mpi_cholesky_codelets.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2014-2015, 2017 Université de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include "mpi_cholesky.h"
  18. #include <common/blas.h>
  19. #include <sys/time.h>
  20. /*
  21. * Create the codelets
  22. */
  23. static struct starpu_codelet cl11 =
  24. {
  25. .cpu_funcs = {chol_cpu_codelet_update_u11},
  26. #ifdef STARPU_USE_CUDA
  27. .cuda_funcs = {chol_cublas_codelet_update_u11},
  28. #elif defined(STARPU_SIMGRID)
  29. .cuda_funcs = {(void*)1},
  30. #endif
  31. .nbuffers = 1,
  32. .modes = {STARPU_RW},
  33. .model = &chol_model_11
  34. };
  35. static struct starpu_codelet cl21 =
  36. {
  37. .cpu_funcs = {chol_cpu_codelet_update_u21},
  38. #ifdef STARPU_USE_CUDA
  39. .cuda_funcs = {chol_cublas_codelet_update_u21},
  40. #elif defined(STARPU_SIMGRID)
  41. .cuda_funcs = {(void*)1},
  42. #endif
  43. .nbuffers = 2,
  44. .modes = {STARPU_R, STARPU_RW},
  45. .model = &chol_model_21
  46. };
  47. static struct starpu_codelet cl22 =
  48. {
  49. .cpu_funcs = {chol_cpu_codelet_update_u22},
  50. #ifdef STARPU_USE_CUDA
  51. .cuda_funcs = {chol_cublas_codelet_update_u22},
  52. #elif defined(STARPU_SIMGRID)
  53. .cuda_funcs = {(void*)1},
  54. #endif
  55. .nbuffers = 3,
  56. .modes = {STARPU_R, STARPU_R, STARPU_RW | STARPU_COMMUTE},
  57. .model = &chol_model_22
  58. };
  59. /*
  60. * code to bootstrap the factorization
  61. * and construct the DAG
  62. */
  63. void dw_cholesky(float ***matA, unsigned ld, int rank, int nodes, double *timing, double *flops)
  64. {
  65. double start;
  66. double end;
  67. starpu_data_handle_t **data_handles;
  68. unsigned x,y,i,j,k;
  69. unsigned unbound_prio = STARPU_MAX_PRIO == INT_MAX && STARPU_MIN_PRIO == INT_MIN;
  70. /* create all the DAG nodes */
  71. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  72. for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle_t));
  73. for(x = 0; x < nblocks ; x++)
  74. {
  75. for (y = 0; y < nblocks; y++)
  76. {
  77. int mpi_rank = my_distrib(x, y, nodes);
  78. if (mpi_rank == rank)
  79. {
  80. //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
  81. starpu_matrix_data_register(&data_handles[x][y], STARPU_MAIN_RAM, (uintptr_t)matA[x][y],
  82. ld, size/nblocks, size/nblocks, sizeof(float));
  83. }
  84. #ifdef STARPU_DEVEL
  85. #warning TODO: make better test to only register what is needed
  86. #endif
  87. else
  88. {
  89. /* I don't own that index, but will need it for my computations */
  90. //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
  91. starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
  92. ld, size/nblocks, size/nblocks, sizeof(float));
  93. }
  94. if (data_handles[x][y])
  95. {
  96. starpu_data_set_coordinates(data_handles[x][y], 2, x, y);
  97. starpu_mpi_data_register(data_handles[x][y], (y*nblocks)+x, mpi_rank);
  98. }
  99. }
  100. }
  101. starpu_mpi_barrier(MPI_COMM_WORLD);
  102. start = starpu_timing_now();
  103. for (k = 0; k < nblocks; k++)
  104. {
  105. starpu_iteration_push(k);
  106. starpu_mpi_task_insert(MPI_COMM_WORLD, &cl11,
  107. STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k) : STARPU_MAX_PRIO,
  108. STARPU_RW, data_handles[k][k],
  109. 0);
  110. for (j = k+1; j<nblocks; j++)
  111. {
  112. starpu_mpi_task_insert(MPI_COMM_WORLD, &cl21,
  113. STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - j) : (j == k+1)?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO,
