| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851 | 
							- /* dlatbs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b36 = .5;
 
- /* Subroutine */ int dlatbs_(char *uplo, char *trans, char *diag, char *
 
- 	normin, integer *n, integer *kd, doublereal *ab, integer *ldab, 
 
- 	doublereal *x, doublereal *scale, doublereal *cnorm, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal xj, rec, tjj;
 
-     integer jinc, jlen;
 
-     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal xbnd;
 
-     integer imax;
 
-     doublereal tmax, tjjs, xmax, grow, sumj;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     integer maind;
 
-     extern logical lsame_(char *, char *);
 
-     doublereal tscal, uscal;
 
-     extern doublereal dasum_(integer *, doublereal *, integer *);
 
-     integer jlast;
 
-     extern /* Subroutine */ int dtbsv_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     logical upper;
 
-     extern doublereal dlamch_(char *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     logical notran;
 
-     integer jfirst;
 
-     doublereal smlnum;
 
-     logical nounit;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLATBS solves one of the triangular systems */
 
- /*     A *x = s*b  or  A'*x = s*b */
 
- /*  with scaling to prevent overflow, where A is an upper or lower */
 
- /*  triangular band matrix.  Here A' denotes the transpose of A, x and b */
 
- /*  are n-element vectors, and s is a scaling factor, usually less than */
 
- /*  or equal to 1, chosen so that the components of x will be less than */
 
- /*  the overflow threshold.  If the unscaled problem will not cause */
 
- /*  overflow, the Level 2 BLAS routine DTBSV is called.  If the matrix A */
 
- /*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
 
- /*  non-trivial solution to A*x = 0 is returned. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the matrix A is upper or lower triangular. */
 
- /*          = 'U':  Upper triangular */
 
- /*          = 'L':  Lower triangular */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          Specifies the operation applied to A. */
 
- /*          = 'N':  Solve A * x = s*b  (No transpose) */
 
- /*          = 'T':  Solve A'* x = s*b  (Transpose) */
 
- /*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose) */
 
- /*  DIAG    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the matrix A is unit triangular. */
 
- /*          = 'N':  Non-unit triangular */
 
- /*          = 'U':  Unit triangular */
 
- /*  NORMIN  (input) CHARACTER*1 */
 
- /*          Specifies whether CNORM has been set or not. */
 
- /*          = 'Y':  CNORM contains the column norms on entry */
 
- /*          = 'N':  CNORM is not set on entry.  On exit, the norms will */
 
- /*                  be computed and stored in CNORM. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of subdiagonals or superdiagonals in the */
 
- /*          triangular matrix A.  KD >= 0. */
 
- /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          The upper or lower triangular band matrix A, stored in the */
 
- /*          first KD+1 rows of the array. The j-th column of A is stored */
 
- /*          in the j-th column of the array AB as follows: */
 
- /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KD+1. */
 
- /*  X       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the right hand side b of the triangular system. */
 
- /*          On exit, X is overwritten by the solution vector x. */
 
- /*  SCALE   (output) DOUBLE PRECISION */
 
- /*          The scaling factor s for the triangular system */
 
- /*             A * x = s*b  or  A'* x = s*b. */
 
- /*          If SCALE = 0, the matrix A is singular or badly scaled, and */
 
- /*          the vector x is an exact or approximate solution to A*x = 0. */
 
- /*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
 
- /*          contains the norm of the off-diagonal part of the j-th column */
 
- /*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal */
 
- /*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
 
- /*          must be greater than or equal to the 1-norm. */
 
- /*          If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
 
- /*          returns the 1-norm of the offdiagonal part of the j-th column */
 
- /*          of A. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -k, the k-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  ======= ======= */
 
