| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989 | 
							- /* dlarrv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b5 = 0.;
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int dlarrv_(integer *n, doublereal *vl, doublereal *vu, 
 
- 	doublereal *d__, doublereal *l, doublereal *pivmin, integer *isplit, 
 
- 	integer *m, integer *dol, integer *dou, doublereal *minrgp, 
 
- 	doublereal *rtol1, doublereal *rtol2, doublereal *w, doublereal *werr, 
 
- 	 doublereal *wgap, integer *iblock, integer *indexw, doublereal *gers, 
 
- 	 doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
 
- 	integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
 
-     doublereal d__1, d__2;
 
-     logical L__1;
 
-     /* Builtin functions */
 
-     double log(doublereal);
 
-     /* Local variables */
 
-     integer minwsize, i__, j, k, p, q, miniwsize, ii;
 
-     doublereal gl;
 
-     integer im, in;
 
-     doublereal gu, gap, eps, tau, tol, tmp;
 
-     integer zto;
 
-     doublereal ztz;
 
-     integer iend, jblk;
 
-     doublereal lgap;
 
-     integer done;
 
-     doublereal rgap, left;
 
-     integer wend, iter;
 
-     doublereal bstw;
 
-     integer itmp1;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     integer indld;
 
-     doublereal fudge;
 
-     integer idone;
 
-     doublereal sigma;
 
-     integer iinfo, iindr;
 
-     doublereal resid;
 
-     logical eskip;
 
-     doublereal right;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer nclus, zfrom;
 
-     doublereal rqtol;
 
-     integer iindc1, iindc2;
 
-     extern /* Subroutine */ int dlar1v_(integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, logical *, 
 
- 	     integer *, doublereal *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *);
 
-     logical stp2ii;
 
-     doublereal lambda;
 
-     extern doublereal dlamch_(char *);
 
-     integer ibegin, indeig;
 
-     logical needbs;
 
-     integer indlld;
 
-     doublereal sgndef, mingma;
 
-     extern /* Subroutine */ int dlarrb_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, doublereal *, integer *, integer *);
 
-     integer oldien, oldncl, wbegin;
 
-     doublereal spdiam;
 
-     integer negcnt;
 
-     extern /* Subroutine */ int dlarrf_(integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     integer oldcls;
 
-     doublereal savgap;
 
-     integer ndepth;
 
-     doublereal ssigma;
 
-     extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     logical usedbs;
 
-     integer iindwk, offset;
 
-     doublereal gaptol;
 
-     integer newcls, oldfst, indwrk, windex, oldlst;
 
-     logical usedrq;
 
-     integer newfst, newftt, parity, windmn, windpl, isupmn, newlst, zusedl;
 
-     doublereal bstres;
 
-     integer newsiz, zusedu, zusedw;
 
-     doublereal nrminv, rqcorr;
 
-     logical tryrqc;
 
-     integer isupmx;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLARRV computes the eigenvectors of the tridiagonal matrix */
 
- /*  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T. */
 
- /*  The input eigenvalues should have been computed by DLARRE. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  VL      (input) DOUBLE PRECISION */
 
- /*  VU      (input) DOUBLE PRECISION */
 
- /*          Lower and upper bounds of the interval that contains the desired */
 
- /*          eigenvalues. VL < VU. Needed to compute gaps on the left or right */
 
- /*          end of the extremal eigenvalues in the desired RANGE. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the N diagonal elements of the diagonal matrix D. */
 
- /*          On exit, D may be overwritten. */
 
- /*  L       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the (N-1) subdiagonal elements of the unit */
 
- /*          bidiagonal matrix L are in elements 1 to N-1 of L */
 
- /*          (if the matrix is not splitted.) At the end of each block */
 
- /*          is stored the corresponding shift as given by DLARRE. */
 
- /*          On exit, L is overwritten. */
 
- /*  PIVMIN  (in) DOUBLE PRECISION */
 
- /*          The minimum pivot allowed in the Sturm sequence. */
 
- /*  ISPLIT  (input) INTEGER array, dimension (N) */
 
- /*          The splitting points, at which T breaks up into blocks. */
 
- /*          The first block consists of rows/columns 1 to */
 
- /*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
 
- /*          through ISPLIT( 2 ), etc. */
 
- /*  M       (input) INTEGER */
 
- /*          The total number of input eigenvalues.  0 <= M <= N. */
 
- /*  DOL     (input) INTEGER */
 
- /*  DOU     (input) INTEGER */
 
- /*          If the user wants to compute only selected eigenvectors from all */
 
- /*          the eigenvalues supplied, he can specify an index range DOL:DOU. */
 
- /*          Or else the setting DOL=1, DOU=M should be applied. */
 
- /*          Note that DOL and DOU refer to the order in which the eigenvalues */
 
