codelet. It can either be
  2310. allocated dynamically with the @code{starpu_task_create} method, or declared
  2311. statically. In the latter case, the programmer has to zero the
  2312. @code{starpu_task} structure and to fill the different fields properly. The
  2313. indicated default values correspond to the configuration of a task allocated
  2314. with @code{starpu_task_create}.
  2315. @item @emph{Fields}:
  2316. @table @asis
  2317. @item @code{cl}:
  2318. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2319. describes where the kernel should be executed, and supplies the appropriate
  2320. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2321. such empty tasks can be useful for synchronization purposes.
  2322. @item @code{buffers}:
  2323. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2324. different pieces of data accessed by the task, and how they should be accessed.
  2325. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2326. @code{handle} field specifies the handle of the piece of data, and the
  2327. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2328. of entries in this array must be specified in the @code{nbuffers} field of the
  2329. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2330. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2331. option when configuring StarPU.
  2332. @item @code{cl_arg} (optional) (default = NULL):
  2333. This pointer is passed to the codelet through the second argument
  2334. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2335. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2336. argument.
  2337. @item @code{cl_arg_size} (optional, Cell specific):
  2338. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2339. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2340. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2341. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2342. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2343. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2344. codelets.
  2345. @item @code{callback_func} (optional) (default = @code{NULL}):
  2346. This is a function pointer of prototype @code{void (*f)(void *)} which
  2347. specifies a possible callback. If this pointer is non-null, the callback
  2348. function is executed @emph{on the host} after the execution of the task. The
  2349. callback is passed the value contained in the @code{callback_arg} field. No
  2350. callback is executed if the field is set to @code{NULL}.
  2351. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2352. This is the pointer passed to the callback function. This field is ignored if
  2353. the @code{callback_func} is set to @code{NULL}.
  2354. @item @code{use_tag} (optional) (default = 0):
  2355. If set, this flag indicates that the task should be associated with the tag
  2356. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2357. with the task and to express task dependencies easily.
  2358. @item @code{tag_id}:
  2359. This fields contains the tag associated to the task if the @code{use_tag} field
  2360. was set, it is ignored otherwise.
  2361. @item @code{synchronous}:
  2362. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2363. returns only when the task has been executed (or if no worker is able to
  2364. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2365. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2366. This field indicates a level of priority for the task. This is an integer value
  2367. that must be set between the return values of the
  2368. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2369. and that of the @code{starpu_sched_get_max_priority} for the most important
  2370. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2371. are provided for convenience and respectively returns value of
  2372. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2373. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2374. order to allow static task initialization. Scheduling strategies that take
  2375. priorities into account can use this parameter to take better scheduling
  2376. decisions, but the scheduling policy may also ignore it.
  2377. @item @code{execute_on_a_specific_worker} (default = 0):
  2378. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2379. task to the worker specified by the @code{workerid} field.
  2380. @item @code{workerid} (optional):
  2381. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2382. which is the identifier of the worker that should process this task (as
  2383. returned by @code{starpu_worker_get_id}). This field is ignored if
  2384. @code{execute_on_a_specific_worker} field is set to 0.
  2385. @item @code{detach} (optional) (default = 1):
  2386. If this flag is set, it is not possible to synchronize with the task
  2387. by the means of @code{starpu_task_wait} later on. Internal data structures
  2388. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2389. flag is not set.
  2390. @item @code{destroy} (optional) (default = 1):
  2391. If this flag is set, the task structure will automatically be freed, either
  2392. after the execution of the callback if the task is detached, or during
  2393. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2394. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2395. called explicitly. Setting this flag for a statically allocated task structure
  2396. will result in undefined behaviour.
  2397. @item @code{predicted} (output field):
  2398. Predicted duration of the task. This field is only set if the scheduling
  2399. strategy used performance models.
  2400. @end table
  2401. @end table
  2402. @node starpu_task_init
  2403. @subsection @code{starpu_task_init} -- Initialize a Task
  2404. @table @asis
  2405. @item @emph{Description}:
  2406. Initialize a task structure with default values. This function is implicitly
  2407. called by @code{starpu_task_create}. By default, tasks initialized with
  2408. @code{starpu_task_init} must be deinitialized explicitly with
  2409. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2410. constant @code{STARPU_TASK_INITIALIZER}.
