| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | 
							- /* dlasq4.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__, 
 
- 	integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1, 
 
- 	doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2, 
 
- 	doublereal *tau, integer *ttype, doublereal *g)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal s, a2, b1, b2;
 
-     integer i4, nn, np;
 
-     doublereal gam, gap1, gap2;
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
 
- /*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
 
- /*  -- Berkeley                                                        -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASQ4 computes an approximation TAU to the smallest eigenvalue */
 
- /*  using values of d from the previous transform. */
 
- /*  I0    (input) INTEGER */
 
- /*        First index. */
 
- /*  N0    (input) INTEGER */
 
- /*        Last index. */
 
- /*  Z     (input) DOUBLE PRECISION array, dimension ( 4*N ) */
 
- /*        Z holds the qd array. */
 
- /*  PP    (input) INTEGER */
 
- /*        PP=0 for ping, PP=1 for pong. */
 
- /*  NOIN  (input) INTEGER */
 
- /*        The value of N0 at start of EIGTEST. */
 
- /*  DMIN  (input) DOUBLE PRECISION */
 
- /*        Minimum value of d. */
 
- /*  DMIN1 (input) DOUBLE PRECISION */
 
- /*        Minimum value of d, excluding D( N0 ). */
 
- /*  DMIN2 (input) DOUBLE PRECISION */
 
- /*        Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
 
- /*  DN    (input) DOUBLE PRECISION */
 
- /*        d(N) */
 
- /*  DN1   (input) DOUBLE PRECISION */
 
- /*        d(N-1) */
 
- /*  DN2   (input) DOUBLE PRECISION */
 
- /*        d(N-2) */
 
- /*  TAU   (output) DOUBLE PRECISION */
 
- /*        This is the shift. */
 
- /*  TTYPE (output) INTEGER */
 
- /*        Shift type. */
 
- /*  G     (input/output) REAL */
 
- /*        G is passed as an argument in order to save its value between */
 
- /*        calls to DLASQ4. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  CNST1 = 9/16 */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     A negative DMIN forces the shift to take that absolute value */
 
- /*     TTYPE records the type of shift. */
 
-     /* Parameter adjustments */
 
-     --z__;
 
-     /* Function Body */
 
-     if (*dmin__ <= 0.) {
 
- 	*tau = -(*dmin__);
 
- 	*ttype = -1;
 
- 	return 0;
 
-     }
 
-     nn = (*n0 << 2) + *pp;
 
-     if (*n0in == *n0) {
 
- /*        No eigenvalues deflated. */
 
- 	if (*dmin__ == *dn || *dmin__ == *dn1) {
 
- 	    b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
 
- 	    b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
 
- 	    a2 = z__[nn - 7] + z__[nn - 5];
 
- /*           Cases 2 and 3. */
 
- 	    if (*dmin__ == *dn && *dmin1 == *dn1) {
 
- 		gap2 = *dmin2 - a2 - *dmin2 * .25;
 
- 		if (gap2 > 0. && gap2 > b2) {
 
- 		    gap1 = a2 - *dn - b2 / gap2 * b2;
 
- 		} else {
 
- 		    gap1 = a2 - *dn - (b1 + b2);
 
- 		}
 
- 		if (gap1 > 0. && gap1 > b1) {
 
- /* Computing MAX */
 
- 		    d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
 
- 		    s = max(d__1,d__2);
 
- 		    *ttype = -2;
 
- 		} else {
 
- 		    s = 0.;
 
- 		    if (*dn > b1) {
 
- 			s = *dn - b1;
 
- 		    }
 
- 		    if (a2 > b1 + b2) {
 
- /* Computing MIN */
 
- 			d__1 = s, d__2 = a2 - (b1 + b2);
 
- 			s = min(d__1,d__2);
 
- 		    }
 
- /* Computing MAX */
 
- 		    d__1 = s, d__2 = *dmin__ * .333;
 
- 		    s = max(d__1,d__2);
 
- 		    *ttype = -3;
 
- 		}
 
- 	    } else {
 
- /*              Case 4. */
 
- 		*ttype = -4;
 