- /*          are stored in W. */
 
- /*          If the user wants to compute only selected eigenpairs, then */
 
- /*          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */
 
- /*          computed eigenvectors. All other columns of Z are set to zero. */
 
- /*  MINRGP  (input) DOUBLE PRECISION */
 
- /*  RTOL1   (input) DOUBLE PRECISION */
 
- /*  RTOL2   (input) DOUBLE PRECISION */
 
- /*           Parameters for bisection. */
 
- /*           An interval [LEFT,RIGHT] has converged if */
 
- /*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 
- /*  W       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The first M elements of W contain the APPROXIMATE eigenvalues for */
 
- /*          which eigenvectors are to be computed.  The eigenvalues */
 
- /*          should be grouped by split-off block and ordered from */
 
- /*          smallest to largest within the block ( The output array */
 
- /*          W from DLARRE is expected here ). Furthermore, they are with */
 
- /*          respect to the shift of the corresponding root representation */
 
- /*          for their block. On exit, W holds the eigenvalues of the */
 
- /*          UNshifted matrix. */
 
- /*  WERR    (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The first M elements contain the semiwidth of the uncertainty */
 
- /*          interval of the corresponding eigenvalue in W */
 
- /*  WGAP    (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The separation from the right neighbor eigenvalue in W. */
 
- /*  IBLOCK  (input) INTEGER array, dimension (N) */
 
- /*          The indices of the blocks (submatrices) associated with the */
 
- /*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
 
- /*          W(i) belongs to the first block from the top, =2 if W(i) */
 
- /*          belongs to the second block, etc. */
 
- /*  INDEXW  (input) INTEGER array, dimension (N) */
 
- /*          The indices of the eigenvalues within each block (submatrix); */
 
- /*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
 
- /*          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */
 
- /*  GERS    (input) DOUBLE PRECISION array, dimension (2*N) */
 
- /*          The N Gerschgorin intervals (the i-th Gerschgorin interval */
 
- /*          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */
 
- /*          be computed from the original UNshifted matrix. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
 
- /*          If INFO = 0, the first M columns of Z contain the */
 
- /*          orthonormal eigenvectors of the matrix T */
 
- /*          corresponding to the input eigenvalues, with the i-th */
 
- /*          column of Z holding the eigenvector associated with W(i). */
 
- /*          Note: the user must ensure that at least max(1,M) columns are */
 
- /*          supplied in the array Z. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
 
- /*          The support of the eigenvectors in Z, i.e., the indices */
 
- /*          indicating the nonzero elements in Z. The I-th eigenvector */
 
- /*          is nonzero only in elements ISUPPZ( 2*I-1 ) through */
 
- /*          ISUPPZ( 2*I ). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (12*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (7*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          > 0:  A problem occured in DLARRV. */
 
- /*          < 0:  One of the called subroutines signaled an internal problem. */
 
- /*                Needs inspection of the corresponding parameter IINFO */
 
- /*                for further information. */
 
- /*          =-1:  Problem in DLARRB when refining a child's eigenvalues. */
 
- /*          =-2:  Problem in DLARRF when computing the RRR of a child. */
 
- /*                When a child is inside a tight cluster, it can be difficult */
 
- /*                to find an RRR. A partial remedy from the user's point of */
 
- /*                view is to make the parameter MINRGP smaller and recompile. */
 
- /*                However, as the orthogonality of the computed vectors is */
 
- /*                proportional to 1/MINRGP, the user should be aware that */
 
- /*                he might be trading in precision when he decreases MINRGP. */
 
- /*          =-3:  Problem in DLARRB when refining a single eigenvalue */
 
- /*                after the Rayleigh correction was rejected. */
 
- /*          = 5:  The Rayleigh Quotient Iteration failed to converge to */
 
- /*                full accuracy in MAXITR steps. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Beresford Parlett, University of California, Berkeley, USA */
 
- /*     Jim Demmel, University of California, Berkeley, USA */
 
- /*     Inderjit Dhillon, University of Texas, Austin, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*     Christof Voemel, University of California, Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     .. */
 
- /*     The first N entries of WORK are reserved for the eigenvalues */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --l;
 
-     --isplit;
 
-     --w;
 
-     --werr;
 
-     --wgap;
 
-     --iblock;
 
-     --indexw;
 
-     --gers;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --isuppz;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     indld = *n + 1;
 
-     indlld = (*n << 1) + 1;
 
-     indwrk = *n * 3 + 1;
 
-     minwsize = *n * 12;
 
-     i__1 = minwsize;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	work[i__] = 0.;
 
- /* L5: */
 
-     }
 
- /*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */
 
- /*     factorization used to compute the FP vector */
 
-     iindr = 0;
 
- /*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */
 
- /*     layer and the one above. */
 
-     iindc1 = *n;
 
-     iindc2 = *n << 1;
 
-     iindwk = *n * 3 + 1;
 
-     miniwsize = *n * 7;
 