  2411. @item @emph{Prototype}:
  2412. @code{void starpu_task_init(struct starpu_task *task);}
  2413. @end table
  2414. @node starpu_task_create
  2415. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2416. @table @asis
  2417. @item @emph{Description}:
  2418. Allocate a task structure and initialize it with default values. Tasks
  2419. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2420. task is terminated. If the destroy flag is explicitly unset, the resources used
  2421. by the task are freed by calling
  2422. @code{starpu_task_destroy}.
  2423. @item @emph{Prototype}:
  2424. @code{struct starpu_task *starpu_task_create(void);}
  2425. @end table
  2426. @node starpu_task_deinit
  2427. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2428. @table @asis
  2429. @item @emph{Description}:
  2430. Release all the structures automatically allocated to execute the task. This is
  2431. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2432. freed. This should be used for statically allocated tasks for instance.
  2433. @item @emph{Prototype}:
  2434. @code{void starpu_task_deinit(struct starpu_task *task);}
  2435. @end table
  2436. @node starpu_task_destroy
  2437. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2438. @table @asis
  2439. @item @emph{Description}:
  2440. Free the resource allocated during @code{starpu_task_create}. This function can be
  2441. called automatically after the execution of a task by setting the
  2442. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2443. Calling this function on a statically allocated task results in an undefined
  2444. behaviour.
  2445. @item @emph{Prototype}:
  2446. @code{void starpu_task_destroy(struct starpu_task *task);}
  2447. @end table
  2448. @node starpu_task_wait
  2449. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2450. @table @asis
  2451. @item @emph{Description}:
  2452. This function blocks until the task has been executed. It is not possible to
  2453. synchronize with a task more than once. It is not possible to wait for
  2454. synchronous or detached tasks.
  2455. @item @emph{Return value}:
  2456. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2457. indicates that the specified task was either synchronous or detached.
  2458. @item @emph{Prototype}:
  2459. @code{int starpu_task_wait(struct starpu_task *task);}
  2460. @end table
  2461. @node starpu_task_submit
  2462. @subsection @code{starpu_task_submit} -- Submit a Task
  2463. @table @asis
  2464. @item @emph{Description}:
  2465. This function submits a task to StarPU. Calling this function does
  2466. not mean that the task will be executed immediately as there can be data or task
  2467. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2468. scheduling this task with respect to such dependencies.
  2469. This function returns immediately if the @code{synchronous} field of the
  2470. @code{starpu_task} structure was set to 0, and block until the termination of
  2471. the task otherwise. It is also possible to synchronize the application with
  2472. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2473. function for instance.
  2474. @item @emph{Return value}:
  2475. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2476. means that there is no worker able to process this task (e.g. there is no GPU
  2477. available and this task is only implemented for CUDA devices).
  2478. @item @emph{Prototype}:
  2479. @code{int starpu_task_submit(struct starpu_task *task);}
  2480. @end table
  2481. @node starpu_task_wait_for_all
  2482. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2483. @table @asis
  2484. @item @emph{Description}:
  2485. This function blocks until all the tasks that were submitted are terminated.
  2486. @item @emph{Prototype}:
  2487. @code{void starpu_task_wait_for_all(void);}
  2488. @end table
  2489. @node starpu_get_current_task
  2490. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2491. @table @asis
  2492. @item @emph{Description}:
  2493. This function returns the task currently executed by the worker, or
  2494. NULL if it is called either from a thread that is not a task or simply
  2495. because there is no task being executed at the moment.
  2496. @item @emph{Prototype}:
  2497. @code{struct starpu_task *starpu_get_current_task(void);}
  2498. @end table
  2499. @node starpu_display_codelet_stats
  2500. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2501. @table @asis
  2502. @item @emph{Description}:
  2503. TODO
  2504. @item @emph{Prototype}:
  2505. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2506. @end table
  2507. @c Callbacks : what can we put in callbacks ?
  2508. @node Explicit Dependencies
  2509. @section Explicit Dependencies
  2510. @menu
  2511. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2512. * starpu_tag_t:: Task logical identifier
  2513. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2514. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2515. * starpu_tag_wait:: Block until a Tag is terminated
  2516. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2517. * starpu_tag_remove:: Destroy a Tag
  2518. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2519. @end menu
  2520. @node starpu_task_declare_deps_array
  2521. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2522. @table @asis
  2523. @item @emph{Description}:
  2524. Declare task dependencies between a @code{task} and an array of tasks of length
  2525. @code{ndeps}. This function must be called prior to the submission of the task,
  2526. but it may called after the submission or the execution of the tasks in the
  2527. array provided the tasks are still valid (ie. they were not automatically
  2528. destroyed). Calling this function on a task that was already submitted or with
  2529. an entry of @code{task_array} that is not a valid task anymore results in an
  2530. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2531. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2532. same task, in this case, the dependencies are added. It is possible to have
  2533. redundancy in the task dependencies.