- /*  A rough bound on x is computed; if that is less than overflow, DTBSV */
 
- /*  is called, otherwise, specific code is used which checks for possible */
 
- /*  overflow or divide-by-zero at every operation. */
 
- /*  A columnwise scheme is used for solving A*x = b.  The basic algorithm */
 
- /*  if A is lower triangular is */
 
- /*       x[1:n] := b[1:n] */
 
- /*       for j = 1, ..., n */
 
- /*            x(j) := x(j) / A(j,j) */
 
- /*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
 
- /*       end */
 
- /*  Define bounds on the components of x after j iterations of the loop: */
 
- /*     M(j) = bound on x[1:j] */
 
- /*     G(j) = bound on x[j+1:n] */
 
- /*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */
 
- /*  Then for iteration j+1 we have */
 
- /*     M(j+1) <= G(j) / | A(j+1,j+1) | */
 
- /*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
 
- /*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
 
- /*  where CNORM(j+1) is greater than or equal to the infinity-norm of */
 
- /*  column j+1 of A, not counting the diagonal.  Hence */
 
- /*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
 
- /*                  1<=i<=j */
 
- /*  and */
 
- /*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
 
- /*                                   1<=i< j */
 
- /*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the */
 
- /*  reciprocal of the largest M(j), j=1,..,n, is larger than */
 
- /*  max(underflow, 1/overflow). */
 
- /*  The bound on x(j) is also used to determine when a step in the */
 
- /*  columnwise method can be performed without fear of overflow.  If */
 
- /*  the computed bound is greater than a large constant, x is scaled to */
 
- /*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
 
- /*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
 
- /*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic */
 
- /*  algorithm for A upper triangular is */
 
- /*       for j = 1, ..., n */
 
- /*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
 
- /*       end */
 
- /*  We simultaneously compute two bounds */
 
- /*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
 
- /*       M(j) = bound on x(i), 1<=i<=j */
 
- /*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
 
- /*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
 
- /*  Then the bound on x(j) is */
 
- /*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
 
- /*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
 
- /*                      1<=i<=j */
 
- /*  and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater */
 
- /*  than max(underflow, 1/overflow). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --x;
 
-     --cnorm;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     notran = lsame_(trans, "N");
 
-     nounit = lsame_(diag, "N");
 
- /*     Test the input parameters. */
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (! notran && ! lsame_(trans, "T") && ! 
 
- 	    lsame_(trans, "C")) {
 
- 	*info = -2;
 
-     } else if (! nounit && ! lsame_(diag, "U")) {
 
- 	*info = -3;
 
-     } else if (! lsame_(normin, "Y") && ! lsame_(normin, 
 
- 	     "N")) {
 
- 	*info = -4;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*kd < 0) {
 
- 	*info = -6;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLATBS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Determine machine dependent parameters to control overflow. */
 
-     smlnum = dlamch_("Safe minimum") / dlamch_("Precision");
 
-     bignum = 1. / smlnum;
 
-     *scale = 1.;
 
-     if (lsame_(normin, "N")) {
 
- /*        Compute the 1-norm of each column, not including the diagonal. */
 
- 	if (upper) {
 
- /*           A is upper triangular. */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		i__2 = *kd, i__3 = j - 1;
 
- 		jlen = min(i__2,i__3);
 
- 		cnorm[j] = dasum_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], &
 
- 			c__1);
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- /*           A is lower triangular. */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		i__2 = *kd, i__3 = *n - j;
 
- 		jlen = min(i__2,i__3);
 
- 		if (jlen > 0) {
 
- 		    cnorm[j] = dasum_(&jlen, &ab[j * ab_dim1 + 2], &c__1);
 
- 		} else {
 
- 		    cnorm[j] = 0.;
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	}
 
-     }
 
- /*     Scale the column norms by TSCAL if the maximum element in CNORM is */
 
- /*     greater than BIGNUM. */
 
-     imax = idamax_(n, &cnorm[1], &c__1);
 
-     tmax = cnorm[imax];
 
-     if (tmax <= bignum) {
 
- 	tscal = 1.;
 
-     } else {
 
- 	tscal = 1. / (smlnum * tmax);
 
- 	dscal_(n, &tscal, &cnorm[1], &c__1);
 
-     }
 
- /*     Compute a bound on the computed solution vector to see if the */
 
- /*     Level 2 BLAS routine DTBSV can be used. */
 
-     j = idamax_(n, &x[1], &c__1);
 
-     xmax = (d__1 = x[j], abs(d__1));
 
