| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 | 
							- /* dorm2r.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dorm2r_(char *side, char *trans, integer *m, integer *n, 
 
- 	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
 
- 	c__, integer *ldc, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
 
-     doublereal aii;
 
-     logical left;
 
-     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     logical notran;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DORM2R overwrites the general real m by n matrix C with */
 
- /*        Q * C  if SIDE = 'L' and TRANS = 'N', or */
 
- /*        Q'* C  if SIDE = 'L' and TRANS = 'T', or */
 
- /*        C * Q  if SIDE = 'R' and TRANS = 'N', or */
 
- /*        C * Q' if SIDE = 'R' and TRANS = 'T', */
 
- /*  where Q is a real orthogonal matrix defined as the product of k */
 
- /*  elementary reflectors */
 
- /*        Q = H(1) H(2) . . . H(k) */
 
- /*  as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n */
 
- /*  if SIDE = 'R'. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  SIDE    (input) CHARACTER*1 */
 
- /*          = 'L': apply Q or Q' from the Left */
 
- /*          = 'R': apply Q or Q' from the Right */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          = 'N': apply Q  (No transpose) */
 
- /*          = 'T': apply Q' (Transpose) */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix C. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix C. N >= 0. */
 
- /*  K       (input) INTEGER */
 
- /*          The number of elementary reflectors whose product defines */
 
- /*          the matrix Q. */
 
- /*          If SIDE = 'L', M >= K >= 0; */
 
- /*          if SIDE = 'R', N >= K >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,K) */
 
- /*          The i-th column must contain the vector which defines the */
 
- /*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
 
- /*          DGEQRF in the first k columns of its array argument A. */
 
- /*          A is modified by the routine but restored on exit. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. */
 
- /*          If SIDE = 'L', LDA >= max(1,M); */
 
- /*          if SIDE = 'R', LDA >= max(1,N). */
 
- /*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
 
- /*          TAU(i) must contain the scalar factor of the elementary */
 
- /*          reflector H(i), as returned by DGEQRF. */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
 
- /*          On entry, the m by n matrix C. */
 
- /*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
 
- /*  LDC     (input) INTEGER */
 
- /*          The leading dimension of the array C. LDC >= max(1,M). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension */
 
- /*                                   (N) if SIDE = 'L', */
 
- /*                                   (M) if SIDE = 'R' */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     left = lsame_(side, "L");
 
-     notran = lsame_(trans, "N");
 
- /*     NQ is the order of Q */
 
-     if (left) {
 
- 	nq = *m;
 
-     } else {
 
- 	nq = *n;
 
-     }
 
-     if (! left && ! lsame_(side, "R")) {
 
- 	*info = -1;
 
-     } else if (! notran && ! lsame_(trans, "T")) {
 
- 	*info = -2;
 
-     } else if (*m < 0) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*k < 0 || *k > nq) {
 
- 	*info = -5;
 
-     } else if (*lda < max(1,nq)) {
 
- 	*info = -7;
 
-     } else if (*ldc < max(1,*m)) {
 
- 	*info = -10;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DORM2R", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0 || *k == 0) {
 
- 	return 0;
 
-     }
 
-     if (left && ! notran || ! left && notran) {
 
- 	i1 = 1;
 
- 	i2 = *k;
 
- 	i3 = 1;
 
-     } else {
 
- 	i1 = *k;
 
- 	i2 = 1;
 
- 	i3 = -1;
 
-     }
 
-     if (left) {
 
- 	ni = *n;
 
- 	jc = 1;
 
-     } else {
 
- 	mi = *m;
 
- 	ic = 1;
 
-     }
 
-     i__1 = i2;
 
-     i__2 = i3;
 
-     for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 
- 	if (left) {
 
- /*           H(i) is applied to C(i:m,1:n) */
 
- 	    mi = *m - i__ + 1;
 
- 	    ic = i__;
 
- 	} else {
 
- /*           H(i) is applied to C(1:m,i:n) */
 
- 	    ni = *n - i__ + 1;
 
- 	    jc = i__;
 
- 	}
 
- /*        Apply H(i) */
 
- 	aii = a[i__ + i__ * a_dim1];
 
- 	a[i__ + i__ * a_dim1] = 1.;
 
- 	dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
 
- 		ic + jc * c_dim1], ldc, &work[1]);
 
- 	a[i__ + i__ * a_dim1] = aii;
 
- /* L10: */
 
-     }
 
-     return 0;
 
- /*     End of DORM2R */
 
- } /* dorm2r_ */
 
 
  |