  2534. @item @emph{Prototype}:
  2535. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2536. @end table
  2537. @node starpu_tag_t
  2538. @subsection @code{starpu_tag_t} -- Task logical identifier
  2539. @table @asis
  2540. @item @emph{Description}:
  2541. It is possible to associate a task with a unique ``tag'' and to express
  2542. dependencies between tasks by the means of those tags. To do so, fill the
  2543. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2544. be arbitrary) and set the @code{use_tag} field to 1.
  2545. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2546. not be started until the tasks which holds the declared dependency tags are
  2547. completed.
  2548. @end table
  2549. @node starpu_tag_declare_deps
  2550. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2551. @table @asis
  2552. @item @emph{Description}:
  2553. Specify the dependencies of the task identified by tag @code{id}. The first
  2554. argument specifies the tag which is configured, the second argument gives the
  2555. number of tag(s) on which @code{id} depends. The following arguments are the
  2556. tags which have to be terminated to unlock the task.
  2557. This function must be called before the associated task is submitted to StarPU
  2558. with @code{starpu_task_submit}.
  2559. @item @emph{Remark}
  2560. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2561. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2562. typically need to be explicitly casted. Using the
  2563. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2564. @item @emph{Prototype}:
  2565. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2566. @item @emph{Example}:
  2567. @cartouche
  2568. @example
  2569. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2570. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2571. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2572. @end example
  2573. @end cartouche
  2574. @end table
  2575. @node starpu_tag_declare_deps_array
  2576. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2577. @table @asis
  2578. @item @emph{Description}:
  2579. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2580. does not take a variable number of arguments but an array of tags of size
  2581. @code{ndeps}.
  2582. @item @emph{Prototype}:
  2583. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2584. @item @emph{Example}:
  2585. @cartouche
  2586. @example
  2587. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2588. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2589. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2590. @end example
  2591. @end cartouche
  2592. @end table
  2593. @node starpu_tag_wait
  2594. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2595. @table @asis
  2596. @item @emph{Description}:
  2597. This function blocks until the task associated to tag @code{id} has been
  2598. executed. This is a blocking call which must therefore not be called within
  2599. tasks or callbacks, but only from the application directly. It is possible to
  2600. synchronize with the same tag multiple times, as long as the
  2601. @code{starpu_tag_remove} function is not called. Note that it is still
  2602. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2603. data structure was freed (e.g. if the @code{destroy} flag of the
  2604. @code{starpu_task} was enabled).
  2605. @item @emph{Prototype}:
  2606. @code{void starpu_tag_wait(starpu_tag_t id);}
  2607. @end table
  2608. @node starpu_tag_wait_array
  2609. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2610. @table @asis
  2611. @item @emph{Description}:
  2612. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2613. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2614. terminated.
  2615. @item @emph{Prototype}:
  2616. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2617. @end table
  2618. @node starpu_tag_remove
  2619. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2620. @table @asis
  2621. @item @emph{Description}:
  2622. This function releases the resources associated to tag @code{id}. It can be
  2623. called once the corresponding task has been executed and when there is
  2624. no other tag that depend on this tag anymore.
  2625. @item @emph{Prototype}:
  2626. @code{void starpu_tag_remove(starpu_tag_t id);}
  2627. @end table
  2628. @node starpu_tag_notify_from_apps
  2629. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2630. @table @asis
  2631. @item @emph{Description}:
  2632. This function explicitly unlocks tag @code{id}. It may be useful in the
  2633. case of applications which execute part of their computation outside StarPU
  2634. tasks (e.g. third-party libraries). It is also provided as a
  2635. convenient tool for the programmer, for instance to entirely construct the task
  2636. DAG before actually giving StarPU the opportunity to execute the tasks.
  2637. @item @emph{Prototype}:
  2638. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2639. @end table
  2640. @node Implicit Data Dependencies
  2641. @section Implicit Data Dependencies
  2642. @menu
  2643. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2644. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2645. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2646. @end menu
  2647. In this section, we describe how StarPU makes it possible to insert implicit
  2648. task dependencies in order to enforce sequential data consistency. When this
  2649. data consistency is enabled on a specific data handle, any data access will
  2650. appear as sequentially consistent from the application. For instance, if the
  2651. application submits two tasks that access the same piece of data in read-only
  2652. mode, and then a third task that access it in write mode, dependencies will be
  2653. added between the two first tasks and the third one. Implicit data dependencies
  2654. are also inserted in the case of data accesses from the application.