-     xbnd = xmax;
 
-     if (notran) {
 
- /*        Compute the growth in A * x = b. */
 
- 	if (upper) {
 
- 	    jfirst = *n;
 
- 	    jlast = 1;
 
- 	    jinc = -1;
 
- 	    maind = *kd + 1;
 
- 	} else {
 
- 	    jfirst = 1;
 
- 	    jlast = *n;
 
- 	    jinc = 1;
 
- 	    maind = 1;
 
- 	}
 
- 	if (tscal != 1.) {
 
- 	    grow = 0.;
 
- 	    goto L50;
 
- 	}
 
- 	if (nounit) {
 
- /*           A is non-unit triangular. */
 
- /*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 
- /*           Initially, G(0) = max{x(i), i=1,...,n}. */
 
- 	    grow = 1. / max(xbnd,smlnum);
 
- 	    xbnd = grow;
 
- 	    i__1 = jlast;
 
- 	    i__2 = jinc;
 
- 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 
- /*              Exit the loop if the growth factor is too small. */
 
- 		if (grow <= smlnum) {
 
- 		    goto L50;
 
- 		}
 
- /*              M(j) = G(j-1) / abs(A(j,j)) */
 
- 		tjj = (d__1 = ab[maind + j * ab_dim1], abs(d__1));
 
- /* Computing MIN */
 
- 		d__1 = xbnd, d__2 = min(1.,tjj) * grow;
 
- 		xbnd = min(d__1,d__2);
 
- 		if (tjj + cnorm[j] >= smlnum) {
 
- /*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
 
- 		    grow *= tjj / (tjj + cnorm[j]);
 
- 		} else {
 
- /*                 G(j) could overflow, set GROW to 0. */
 
- 		    grow = 0.;
 
- 		}
 
- /* L30: */
 
- 	    }
 
- 	    grow = xbnd;
 
- 	} else {
 
- /*           A is unit triangular. */
 
- /*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
 
- /* Computing MIN */
 
- 	    d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
 
- 	    grow = min(d__1,d__2);
 
- 	    i__2 = jlast;
 
- 	    i__1 = jinc;
 
- 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 
- /*              Exit the loop if the growth factor is too small. */
 
- 		if (grow <= smlnum) {
 
- 		    goto L50;
 
- 		}
 
- /*              G(j) = G(j-1)*( 1 + CNORM(j) ) */
 
- 		grow *= 1. / (cnorm[j] + 1.);
 
- /* L40: */
 
- 	    }
 
- 	}
 
- L50:
 
- 	;
 
-     } else {
 
- /*        Compute the growth in A' * x = b. */
 
- 	if (upper) {
 
- 	    jfirst = 1;
 
- 	    jlast = *n;
 
- 	    jinc = 1;
 
- 	    maind = *kd + 1;
 
- 	} else {
 
- 	    jfirst = *n;
 
- 	    jlast = 1;
 
- 	    jinc = -1;
 
- 	    maind = 1;
 
- 	}
 
- 	if (tscal != 1.) {
 
- 	    grow = 0.;
 
- 	    goto L80;
 
- 	}
 
- 	if (nounit) {
 
- /*           A is non-unit triangular. */
 
- /*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 
- /*           Initially, M(0) = max{x(i), i=1,...,n}. */
 
- 	    grow = 1. / max(xbnd,smlnum);
 
- 	    xbnd = grow;
 
- 	    i__1 = jlast;
 
- 	    i__2 = jinc;
 
- 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 
- /*              Exit the loop if the growth factor is too small. */
 
- 		if (grow <= smlnum) {
 
- 		    goto L80;
 
- 		}
 
- /*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
 
- 		xj = cnorm[j] + 1.;
 
- /* Computing MIN */
 
- 		d__1 = grow, d__2 = xbnd / xj;
 
- 		grow = min(d__1,d__2);
 
- /*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
 
- 		tjj = (d__1 = ab[maind + j * ab_dim1], abs(d__1));
 
- 		if (xj > tjj) {
 
- 		    xbnd *= tjj / xj;
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	    grow = min(grow,xbnd);
 
