| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468 | 
							- /* dspevx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dspevx_(char *jobz, char *range, char *uplo, integer *n, 
 
- 	doublereal *ap, doublereal *vl, doublereal *vu, integer *il, integer *
 
- 	iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, 
 
- 	integer *ldz, doublereal *work, integer *iwork, integer *ifail, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, jj;
 
-     doublereal eps, vll, vuu, tmp1;
 
-     integer indd, inde;
 
-     doublereal anrm;
 
-     integer imax;
 
-     doublereal rmin, rmax;
 
-     logical test;
 
-     integer itmp1, indee;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sigma;
 
-     extern logical lsame_(char *, char *);
 
-     integer iinfo;
 
-     char order[1];
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *);
 
-     logical wantz;
 
-     extern doublereal dlamch_(char *);
 
-     logical alleig, indeig;
 
-     integer iscale, indibl;
 
-     logical valeig;
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal abstll, bignum;
 
-     extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
 
- 	    doublereal *);
 
-     integer indtau, indisp;
 
-     extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *, integer *), 
 
- 	    dsterf_(integer *, doublereal *, doublereal *, integer *);
 
-     integer indiwo;
 
-     extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer indwrk;
 
-     extern /* Subroutine */ int dopgtr_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *), dsptrd_(char *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), dsteqr_(char *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dopmtr_(char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *);
 
-     integer nsplit;
 
-     doublereal smlnum;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPEVX computes selected eigenvalues and, optionally, eigenvectors */
 
- /*  of a real symmetric matrix A in packed storage.  Eigenvalues/vectors */
 
- /*  can be selected by specifying either a range of values or a range of */
 
- /*  indices for the desired eigenvalues. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  RANGE   (input) CHARACTER*1 */
 
- /*          = 'A': all eigenvalues will be found; */
 
- /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 
- /*                 will be found; */
 
- /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, AP is overwritten by values generated during the */
 
- /*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
 
- /*          and first superdiagonal of the tridiagonal matrix T overwrite */
 
- /*          the corresponding elements of A, and if UPLO = 'L', the */
 
- /*          diagonal and first subdiagonal of T overwrite the */
 
- /*          corresponding elements of A. */
 
- /*  VL      (input) DOUBLE PRECISION */
 
- /*  VU      (input) DOUBLE PRECISION */
 
- /*          If RANGE='V', the lower and upper bounds of the interval to */
 
- /*          be searched for eigenvalues. VL < VU. */
 
- /*          Not referenced if RANGE = 'A' or 'I'. */
 
- /*  IL      (input) INTEGER */
 
- /*  IU      (input) INTEGER */
 
- /*          If RANGE='I', the indices (in ascending order) of the */
 
- /*          smallest and largest eigenvalues to be returned. */
 
- /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 
- /*          Not referenced if RANGE = 'A' or 'V'. */
 
- /*  ABSTOL  (input) DOUBLE PRECISION */
 
- /*          The absolute error tolerance for the eigenvalues. */
 
- /*          An approximate eigenvalue is accepted as converged */
 
- /*          when it is determined to lie in an interval [a,b] */
 
- /*          of width less than or equal to */
 
- /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
 
- /*          where EPS is the machine precision.  If ABSTOL is less than */
 
- /*          or equal to zero, then  EPS*|T|  will be used in its place, */
 
- /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
 
- /*          by reducing AP to tridiagonal form. */
 
- /*          Eigenvalues will be computed most accurately when ABSTOL is */
 
- /*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 
- /*          If this routine returns with INFO>0, indicating that some */
 
- /*          eigenvectors did not converge, try setting ABSTOL to */
 
- /*          2*DLAMCH('S'). */
 
- /*          See "Computing Small Singular Values of Bidiagonal Matrices */
 
- /*          with Guaranteed High Relative Accuracy," by Demmel and */
 
- /*          Kahan, LAPACK Working Note #3. */
 
- /*  M       (output) INTEGER */
 
- /*          The total number of eigenvalues found.  0 <= M <= N. */
 
- /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the selected eigenvalues in ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
 
- /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 
- /*          contain the orthonormal eigenvectors of the matrix A */
 
- /*          corresponding to the selected eigenvalues, with the i-th */
 
- /*          column of Z holding the eigenvector associated with W(i). */
 
- /*          If an eigenvector fails to converge, then that column of Z */
 
- /*          contains the latest approximation to the eigenvector, and the */
 
- /*          index of the eigenvector is returned in IFAIL. */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*          Note: the user must ensure that at least max(1,M) columns are */
 
- /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
 
- /*          is not known in advance and an upper bound must be used. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (5*N) */
 
- /*  IFAIL   (output) INTEGER array, dimension (N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
 
- /*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
 
- /*          indices of the eigenvectors that failed to converge. */
 
- /*          If JOBZ = 'N', then IFAIL is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
 
- /*                Their indices are stored in array IFAIL. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     --ifail;
 
-     /* Function Body */
 
-     wantz = lsame_(jobz, "V");
 
-     alleig = lsame_(range, "A");
 
-     valeig = lsame_(range, "V");
 
-     indeig = lsame_(range, "I");
 
-     *info = 0;
 
-     if (! (wantz || lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (alleig || valeig || indeig)) {
 
- 	*info = -2;
 
-     } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
 
- 	    "U"))) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else {
 
- 	if (valeig) {
 
- 	    if (*n > 0 && *vu <= *vl) {
 
- 		*info = -7;
 
- 	    }
 
- 	} else if (indeig) {
 
- 	    if (*il < 1 || *il > max(1,*n)) {
 
- 		*info = -8;
 