  2655. @node starpu_data_set_default_sequential_consistency_flag
  2656. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2657. @table @asis
  2658. @item @emph{Description}:
  2659. Set the default sequential consistency flag. If a non-zero value is passed, a
  2660. sequential data consistency will be enforced for all handles registered after
  2661. this function call, otherwise it is disabled. By default, StarPU enables
  2662. sequential data consistency. It is also possible to select the data consistency
  2663. mode of a specific data handle with the
  2664. @code{starpu_data_set_sequential_consistency_flag} function.
  2665. @item @emph{Prototype}:
  2666. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2667. @end table
  2668. @node starpu_data_get_default_sequential_consistency_flag
  2669. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2670. @table @asis
  2671. @item @emph{Description}:
  2672. This function returns the current default sequential consistency flag.
  2673. @item @emph{Prototype}:
  2674. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2675. @end table
  2676. @node starpu_data_set_sequential_consistency_flag
  2677. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2678. @table @asis
  2679. @item @emph{Description}:
  2680. Select the data consistency mode associated to a data handle. The consistency
  2681. mode set using this function has the priority over the default mode which can
  2682. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2683. @item @emph{Prototype}:
  2684. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2685. @end table
  2686. @node Performance Model API
  2687. @section Performance Model API
  2688. @menu
  2689. * starpu_load_history_debug::
  2690. * starpu_perfmodel_debugfilepath::
  2691. * starpu_perfmodel_get_arch_name::
  2692. * starpu_force_bus_sampling::
  2693. @end menu
  2694. @node starpu_load_history_debug
  2695. @subsection @code{starpu_load_history_debug}
  2696. @table @asis
  2697. @item @emph{Description}:
  2698. TODO
  2699. @item @emph{Prototype}:
  2700. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2701. @end table
  2702. @node starpu_perfmodel_debugfilepath
  2703. @subsection @code{starpu_perfmodel_debugfilepath}
  2704. @table @asis
  2705. @item @emph{Description}:
  2706. TODO
  2707. @item @emph{Prototype}:
  2708. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2709. @end table
  2710. @node starpu_perfmodel_get_arch_name
  2711. @subsection @code{starpu_perfmodel_get_arch_name}
  2712. @table @asis
  2713. @item @emph{Description}:
  2714. TODO
  2715. @item @emph{Prototype}:
  2716. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2717. @end table
  2718. @node starpu_force_bus_sampling
  2719. @subsection @code{starpu_force_bus_sampling}
  2720. @table @asis
  2721. @item @emph{Description}:
  2722. TODO
  2723. @item @emph{Prototype}:
  2724. @code{void starpu_force_bus_sampling(void);}
  2725. @end table
  2726. @node Profiling API
  2727. @section Profiling API
  2728. @menu
  2729. * starpu_profiling_status_set:: starpu_profiling_status_set
  2730. * starpu_profiling_status_get:: starpu_profiling_status_get
  2731. * struct starpu_task_profiling_info:: task profiling information
  2732. * struct starpu_worker_profiling_info:: worker profiling information
  2733. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2734. * struct starpu_bus_profiling_info:: bus profiling information
  2735. * starpu_bus_get_count::
  2736. * starpu_bus_get_id::
  2737. * starpu_bus_get_src::
  2738. * starpu_bus_get_dst::
  2739. * starpu_timing_timespec_delay_us::
  2740. * starpu_timing_timespec_to_us::
  2741. * starpu_bus_profiling_helper_display_summary::
  2742. @end menu
  2743. @node starpu_profiling_status_set
  2744. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2745. @table @asis
  2746. @item @emph{Description}:
  2747. Thie function sets the profiling status. Profiling is activated by passing
  2748. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2749. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2750. resets all profiling measurements. When profiling is enabled, the
  2751. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2752. to a valid @code{struct starpu_task_profiling_info} structure containing
  2753. information about the execution of the task.
  2754. @item @emph{Return value}:
  2755. Negative return values indicate an error, otherwise the previous status is
  2756. returned.
  2757. @item @emph{Prototype}:
  2758. @code{int starpu_profiling_status_set(int status);}
  2759. @end table
  2760. @node starpu_profiling_status_get
  2761. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2762. @table @asis
  2763. @item @emph{Description}:
  2764. Return the current profiling status or a negative value in case there was an error.
  2765. @item @emph{Prototype}:
  2766. @code{int starpu_profiling_status_get(void);}
  2767. @end table
  2768. @node struct starpu_task_profiling_info
  2769. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2770. @table @asis
  2771. @item @emph{Description}:
  2772. This structure contains information about the execution of a task. It is
  2773. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2774. structure if profiling was enabled.