- 		s = *dmin__ * .25;
 
- 		if (*dmin__ == *dn) {
 
- 		    gam = *dn;
 
- 		    a2 = 0.;
 
- 		    if (z__[nn - 5] > z__[nn - 7]) {
 
- 			return 0;
 
- 		    }
 
- 		    b2 = z__[nn - 5] / z__[nn - 7];
 
- 		    np = nn - 9;
 
- 		} else {
 
- 		    np = nn - (*pp << 1);
 
- 		    b2 = z__[np - 2];
 
- 		    gam = *dn1;
 
- 		    if (z__[np - 4] > z__[np - 2]) {
 
- 			return 0;
 
- 		    }
 
- 		    a2 = z__[np - 4] / z__[np - 2];
 
- 		    if (z__[nn - 9] > z__[nn - 11]) {
 
- 			return 0;
 
- 		    }
 
- 		    b2 = z__[nn - 9] / z__[nn - 11];
 
- 		    np = nn - 13;
 
- 		}
 
- /*              Approximate contribution to norm squared from I < NN-1. */
 
- 		a2 += b2;
 
- 		i__1 = (*i0 << 2) - 1 + *pp;
 
- 		for (i4 = np; i4 >= i__1; i4 += -4) {
 
- 		    if (b2 == 0.) {
 
- 			goto L20;
 
- 		    }
 
- 		    b1 = b2;
 
- 		    if (z__[i4] > z__[i4 - 2]) {
 
- 			return 0;
 
- 		    }
 
- 		    b2 *= z__[i4] / z__[i4 - 2];
 
- 		    a2 += b2;
 
- 		    if (max(b2,b1) * 100. < a2 || .563 < a2) {
 
- 			goto L20;
 
- 		    }
 
- /* L10: */
 
- 		}
 
- L20:
 
- 		a2 *= 1.05;
 
- /*              Rayleigh quotient residual bound. */
 
- 		if (a2 < .563) {
 
- 		    s = gam * (1. - sqrt(a2)) / (a2 + 1.);
 
- 		}
 
- 	    }
 
- 	} else if (*dmin__ == *dn2) {
 
- /*           Case 5. */
 
- 	    *ttype = -5;
 
- 	    s = *dmin__ * .25;
 
- /*           Compute contribution to norm squared from I > NN-2. */
 
- 	    np = nn - (*pp << 1);
 
- 	    b1 = z__[np - 2];
 
- 	    b2 = z__[np - 6];
 
- 	    gam = *dn2;
 
- 	    if (z__[np - 8] > b2 || z__[np - 4] > b1) {
 
- 		return 0;
 
- 	    }
 
- 	    a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
 
- /*           Approximate contribution to norm squared from I < NN-2. */
 
- 	    if (*n0 - *i0 > 2) {
 
- 		b2 = z__[nn - 13] / z__[nn - 15];
 
- 		a2 += b2;
 
- 		i__1 = (*i0 << 2) - 1 + *pp;
 
- 		for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
 
- 		    if (b2 == 0.) {
 
- 			goto L40;
 
- 		    }
 
- 		    b1 = b2;
 
- 		    if (z__[i4] > z__[i4 - 2]) {
 
- 			return 0;
 
- 		    }
 
- 		    b2 *= z__[i4] / z__[i4 - 2];
 
- 		    a2 += b2;
 
- 		    if (max(b2,b1) * 100. < a2 || .563 < a2) {
 
- 			goto L40;
 
- 		    }
 
- /* L30: */
 
- 		}
 
- L40:
 
- 		a2 *= 1.05;
 
- 	    }
 
- 	    if (a2 < .563) {
 
- 		s = gam * (1. - sqrt(a2)) / (a2 + 1.);
 
- 	    }
 
- 	} else {
 
- /*           Case 6, no information to guide us. */
 
- 	    if (*ttype == -6) {
 
- 		*g += (1. - *g) * .333;
 
- 	    } else if (*ttype == -18) {
 
- 		*g = .083250000000000005;
 
- 	    } else {
 
- 		*g = .25;
 
- 	    }
 
- 	    s = *g * *dmin__;
 
