| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 | 
							- /* dlarzt.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b8 = 0.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dlarzt_(char *direct, char *storev, integer *n, integer *
 
- 	k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, 
 
- 	integer *ldt)
 
- {
 
-     /* System generated locals */
 
-     integer t_dim1, t_offset, v_dim1, v_offset, i__1;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, info;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), dtrmv_(char *, 
 
- 	    char *, char *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLARZT forms the triangular factor T of a real block reflector */
 
- /*  H of order > n, which is defined as a product of k elementary */
 
- /*  reflectors. */
 
- /*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */
 
- /*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */
 
- /*  If STOREV = 'C', the vector which defines the elementary reflector */
 
- /*  H(i) is stored in the i-th column of the array V, and */
 
- /*     H  =  I - V * T * V' */
 
- /*  If STOREV = 'R', the vector which defines the elementary reflector */
 
- /*  H(i) is stored in the i-th row of the array V, and */
 
- /*     H  =  I - V' * T * V */
 
- /*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  DIRECT  (input) CHARACTER*1 */
 
- /*          Specifies the order in which the elementary reflectors are */
 
- /*          multiplied to form the block reflector: */
 
- /*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) */
 
- /*          = 'B': H = H(k) . . . H(2) H(1) (Backward) */
 
- /*  STOREV  (input) CHARACTER*1 */
 
- /*          Specifies how the vectors which define the elementary */
 
- /*          reflectors are stored (see also Further Details): */
 
- /*          = 'C': columnwise                        (not supported yet) */
 
- /*          = 'R': rowwise */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the block reflector H. N >= 0. */
 
- /*  K       (input) INTEGER */
 
- /*          The order of the triangular factor T (= the number of */
 
- /*          elementary reflectors). K >= 1. */
 
- /*  V       (input/output) DOUBLE PRECISION array, dimension */
 
- /*                               (LDV,K) if STOREV = 'C' */
 
- /*                               (LDV,N) if STOREV = 'R' */
 
- /*          The matrix V. See further details. */
 
- /*  LDV     (input) INTEGER */
 
- /*          The leading dimension of the array V. */
 
- /*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */
 
- /*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
 
- /*          TAU(i) must contain the scalar factor of the elementary */
 
- /*          reflector H(i). */
 
- /*  T       (output) DOUBLE PRECISION array, dimension (LDT,K) */
 
- /*          The k by k triangular factor T of the block reflector. */
 
- /*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
 
- /*          lower triangular. The rest of the array is not used. */
 
- /*  LDT     (input) INTEGER */
 
- /*          The leading dimension of the array T. LDT >= K. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
 
- /*  The shape of the matrix V and the storage of the vectors which define */
 
- /*  the H(i) is best illustrated by the following example with n = 5 and */
 
- /*  k = 3. The elements equal to 1 are not stored; the corresponding */
 
- /*  array elements are modified but restored on exit. The rest of the */
 
- /*  array is not used. */
 
- /*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */
 
- /*                                              ______V_____ */
 
- /*         ( v1 v2 v3 )                        /            \ */
 
- /*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 ) */
 
- /*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   ) */
 
- /*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     ) */
 
- /*         ( v1 v2 v3 ) */
 
- /*            .  .  . */
 
- /*            .  .  . */
 
- /*            1  .  . */
 
- /*               1  . */
 
- /*                  1 */
 
- /*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */
 
- /*                                                        ______V_____ */
 
- /*            1                                          /            \ */
 
- /*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 ) */
 
- /*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 ) */
 
- /*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 ) */
 
- /*            .  .  . */
 
- /*         ( v1 v2 v3 ) */
 
- /*         ( v1 v2 v3 ) */
 
- /*     V = ( v1 v2 v3 ) */
 
- /*         ( v1 v2 v3 ) */
 
- /*         ( v1 v2 v3 ) */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Check for currently supported options */
 
-     /* Parameter adjustments */
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     --tau;
 
-     t_dim1 = *ldt;
 
-     t_offset = 1 + t_dim1;
 
-     t -= t_offset;
 
-     /* Function Body */
 
-     info = 0;
 
-     if (! lsame_(direct, "B")) {
 
- 	info = -1;
 
-     } else if (! lsame_(storev, "R")) {
 
- 	info = -2;
 
-     }
 
-     if (info != 0) {
 
- 	i__1 = -info;
 
- 	xerbla_("DLARZT", &i__1);
 
- 	return 0;
 
-     }
 
-     for (i__ = *k; i__ >= 1; --i__) {
 
- 	if (tau[i__] == 0.) {
 
- /*           H(i)  =  I */
 
- 	    i__1 = *k;
 
- 	    for (j = i__; j <= i__1; ++j) {
 
- 		t[j + i__ * t_dim1] = 0.;
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- /*           general case */
 
- 	    if (i__ < *k) {
 
- /*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)' */
 
- 		i__1 = *k - i__;
 
- 		d__1 = -tau[i__];
 
- 		dgemv_("No transpose", &i__1, n, &d__1, &v[i__ + 1 + v_dim1], 
 
- 			ldv, &v[i__ + v_dim1], ldv, &c_b8, &t[i__ + 1 + i__ * 
 
- 			t_dim1], &c__1);
 
- /*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i) */
 
- 		i__1 = *k - i__;
 
- 		dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 
 
- 			+ (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1]
 
- , &c__1);
 
- 	    }
 
- 	    t[i__ + i__ * t_dim1] = tau[i__];
 
- 	}
 
- /* L20: */
 
-     }
 
-     return 0;
 
- /*     End of DLARZT */
 
- } /* dlarzt_ */
 
 
  |