  2775. @item @emph{Fields}:
  2776. @table @asis
  2777. @item @code{submit_time}:
  2778. Date of task submission (relative to the initialization of StarPU).
  2779. @item @code{start_time}:
  2780. Date of task execution beginning (relative to the initialization of StarPU).
  2781. @item @code{end_time}:
  2782. Date of task execution termination (relative to the initialization of StarPU).
  2783. @item @code{workerid}:
  2784. Identifier of the worker which has executed the task.
  2785. @end table
  2786. @end table
  2787. @node struct starpu_worker_profiling_info
  2788. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2789. @table @asis
  2790. @item @emph{Description}:
  2791. This structure contains the profiling information associated to a worker.
  2792. @item @emph{Fields}:
  2793. @table @asis
  2794. @item @code{start_time}:
  2795. Starting date for the reported profiling measurements.
  2796. @item @code{total_time}:
  2797. Duration of the profiling measurement interval.
  2798. @item @code{executing_time}:
  2799. Time spent by the worker to execute tasks during the profiling measurement interval.
  2800. @item @code{sleeping_time}:
  2801. Time spent idling by the worker during the profiling measurement interval.
  2802. @item @code{executed_tasks}:
  2803. Number of tasks executed by the worker during the profiling measurement interval.
  2804. @end table
  2805. @end table
  2806. @node starpu_worker_get_profiling_info
  2807. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2808. @table @asis
  2809. @item @emph{Description}:
  2810. Get the profiling info associated to the worker identified by @code{workerid},
  2811. and reset the profiling measurements. If the @code{worker_info} argument is
  2812. NULL, only reset the counters associated to worker @code{workerid}.
  2813. @item @emph{Return value}:
  2814. Upon successful completion, this function returns 0. Otherwise, a negative
  2815. value is returned.
  2816. @item @emph{Prototype}:
  2817. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2818. @end table
  2819. @node struct starpu_bus_profiling_info
  2820. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2821. @table @asis
  2822. @item @emph{Description}:
  2823. TODO
  2824. @item @emph{Fields}:
  2825. @table @asis
  2826. @item @code{start_time}:
  2827. TODO
  2828. @item @code{total_time}:
  2829. TODO
  2830. @item @code{transferred_bytes}:
  2831. TODO
  2832. @item @code{transfer_count}:
  2833. TODO
  2834. @end table
  2835. @end table
  2836. @node starpu_bus_get_count
  2837. @subsection @code{starpu_bus_get_count}
  2838. @table @asis
  2839. @item @emph{Description}:
  2840. TODO
  2841. @item @emph{Prototype}:
  2842. @code{int starpu_bus_get_count(void);}
  2843. @end table
  2844. @node starpu_bus_get_id
  2845. @subsection @code{starpu_bus_get_id}
  2846. @table @asis
  2847. @item @emph{Description}:
  2848. TODO
  2849. @item @emph{Prototype}:
  2850. @code{int starpu_bus_get_id(int src, int dst);}
  2851. @end table
  2852. @node starpu_bus_get_src
  2853. @subsection @code{starpu_bus_get_src}
  2854. @table @asis
  2855. @item @emph{Description}:
  2856. TODO
  2857. @item @emph{Prototype}:
  2858. @code{int starpu_bus_get_src(int busid);}
  2859. @end table
  2860. @node starpu_bus_get_dst
  2861. @subsection @code{starpu_bus_get_dst}
  2862. @table @asis
  2863. @item @emph{Description}:
  2864. TODO
  2865. @item @emph{Prototype}:
  2866. @code{int starpu_bus_get_dst(int busid);}
  2867. @end table
  2868. @node starpu_timing_timespec_delay_us
  2869. @subsection @code{starpu_timing_timespec_delay_us}
  2870. @table @asis
  2871. @item @emph{Description}:
  2872. TODO
  2873. @item @emph{Prototype}:
  2874. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2875. @end table
  2876. @node starpu_timing_timespec_to_us
  2877. @subsection @code{starpu_timing_timespec_to_us}
  2878. @table @asis
  2879. @item @emph{Description}:
  2880. TODO
  2881. @item @emph{Prototype}:
  2882. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  2883. @end table
  2884. @node starpu_bus_profiling_helper_display_summary
  2885. @subsection @code{starpu_bus_profiling_helper_display_summary}
  2886. @table @asis
  2887. @item @emph{Description}:
  2888. TODO
  2889. @item @emph{Prototype}:
  2890. @code{void starpu_bus_profiling_helper_display_summary(void);}
  2891. @end table
  2892. @node CUDA extensions
  2893. @section CUDA extensions
  2894. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  2895. @menu
  2896. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  2897. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  2898. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  2899. @end menu
  2900. @node starpu_cuda_get_local_stream
  2901. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  2902. @table @asis
  2903. @item @emph{Description}:
  2904. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2905. function is only provided for convenience so that programmers can easily use
  2906. asynchronous operations within codelets without having to create a stream by
  2907. hand. Note that the application is not forced to use the stream provided by
  2908. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2909. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2910. the likelihood of having all transfers overlapped.