  114. STARPU_R, data_handles[k][k],
  115. STARPU_RW, data_handles[k][j],
  116. 0);
  117. starpu_mpi_cache_flush(MPI_COMM_WORLD, data_handles[k][k]);
  118. if (my_distrib(k, k, nodes) == rank)
  119. starpu_data_wont_use(data_handles[k][k]);
  120. for (i = k+1; i<nblocks; i++)
  121. {
  122. if (i <= j)
  123. {
  124. starpu_mpi_task_insert(MPI_COMM_WORLD, &cl22,
  125. STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - j - i) : ((i == k+1) && (j == k+1))?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO,
  126. STARPU_R, data_handles[k][i],
  127. STARPU_R, data_handles[k][j],
  128. STARPU_RW | STARPU_COMMUTE, data_handles[i][j],
  129. 0);
  130. }
  131. }
  132. starpu_mpi_cache_flush(MPI_COMM_WORLD, data_handles[k][j]);
  133. if (my_distrib(k, j, nodes) == rank)
  134. starpu_data_wont_use(data_handles[k][j]);
  135. }
  136. starpu_iteration_pop();
  137. }
  138. starpu_task_wait_for_all();
  139. for(x = 0; x < nblocks ; x++)
  140. {
  141. for (y = 0; y < nblocks; y++)
  142. {
  143. if (data_handles[x][y])
  144. starpu_data_unregister(data_handles[x][y]);
  145. }
  146. free(data_handles[x]);
  147. }
  148. free(data_handles);
  149. starpu_mpi_barrier(MPI_COMM_WORLD);
  150. end = starpu_timing_now();
  151. if (rank == 0)
  152. {
  153. *timing = end - start;
  154. *flops = (1.0f*size*size*size)/3.0f;
  155. }
  156. }
  157. void dw_cholesky_check_computation(float ***matA, int rank, int nodes, int *correctness, double *flops)
  158. {
  159. unsigned i,j,x,y;
  160. float *rmat = malloc(size*size*sizeof(float));
  161. for(x=0 ; x<nblocks ; x++)
  162. {
  163. for(y=0 ; y<nblocks ; y++)
  164. {
  165. for (i = 0; i < BLOCKSIZE; i++)
  166. {
  167. for (j = 0; j < BLOCKSIZE; j++)
  168. {
  169. rmat[j+(y*BLOCKSIZE)+(i+(x*BLOCKSIZE))*size] = matA[x][y][j +i*BLOCKSIZE];
  170. }
  171. }
  172. }
  173. }
  174. FPRINTF(stderr, "[%d] compute explicit LLt ...\n", rank);
  175. for (j = 0; j < size; j++)
  176. {
  177. for (i = 0; i < size; i++)
  178. {
  179. if (i > j)
  180. {
  181. rmat[j+i*size] = 0.0f; // debug
  182. }
  183. }
  184. }
  185. float *test_mat = malloc(size*size*sizeof(float));
  186. STARPU_ASSERT(test_mat);
  187. STARPU_SSYRK("L", "N", size, size, 1.0f,
  188. rmat, size, 0.0f, test_mat, size);
  189. FPRINTF(stderr, "[%d] comparing results ...\n", rank);
  190. if (display)
  191. {
  192. for (j = 0; j < size; j++)
  193. {
  194. for (i = 0; i < size; i++)
  195. {
  196. if (i <= j)
  197. {
  198. printf("%2.2f\t", test_mat[j +i*size]);
  199. }
  200. else
  201. {
  202. printf(".\t");
  203. }
  204. }
  205. printf("\n");
  206. }
  207. }
  208. *correctness = 1;
  209. for(x = 0; x < nblocks ; x++)
  210. {
  211. for (y = 0; y < nblocks; y++)
  212. {
  213. int mpi_rank = my_distrib(x, y, nodes);
  214. if (mpi_rank == rank)
  215. {
  216. for (i = (size/nblocks)*x ; i < (size/nblocks)*x+(size/nblocks); i++)
  217. {
  218. for (j = (size/nblocks)*y ; j < (size/nblocks)*y+(size/nblocks); j++)
  219. {
  220. if (i <= j)
  221. {
  222. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  223. float err = abs(test_mat[j +i*size] - orig);
  224. if (err > 0.00001)
  225. {
  226. FPRINTF(stderr, "[%d] Error[%u, %u] --> %2.2f != %2.2f (err %2.2f)\n", rank, i, j, test_mat[j +i*size], orig, err);
  227. *correctness = 0;
  228. *flops = 0;
  229. break;
  230. }
  231. }
  232. }
  233. }
  234. }
  235. }
  236. }
  237. free(rmat);
  238. free(test_mat);
  239. }