- 	} else {
 
- /*           A is unit triangular. */
 
- /*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}. */
 
- /* Computing MIN */
 
- 	    d__1 = 1., d__2 = 1. / max(xbnd,smlnum);
 
- 	    grow = min(d__1,d__2);
 
- 	    i__2 = jlast;
 
- 	    i__1 = jinc;
 
- 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 
- /*              Exit the loop if the growth factor is too small. */
 
- 		if (grow <= smlnum) {
 
- 		    goto L80;
 
- 		}
 
- /*              G(j) = ( 1 + CNORM(j) )*G(j-1) */
 
- 		xj = cnorm[j] + 1.;
 
- 		grow /= xj;
 
- /* L70: */
 
- 	    }
 
- 	}
 
- L80:
 
- 	;
 
-     }
 
-     if (grow * tscal > smlnum) {
 
- /*        Use the Level 2 BLAS solve if the reciprocal of the bound on */
 
- /*        elements of X is not too small. */
 
- 	dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &x[1], &c__1);
 
-     } else {
 
- /*        Use a Level 1 BLAS solve, scaling intermediate results. */
 
- 	if (xmax > bignum) {
 
- /*           Scale X so that its components are less than or equal to */
 
- /*           BIGNUM in absolute value. */
 
- 	    *scale = bignum / xmax;
 
- 	    dscal_(n, scale, &x[1], &c__1);
 
- 	    xmax = bignum;
 
- 	}
 
- 	if (notran) {
 
- /*           Solve A * x = b */
 
- 	    i__1 = jlast;
 
- 	    i__2 = jinc;
 
- 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 
- /*              Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
 
- 		xj = (d__1 = x[j], abs(d__1));
 
- 		if (nounit) {
 
- 		    tjjs = ab[maind + j * ab_dim1] * tscal;
 
- 		} else {
 
- 		    tjjs = tscal;
 
- 		    if (tscal == 1.) {
 
- 			goto L100;
 
- 		    }
 
- 		}
 
- 		tjj = abs(tjjs);
 
- 		if (tjj > smlnum) {
 
- /*                    abs(A(j,j)) > SMLNUM: */
 
- 		    if (tjj < 1.) {
 
- 			if (xj > tjj * bignum) {
 
- /*                          Scale x by 1/b(j). */
 
- 			    rec = 1. / xj;
 
- 			    dscal_(n, &rec, &x[1], &c__1);
 
- 			    *scale *= rec;
 
- 			    xmax *= rec;
 
- 			}
 
- 		    }
 
- 		    x[j] /= tjjs;
 
- 		    xj = (d__1 = x[j], abs(d__1));
 
- 		} else if (tjj > 0.) {
 
- /*                    0 < abs(A(j,j)) <= SMLNUM: */
 
- 		    if (xj > tjj * bignum) {
 
- /*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
 
- /*                       to avoid overflow when dividing by A(j,j). */
 
- 			rec = tjj * bignum / xj;
 
- 			if (cnorm[j] > 1.) {
 
- /*                          Scale by 1/CNORM(j) to avoid overflow when */
 
- /*                          multiplying x(j) times column j. */
 
- 			    rec /= cnorm[j];
 
- 			}
 
- 			dscal_(n, &rec, &x[1], &c__1);
 
- 			*scale *= rec;
 
- 			xmax *= rec;
 
- 		    }
 
- 		    x[j] /= tjjs;
 
- 		    xj = (d__1 = x[j], abs(d__1));
 
- 		} else {
 
- /*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 
- /*                    scale = 0, and compute a solution to A*x = 0. */
 
- 		    i__3 = *n;
 
- 		    for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			x[i__] = 0.;
 
- /* L90: */
 
- 		    }
 
- 		    x[j] = 1.;
 
- 		    xj = 1.;
 
- 		    *scale = 0.;
 
- 		    xmax = 0.;
 
- 		}
 
- L100:
 
- /*              Scale x if necessary to avoid overflow when adding a */
 
- /*              multiple of column j of A. */
 
- 		if (xj > 1.) {
 
- 		    rec = 1. / xj;
 