  2911. @item @emph{Prototype}:
  2912. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  2913. @end table
  2914. @node starpu_helper_cublas_init
  2915. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  2916. @table @asis
  2917. @item @emph{Description}:
  2918. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2919. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2920. controlled by StarPU. This call blocks until CUBLAS has been properly
  2921. initialized on every device.
  2922. @item @emph{Prototype}:
  2923. @code{void starpu_helper_cublas_init(void);}
  2924. @end table
  2925. @node starpu_helper_cublas_shutdown
  2926. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  2927. @table @asis
  2928. @item @emph{Description}:
  2929. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2930. @item @emph{Prototype}:
  2931. @code{void starpu_helper_cublas_shutdown(void);}
  2932. @end table
  2933. @node OpenCL extensions
  2934. @section OpenCL extensions
  2935. @menu
  2936. * Enabling OpenCL:: Enabling OpenCL
  2937. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2938. * Loading OpenCL kernels:: Loading OpenCL kernels
  2939. @end menu
  2940. @node Enabling OpenCL
  2941. @subsection Enabling OpenCL
  2942. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  2943. enabled by default. To enable OpenCL, you need either to disable CUDA
  2944. when configuring StarPU:
  2945. @example
  2946. % ./configure --disable-cuda
  2947. @end example
  2948. or when running applications:
  2949. @example
  2950. % STARPU_NCUDA=0 ./application
  2951. @end example
  2952. OpenCL will automatically be started on any device not yet used by
  2953. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  2954. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  2955. so:
  2956. @example
  2957. % STARPU_NCUDA=2 ./application
  2958. @end example
  2959. @node Compiling OpenCL kernels
  2960. @subsection Compiling OpenCL kernels
  2961. Source codes for OpenCL kernels can be stored in a file or in a
  2962. string. StarPU provides functions to build the program executable for
  2963. each available OpenCL device as a @code{cl_program} object. This
  2964. program executable can then be loaded within a specific queue as
  2965. explained in the next section. These are only helpers, Applications
  2966. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2967. use (e.g. different programs on the different OpenCL devices, for
  2968. relocation purpose for instance).
  2969. @menu
  2970. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  2971. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  2972. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  2973. @end menu
  2974. @node starpu_opencl_load_opencl_from_file
  2975. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  2976. @table @asis
  2977. @item @emph{Description}:
  2978. TODO
  2979. @item @emph{Prototype}:
  2980. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  2981. @end table
  2982. @node starpu_opencl_load_opencl_from_string
  2983. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  2984. @table @asis
  2985. @item @emph{Description}:
  2986. TODO
  2987. @item @emph{Prototype}:
  2988. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  2989. @end table
  2990. @node starpu_opencl_unload_opencl
  2991. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  2992. @table @asis
  2993. @item @emph{Description}:
  2994. TODO
  2995. @item @emph{Prototype}:
  2996. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  2997. @end table
  2998. @node Loading OpenCL kernels
  2999. @subsection Loading OpenCL kernels
  3000. @menu
  3001. * starpu_opencl_load_kernel:: Loading a kernel
  3002. * starpu_opencl_relase_kernel:: Releasing a kernel
  3003. @end menu
  3004. @node starpu_opencl_load_kernel
  3005. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3006. @table @asis
  3007. @item @emph{Description}:
  3008. TODO
  3009. @item @emph{Prototype}:
  3010. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3011. }
  3012. @end table
  3013. @node starpu_opencl_relase_kernel
  3014. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3015. @table @asis
  3016. @item @emph{Description}:
  3017. TODO
  3018. @item @emph{Prototype}:
  3019. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3020. @end table
  3021. @node Cell extensions
  3022. @section Cell extensions
  3023. nothing yet.
