| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 | 
							- /* dlatrz.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlatrz_(integer *m, integer *n, integer *l, doublereal *
 
- 	a, integer *lda, doublereal *tau, doublereal *work)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__;
 
-     extern /* Subroutine */ int dlarz_(char *, integer *, integer *, integer *
 
- , doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *), dlarfp_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */
 
- /*  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means */
 
- /*  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal */
 
- /*  matrix and, R and A1 are M-by-M upper triangular matrices. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  L       (input) INTEGER */
 
- /*          The number of columns of the matrix A containing the */
 
- /*          meaningful part of the Householder vectors. N-M >= L >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the leading M-by-N upper trapezoidal part of the */
 
- /*          array A must contain the matrix to be factorized. */
 
- /*          On exit, the leading M-by-M upper triangular part of A */
 
- /*          contains the upper triangular matrix R, and elements N-L+1 to */
 
- /*          N of the first M rows of A, with the array TAU, represent the */
 
- /*          orthogonal matrix Z as a product of M elementary reflectors. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (M) */
 
- /*          The scalar factors of the elementary reflectors. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
 
- /*  The factorization is obtained by Householder's method.  The kth */
 
- /*  transformation matrix, Z( k ), which is used to introduce zeros into */
 
- /*  the ( m - k + 1 )th row of A, is given in the form */
 
- /*     Z( k ) = ( I     0   ), */
 
- /*              ( 0  T( k ) ) */
 
- /*  where */
 
- /*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), */
 
- /*                                                 (   0    ) */
 
- /*                                                 ( z( k ) ) */
 
- /*  tau is a scalar and z( k ) is an l element vector. tau and z( k ) */
 
- /*  are chosen to annihilate the elements of the kth row of A2. */
 
- /*  The scalar tau is returned in the kth element of TAU and the vector */
 
- /*  u( k ) in the kth row of A2, such that the elements of z( k ) are */
 
- /*  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */
 
- /*  the upper triangular part of A1. */
 
- /*  Z is given by */
 
- /*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     if (*m == 0) {
 
- 	return 0;
 
-     } else if (*m == *n) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    tau[i__] = 0.;
 
- /* L10: */
 
- 	}
 
- 	return 0;
 
-     }
 
-     for (i__ = *m; i__ >= 1; --i__) {
 
- /*        Generate elementary reflector H(i) to annihilate */
 
- /*        [ A(i,i) A(i,n-l+1:n) ] */
 
- 	i__1 = *l + 1;
 
- 	dlarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * 
 
- 		a_dim1], lda, &tau[i__]);
 
- /*        Apply H(i) to A(1:i-1,i:n) from the right */
 
- 	i__1 = i__ - 1;
 
- 	i__2 = *n - i__ + 1;
 
- 	dlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 
 
- 		lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]);
 
- /* L20: */
 
-     }
 
-     return 0;
 
- /*     End of DLATRZ */
 
- } /* dlatrz_ */
 
 
  |