- 		    if (cnorm[j] > (bignum - xmax) * rec) {
 
- /*                    Scale x by 1/(2*abs(x(j))). */
 
- 			rec *= .5;
 
- 			dscal_(n, &rec, &x[1], &c__1);
 
- 			*scale *= rec;
 
- 		    }
 
- 		} else if (xj * cnorm[j] > bignum - xmax) {
 
- /*                 Scale x by 1/2. */
 
- 		    dscal_(n, &c_b36, &x[1], &c__1);
 
- 		    *scale *= .5;
 
- 		}
 
- 		if (upper) {
 
- 		    if (j > 1) {
 
- /*                    Compute the update */
 
- /*                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) - */
 
- /*                                             x(j)* A(max(1,j-kd):j-1,j) */
 
- /* Computing MIN */
 
- 			i__3 = *kd, i__4 = j - 1;
 
- 			jlen = min(i__3,i__4);
 
- 			d__1 = -x[j] * tscal;
 
- 			daxpy_(&jlen, &d__1, &ab[*kd + 1 - jlen + j * ab_dim1]
 
- , &c__1, &x[j - jlen], &c__1);
 
- 			i__3 = j - 1;
 
- 			i__ = idamax_(&i__3, &x[1], &c__1);
 
- 			xmax = (d__1 = x[i__], abs(d__1));
 
- 		    }
 
- 		} else if (j < *n) {
 
- /*                 Compute the update */
 
- /*                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) - */
 
- /*                                          x(j) * A(j+1:min(j+kd,n),j) */
 
- /* Computing MIN */
 
- 		    i__3 = *kd, i__4 = *n - j;
 
- 		    jlen = min(i__3,i__4);
 
- 		    if (jlen > 0) {
 
- 			d__1 = -x[j] * tscal;
 
- 			daxpy_(&jlen, &d__1, &ab[j * ab_dim1 + 2], &c__1, &x[
 
- 				j + 1], &c__1);
 
- 		    }
 
- 		    i__3 = *n - j;
 
- 		    i__ = j + idamax_(&i__3, &x[j + 1], &c__1);
 
- 		    xmax = (d__1 = x[i__], abs(d__1));
 
- 		}
 
- /* L110: */
 
- 	    }
 
- 	} else {
 
- /*           Solve A' * x = b */
 
- 	    i__2 = jlast;
 
- 	    i__1 = jinc;
 
- 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 
- /*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
 
- /*                                    k<>j */
 
- 		xj = (d__1 = x[j], abs(d__1));
 
- 		uscal = tscal;
 
- 		rec = 1. / max(xmax,1.);
 
- 		if (cnorm[j] > (bignum - xj) * rec) {
 
- /*                 If x(j) could overflow, scale x by 1/(2*XMAX). */
 
- 		    rec *= .5;
 
- 		    if (nounit) {
 
- 			tjjs = ab[maind + j * ab_dim1] * tscal;
 
- 		    } else {
 
- 			tjjs = tscal;
 
- 		    }
 
- 		    tjj = abs(tjjs);
 
- 		    if (tjj > 1.) {
 
- /*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */
 
- /* Computing MIN */
 
- 			d__1 = 1., d__2 = rec * tjj;
 
- 			rec = min(d__1,d__2);
 
- 			uscal /= tjjs;
 
- 		    }
 
- 		    if (rec < 1.) {
 
- 			dscal_(n, &rec, &x[1], &c__1);
 
- 			*scale *= rec;
 
- 			xmax *= rec;
 
- 		    }
 
- 		}
 
- 		sumj = 0.;
 
- 		if (uscal == 1.) {
 
- /*                 If the scaling needed for A in the dot product is 1, */
 
- /*                 call DDOT to perform the dot product. */
 
- 		    if (upper) {
 
- /* Computing MIN */
 
- 			i__3 = *kd, i__4 = j - 1;
 
- 			jlen = min(i__3,i__4);
 
- 			sumj = ddot_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], 
 
- 				 &c__1, &x[j - jlen], &c__1);
 
- 		    } else {
 
- /* Computing MIN */
 
- 			i__3 = *kd, i__4 = *n - j;
 