  3024. @node Miscellaneous helpers
  3025. @section Miscellaneous helpers
  3026. @menu
  3027. * starpu_data_cpy:: Copy a data handle into another data handle
  3028. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3029. @end menu
  3030. @node starpu_data_cpy
  3031. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3032. @table @asis
  3033. @item @emph{Description}:
  3034. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3035. The @code{asynchronous} parameter indicates whether the function should
  3036. block or not. In the case of an asynchronous call, it is possible to
  3037. synchronize with the termination of this operation either by the means of
  3038. implicit dependencies (if enabled) or by calling
  3039. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3040. this callback function is executed after the handle has been copied, and it is
  3041. given the @code{callback_arg} pointer as argument.
  3042. @item @emph{Prototype}:
  3043. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3044. @end table
  3045. @node starpu_execute_on_each_worker
  3046. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3047. @table @asis
  3048. @item @emph{Description}:
  3049. When calling this method, the offloaded function specified by the first argument is
  3050. executed by every StarPU worker that may execute the function.
  3051. The second argument is passed to the offloaded function.
  3052. The last argument specifies on which types of processing units the function
  3053. should be executed. Similarly to the @code{where} field of the
  3054. @code{starpu_codelet} structure, it is possible to specify that the function
  3055. should be executed on every CUDA device and every CPU by passing
  3056. @code{STARPU_CPU|STARPU_CUDA}.
  3057. This function blocks until the function has been executed on every appropriate
  3058. processing units, so that it may not be called from a callback function for
  3059. instance.
  3060. @item @emph{Prototype}:
  3061. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3062. @end table
  3063. @c ---------------------------------------------------------------------
  3064. @c Advanced Topics
  3065. @c ---------------------------------------------------------------------
  3066. @node Advanced Topics
  3067. @chapter Advanced Topics
  3068. @menu
  3069. * Defining a new data interface::
  3070. * Defining a new scheduling policy::
  3071. @end menu
  3072. @node Defining a new data interface
  3073. @section Defining a new data interface
  3074. @menu
  3075. * struct starpu_data_interface_ops_t:: Per-interface methods
  3076. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3077. * An example of data interface:: An example of data interface
  3078. @end menu
  3079. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3080. @node struct starpu_data_interface_ops_t
  3081. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3082. @table @asis
  3083. @item @emph{Description}:
  3084. TODO describe all the different fields
  3085. @end table
  3086. @node struct starpu_data_copy_methods
  3087. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3088. @table @asis
  3089. @item @emph{Description}:
  3090. TODO describe all the different fields
  3091. @end table
  3092. @node An example of data interface
  3093. @subsection An example of data interface
  3094. @table @asis
  3095. TODO
  3096. @end table
  3097. @node Defining a new scheduling policy
  3098. @section Defining a new scheduling policy
  3099. TODO
  3100. A full example showing how to define a new scheduling policy is available in
  3101. the StarPU sources in the directory @code{examples/scheduler/}.
  3102. @menu
  3103. * struct starpu_sched_policy_s::
  3104. * starpu_worker_set_sched_condition::
  3105. * starpu_sched_set_min_priority:: Set the minimum priority level
  3106. * starpu_sched_set_max_priority:: Set the maximum priority level
  3107. * Source code::
  3108. @end menu
  3109. @node struct starpu_sched_policy_s
  3110. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3111. @table @asis
  3112. @item @emph{Description}:
  3113. This structure contains all the methods that implement a scheduling policy. An
  3114. application may specify which scheduling strategy in the @code{sched_policy}
  3115. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3116. function.
  3117. @item @emph{Fields}:
  3118. @table @asis
  3119. @item @code{init_sched}:
  3120. Initialize the scheduling policy.
  3121. @item @code{deinit_sched}:
  3122. Cleanup the scheduling policy.
  3123. @item @code{push_task}:
  3124. Insert a task into the scheduler.
  3125. @item @code{push_prio_task}:
  3126. Insert a priority task into the scheduler.
  3127. @item @code{pop_task}:
  3128. Get a task from the scheduler. The mutex associated to the worker is already
  3129. taken when this method is called.
  3130. @item @code{pop_every_task}:
  3131. Remove all available tasks from the scheduler (tasks are chained by the means
  3132. of the prev and next fields of the starpu_task structure). The mutex associated
  3133. to the worker is already taken when this method is called.