- 	    } else if (*iu < min(*n,*il) || *iu > *n) {
 
- 		*info = -9;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	    *info = -14;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSPEVX", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *m = 0;
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (alleig || indeig) {
 
- 	    *m = 1;
 
- 	    w[1] = ap[1];
 
- 	} else {
 
- 	    if (*vl < ap[1] && *vu >= ap[1]) {
 
- 		*m = 1;
 
- 		w[1] = ap[1];
 
- 	    }
 
- 	}
 
- 	if (wantz) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants. */
 
-     safmin = dlamch_("Safe minimum");
 
-     eps = dlamch_("Precision");
 
-     smlnum = safmin / eps;
 
-     bignum = 1. / smlnum;
 
-     rmin = sqrt(smlnum);
 
- /* Computing MIN */
 
-     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 
-     rmax = min(d__1,d__2);
 
- /*     Scale matrix to allowable range, if necessary. */
 
-     iscale = 0;
 
-     abstll = *abstol;
 
-     if (valeig) {
 
- 	vll = *vl;
 
- 	vuu = *vu;
 
-     } else {
 
- 	vll = 0.;
 
- 	vuu = 0.;
 
-     }
 
-     anrm = dlansp_("M", uplo, n, &ap[1], &work[1]);
 
-     if (anrm > 0. && anrm < rmin) {
 
- 	iscale = 1;
 
- 	sigma = rmin / anrm;
 
-     } else if (anrm > rmax) {
 
- 	iscale = 1;
 
- 	sigma = rmax / anrm;
 
-     }
 
-     if (iscale == 1) {
 
- 	i__1 = *n * (*n + 1) / 2;
 
- 	dscal_(&i__1, &sigma, &ap[1], &c__1);
 
- 	if (*abstol > 0.) {
 
- 	    abstll = *abstol * sigma;
 
- 	}
 
- 	if (valeig) {
 
- 	    vll = *vl * sigma;
 
- 	    vuu = *vu * sigma;
 
- 	}
 
-     }
 
- /*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */
 
-     indtau = 1;
 
-     inde = indtau + *n;
 
-     indd = inde + *n;
 
-     indwrk = indd + *n;
 
-     dsptrd_(uplo, n, &ap[1], &work[indd], &work[inde], &work[indtau], &iinfo);
 
- /*     If all eigenvalues are desired and ABSTOL is less than or equal */
 
- /*     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails */
 
- /*     for some eigenvalue, then try DSTEBZ. */
 
-     test = FALSE_;
 
-     if (indeig) {
 
- 	if (*il == 1 && *iu == *n) {
 
- 	    test = TRUE_;
 
- 	}
 
-     }
 
-     if ((alleig || test) && *abstol <= 0.) {
 
- 	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
 
- 	indee = indwrk + (*n << 1);
 
- 	if (! wantz) {
 
- 	    i__1 = *n - 1;
 
- 	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
 
- 	    dsterf_(n, &w[1], &work[indee], info);
 
- 	} else {
 
- 	    dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
 
- 		    work[indwrk], &iinfo);
 
- 	    i__1 = *n - 1;
 
- 	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
 
- 	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
 
- 		    indwrk], info);
 
- 	    if (*info == 0) {
 
- 		i__1 = *n;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    ifail[i__] = 0;
 
- /* L10: */
 
- 		}
 
- 	    }
 
- 	}
 
- 	if (*info == 0) {
 
- 	    *m = *n;
 
- 	    goto L20;
 
- 	}
 
- 	*info = 0;
 
-     }
 
- /*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
 
-     if (wantz) {
 
- 	*(unsigned char *)order = 'B';
 
-     } else {
 
- 	*(unsigned char *)order = 'E';
 
-     }
 
-     indibl = 1;
 
-     indisp = indibl + *n;
 
-     indiwo = indisp + *n;
 
-     dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
 
- 	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
 
- 	    indwrk], &iwork[indiwo], info);
 
-     if (wantz) {
 
- 	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
 
- 		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
 
- 		ifail[1], info);
 
- /*        Apply orthogonal matrix used in reduction to tridiagonal */
 
- /*        form to eigenvectors returned by DSTEIN. */
 
- 	dopmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
 
- 		ldz, &work[indwrk], &iinfo);
 
-     }
 
- /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 
- L20:
 
-     if (iscale == 1) {
 
- 	if (*info == 0) {
 
- 	    imax = *m;
 
- 	} else {
 
- 	    imax = *info - 1;
 
- 	}
 
- 	d__1 = 1. / sigma;
 
- 	dscal_(&imax, &d__1, &w[1], &c__1);
 
-     }
 
- /*     If eigenvalues are not in order, then sort them, along with */
 
- /*     eigenvectors. */
 
-     if (wantz) {
 
- 	i__1 = *m - 1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__ = 0;
 
- 	    tmp1 = w[j];
 
- 	    i__2 = *m;
 
- 	    for (jj = j + 1; jj <= i__2; ++jj) {
 
- 		if (w[jj] < tmp1) {
 
- 		    i__ = jj;
 
- 		    tmp1 = w[jj];
 
- 		}
 
- /* L30: */
 
- 	    }
 
- 	    if (i__ != 0) {
 
- 		itmp1 = iwork[indibl + i__ - 1];
 
- 		w[i__] = w[j];
 
- 		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
 
- 		w[j] = tmp1;
 
- 		iwork[indibl + j - 1] = itmp1;
 
- 		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
 
- 			 &c__1);
 
- 		if (*info != 0) {
 
- 		    itmp1 = ifail[i__];
 
- 		    ifail[i__] = ifail[j];
 
- 		    ifail[j] = itmp1;
 
- 		}
 
- 	    }
 
- /* L40: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DSPEVX */
 
- } /* dspevx_ */
 
 
  |