- 			jlen = min(i__3,i__4);
 
- 			if (jlen > 0) {
 
- 			    sumj = ddot_(&jlen, &ab[j * ab_dim1 + 2], &c__1, &
 
- 				    x[j + 1], &c__1);
 
- 			}
 
- 		    }
 
- 		} else {
 
- /*                 Otherwise, use in-line code for the dot product. */
 
- 		    if (upper) {
 
- /* Computing MIN */
 
- 			i__3 = *kd, i__4 = j - 1;
 
- 			jlen = min(i__3,i__4);
 
- 			i__3 = jlen;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    sumj += ab[*kd + i__ - jlen + j * ab_dim1] * 
 
- 				    uscal * x[j - jlen - 1 + i__];
 
- /* L120: */
 
- 			}
 
- 		    } else {
 
- /* Computing MIN */
 
- 			i__3 = *kd, i__4 = *n - j;
 
- 			jlen = min(i__3,i__4);
 
- 			i__3 = jlen;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    sumj += ab[i__ + 1 + j * ab_dim1] * uscal * x[j + 
 
- 				    i__];
 
- /* L130: */
 
- 			}
 
- 		    }
 
- 		}
 
- 		if (uscal == tscal) {
 
- /*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */
 
- /*                 was not used to scale the dotproduct. */
 
- 		    x[j] -= sumj;
 
- 		    xj = (d__1 = x[j], abs(d__1));
 
- 		    if (nounit) {
 
- /*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */
 
- 			tjjs = ab[maind + j * ab_dim1] * tscal;
 
- 		    } else {
 
- 			tjjs = tscal;
 
- 			if (tscal == 1.) {
 
- 			    goto L150;
 
- 			}
 
- 		    }
 
- 		    tjj = abs(tjjs);
 
- 		    if (tjj > smlnum) {
 
- /*                       abs(A(j,j)) > SMLNUM: */
 
- 			if (tjj < 1.) {
 
- 			    if (xj > tjj * bignum) {
 
- /*                             Scale X by 1/abs(x(j)). */
 
- 				rec = 1. / xj;
 
- 				dscal_(n, &rec, &x[1], &c__1);
 
- 				*scale *= rec;
 
- 				xmax *= rec;
 
- 			    }
 
- 			}
 
- 			x[j] /= tjjs;
 
- 		    } else if (tjj > 0.) {
 
- /*                       0 < abs(A(j,j)) <= SMLNUM: */
 
- 			if (xj > tjj * bignum) {
 
- /*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
 
- 			    rec = tjj * bignum / xj;
 
- 			    dscal_(n, &rec, &x[1], &c__1);
 
- 			    *scale *= rec;
 
- 			    xmax *= rec;
 
- 			}
 
- 			x[j] /= tjjs;
 
- 		    } else {
 
- /*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 
- /*                       scale = 0, and compute a solution to A'*x = 0. */
 
- 			i__3 = *n;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    x[i__] = 0.;
 
- /* L140: */
 
- 			}
 
- 			x[j] = 1.;
 
- 			*scale = 0.;
 
- 			xmax = 0.;
 
- 		    }
 
- L150:
 
- 		    ;
 
- 		} else {
 
- /*                 Compute x(j) := x(j) / A(j,j) - sumj if the dot */
 
- /*                 product has already been divided by 1/A(j,j). */
 
- 		    x[j] = x[j] / tjjs - sumj;
 
- 		}
 
- /* Computing MAX */
 
- 		d__2 = xmax, d__3 = (d__1 = x[j], abs(d__1));
 
- 		xmax = max(d__2,d__3);
 
- /* L160: */
 
- 	    }
 
- 	}
 
- 	*scale /= tscal;
 
-     }
 
- /*     Scale the column norms by 1/TSCAL for return. */
 
-     if (tscal != 1.) {
 
- 	d__1 = 1. / tscal;
 
- 	dscal_(n, &d__1, &cnorm[1], &c__1);
 
-     }
 
-     return 0;
 
- /*     End of DLATBS */
 
- } /* dlatbs_ */
 
 
  |