  3134. @item @code{post_exec_hook} (optionnal):
  3135. This method is called every time a task has been executed.
  3136. @item @code{policy_name}:
  3137. Name of the policy (optionnal).
  3138. @item @code{policy_description}:
  3139. Description of the policy (optionnal).
  3140. @end table
  3141. @end table
  3142. @node starpu_worker_set_sched_condition
  3143. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3144. @table @asis
  3145. @item @emph{Description}:
  3146. When there is no available task for a worker, StarPU blocks this worker on a
  3147. condition variable. This function specifies which condition variable (and the
  3148. associated mutex) should be used to block (and to wake up) a worker. Note that
  3149. multiple workers may use the same condition variable. For instance, in the case
  3150. of a scheduling strategy with a single task queue, the same condition variable
  3151. would be used to block and wake up all workers.
  3152. The initialization method of a scheduling strategy (@code{init_sched}) must
  3153. call this function once per worker.
  3154. @item @emph{Prototype}:
  3155. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3156. @end table
  3157. @node starpu_sched_set_min_priority
  3158. @subsection @code{starpu_sched_set_min_priority}
  3159. @table @asis
  3160. @item @emph{Description}:
  3161. Defines the minimum priority level supported by the scheduling policy. The
  3162. default minimum priority level is the same as the default priority level which
  3163. is 0 by convention. The application may access that value by calling the
  3164. @code{starpu_sched_get_min_priority} function. This function should only be
  3165. called from the initialization method of the scheduling policy, and should not
  3166. be used directly from the application.
  3167. @item @emph{Prototype}:
  3168. @code{void starpu_sched_set_min_priority(int min_prio)}
  3169. @end table
  3170. @node starpu_sched_set_max_priority
  3171. @subsection @code{starpu_sched_set_max_priority}
  3172. @table @asis
  3173. @item @emph{Description}:
  3174. Defines the maximum priority level supported by the scheduling policy. The
  3175. default maximum priority level is 1. The application may access that value by
  3176. calling the @code{starpu_sched_get_max_priority} function. This function should
  3177. only be called from the initialization method of the scheduling policy, and
  3178. should not be used directly from the application.
  3179. @item @emph{Prototype}:
  3180. @code{void starpu_sched_set_min_priority(int max_prio)}
  3181. @end table
  3182. @node Source code
  3183. @subsection Source code
  3184. @cartouche
  3185. @smallexample
  3186. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3187. .init_sched = init_dummy_sched,
  3188. .deinit_sched = deinit_dummy_sched,
  3189. .push_task = push_task_dummy,
  3190. .push_prio_task = NULL,
  3191. .pop_task = pop_task_dummy,
  3192. .post_exec_hook = NULL,
  3193. .pop_every_task = NULL,
  3194. .policy_name = "dummy",
  3195. .policy_description = "dummy scheduling strategy"
  3196. @};
  3197. @end smallexample
  3198. @end cartouche
  3199. @c ---------------------------------------------------------------------
  3200. @c Appendices
  3201. @c ---------------------------------------------------------------------
  3202. @c ---------------------------------------------------------------------
  3203. @c Full source code for the 'Scaling a Vector' example
  3204. @c ---------------------------------------------------------------------
  3205. @node Full source code for the 'Scaling a Vector' example
  3206. @appendix Full source code for the 'Scaling a Vector' example
  3207. @menu
  3208. * Main application::
  3209. * CPU Kernel::
  3210. * CUDA Kernel::
  3211. * OpenCL Kernel::
  3212. @end menu
  3213. @node Main application
  3214. @section Main application
  3215. @smallexample
  3216. @include vector_scal_c.texi
  3217. @end smallexample
  3218. @node CPU Kernel
  3219. @section CPU Kernel
  3220. @smallexample
  3221. @include vector_scal_cpu.texi
  3222. @end smallexample
  3223. @node CUDA Kernel
  3224. @section CUDA Kernel
  3225. @smallexample
  3226. @include vector_scal_cuda.texi
  3227. @end smallexample
  3228. @node OpenCL Kernel
  3229. @section OpenCL Kernel
  3230. @menu
  3231. * Invoking the kernel::
  3232. * Source of the kernel::
  3233. @end menu
  3234. @node Invoking the kernel
  3235. @subsection Invoking the kernel
  3236. @smallexample
  3237. @include vector_scal_opencl.texi
  3238. @end smallexample
  3239. @node Source of the kernel
  3240. @subsection Source of the kernel
  3241. @smallexample
  3242. @include vector_scal_opencl_codelet.texi
  3243. @end smallexample
  3244. @bye