- 	    *ttype = -6;
 
- 	}
 
-     } else if (*n0in == *n0 + 1) {
 
- /*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
 
- 	if (*dmin1 == *dn1 && *dmin2 == *dn2) {
 
- /*           Cases 7 and 8. */
 
- 	    *ttype = -7;
 
- 	    s = *dmin1 * .333;
 
- 	    if (z__[nn - 5] > z__[nn - 7]) {
 
- 		return 0;
 
- 	    }
 
- 	    b1 = z__[nn - 5] / z__[nn - 7];
 
- 	    b2 = b1;
 
- 	    if (b2 == 0.) {
 
- 		goto L60;
 
- 	    }
 
- 	    i__1 = (*i0 << 2) - 1 + *pp;
 
- 	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
 
- 		a2 = b1;
 
- 		if (z__[i4] > z__[i4 - 2]) {
 
- 		    return 0;
 
- 		}
 
- 		b1 *= z__[i4] / z__[i4 - 2];
 
- 		b2 += b1;
 
- 		if (max(b1,a2) * 100. < b2) {
 
- 		    goto L60;
 
- 		}
 
- /* L50: */
 
- 	    }
 
- L60:
 
- 	    b2 = sqrt(b2 * 1.05);
 
- /* Computing 2nd power */
 
- 	    d__1 = b2;
 
- 	    a2 = *dmin1 / (d__1 * d__1 + 1.);
 
- 	    gap2 = *dmin2 * .5 - a2;
 
- 	    if (gap2 > 0. && gap2 > b2 * a2) {
 
- /* Computing MAX */
 
- 		d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
 
- 		s = max(d__1,d__2);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
 
- 		s = max(d__1,d__2);
 
- 		*ttype = -8;
 
- 	    }
 
- 	} else {
 
- /*           Case 9. */
 
- 	    s = *dmin1 * .25;
 
- 	    if (*dmin1 == *dn1) {
 
- 		s = *dmin1 * .5;
 
- 	    }
 
- 	    *ttype = -9;
 
- 	}
 
-     } else if (*n0in == *n0 + 2) {
 
- /*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
 
- /*        Cases 10 and 11. */
 
- 	if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {
 
- 	    *ttype = -10;
 
- 	    s = *dmin2 * .333;
 
- 	    if (z__[nn - 5] > z__[nn - 7]) {
 
- 		return 0;
 
- 	    }
 
- 	    b1 = z__[nn - 5] / z__[nn - 7];
 
- 	    b2 = b1;
 
- 	    if (b2 == 0.) {
 
- 		goto L80;
 
- 	    }
 
- 	    i__1 = (*i0 << 2) - 1 + *pp;
 
- 	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
 
- 		if (z__[i4] > z__[i4 - 2]) {
 
- 		    return 0;
 
- 		}
 
- 		b1 *= z__[i4] / z__[i4 - 2];
 
- 		b2 += b1;
 
- 		if (b1 * 100. < b2) {
 
- 		    goto L80;
 
- 		}
 
- /* L70: */
 
- 	    }
 
- L80:
 
- 	    b2 = sqrt(b2 * 1.05);
 
- /* Computing 2nd power */
 
- 	    d__1 = b2;
 
- 	    a2 = *dmin2 / (d__1 * d__1 + 1.);
 
- 	    gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
 
- 		    nn - 9]) - a2;
 
- 	    if (gap2 > 0. && gap2 > b2 * a2) {
 
- /* Computing MAX */
 
- 		d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
 
- 		s = max(d__1,d__2);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
 
- 		s = max(d__1,d__2);
 
- 	    }
 
- 	} else {
 
- 	    s = *dmin2 * .25;
 
- 	    *ttype = -11;
 
- 	}
 
-     } else if (*n0in > *n0 + 2) {
 
- /*        Case 12, more than two eigenvalues deflated. No information. */
 
- 	s = 0.;
 
- 	*ttype = -12;
 
-     }
 
-     *tau = s;
 
-     return 0;
 
- /*     End of DLASQ4 */
 
- } /* dlasq4_ */
 
 
  |