-     i__1 = miniwsize;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	iwork[i__] = 0;
 
- /* L10: */
 
-     }
 
-     zusedl = 1;
 
-     if (*dol > 1) {
 
- /*        Set lower bound for use of Z */
 
- 	zusedl = *dol - 1;
 
-     }
 
-     zusedu = *m;
 
-     if (*dou < *m) {
 
- /*        Set lower bound for use of Z */
 
- 	zusedu = *dou + 1;
 
-     }
 
- /*     The width of the part of Z that is used */
 
-     zusedw = zusedu - zusedl + 1;
 
-     dlaset_("Full", n, &zusedw, &c_b5, &c_b5, &z__[zusedl * z_dim1 + 1], ldz);
 
-     eps = dlamch_("Precision");
 
-     rqtol = eps * 2.;
 
- /*     Set expert flags for standard code. */
 
-     tryrqc = TRUE_;
 
-     if (*dol == 1 && *dou == *m) {
 
-     } else {
 
- /*        Only selected eigenpairs are computed. Since the other evalues */
 
- /*        are not refined by RQ iteration, bisection has to compute to full */
 
- /*        accuracy. */
 
- 	*rtol1 = eps * 4.;
 
- 	*rtol2 = eps * 4.;
 
-     }
 
- /*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */
 
- /*     desired eigenvalues. The support of the nonzero eigenvector */
 
- /*     entries is contained in the interval IBEGIN:IEND. */
 
- /*     Remark that if k eigenpairs are desired, then the eigenvectors */
 
- /*     are stored in k contiguous columns of Z. */
 
- /*     DONE is the number of eigenvectors already computed */
 
-     done = 0;
 
-     ibegin = 1;
 
-     wbegin = 1;
 
-     i__1 = iblock[*m];
 
-     for (jblk = 1; jblk <= i__1; ++jblk) {
 
- 	iend = isplit[jblk];
 
- 	sigma = l[iend];
 
- /*        Find the eigenvectors of the submatrix indexed IBEGIN */
 
- /*        through IEND. */
 
- 	wend = wbegin - 1;
 
- L15:
 
- 	if (wend < *m) {
 
- 	    if (iblock[wend + 1] == jblk) {
 
- 		++wend;
 
- 		goto L15;
 
- 	    }
 
- 	}
 
- 	if (wend < wbegin) {
 
- 	    ibegin = iend + 1;
 
- 	    goto L170;
 
- 	} else if (wend < *dol || wbegin > *dou) {
 
- 	    ibegin = iend + 1;
 
- 	    wbegin = wend + 1;
 
- 	    goto L170;
 
- 	}
 
- /*        Find local spectral diameter of the block */
 
- 	gl = gers[(ibegin << 1) - 1];
 
- 	gu = gers[ibegin * 2];
 
- 	i__2 = iend;
 
- 	for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
 
- /* Computing MIN */
 
- 	    d__1 = gers[(i__ << 1) - 1];
 
- 	    gl = min(d__1,gl);
 
- /* Computing MAX */
 
- 	    d__1 = gers[i__ * 2];
 
- 	    gu = max(d__1,gu);
 
- /* L20: */
 
- 	}
 
- 	spdiam = gu - gl;
 
- /*        OLDIEN is the last index of the previous block */
 
- 	oldien = ibegin - 1;
 
- /*        Calculate the size of the current block */
 
- 	in = iend - ibegin + 1;
 
- /*        The number of eigenvalues in the current block */
 
- 	im = wend - wbegin + 1;
 
- /*        This is for a 1x1 block */
 
- 	if (ibegin == iend) {
 
- 	    ++done;
 
- 	    z__[ibegin + wbegin * z_dim1] = 1.;
 
- 	    isuppz[(wbegin << 1) - 1] = ibegin;
 
- 	    isuppz[wbegin * 2] = ibegin;
 
- 	    w[wbegin] += sigma;
 
- 	    work[wbegin] = w[wbegin];
 
- 	    ibegin = iend + 1;
 
- 	    ++wbegin;
 
- 	    goto L170;
 
- 	}
 
- /*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */
 
- /*        Note that these can be approximations, in this case, the corresp. */
 
- /*        entries of WERR give the size of the uncertainty interval. */
 
- /*        The eigenvalue approximations will be refined when necessary as */
 
- /*        high relative accuracy is required for the computation of the */
 
- /*        corresponding eigenvectors. */
 
- 	dcopy_(&im, &w[wbegin], &c__1, &work[wbegin], &c__1);
 
- /*        We store in W the eigenvalue approximations w.r.t. the original */
 
- /*        matrix T. */
 
- 	i__2 = im;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    w[wbegin + i__ - 1] += sigma;
 
- /* L30: */
 
- 	}
 
- /*        NDEPTH is the current depth of the representation tree */
 
- 	ndepth = 0;
 
- /*        PARITY is either 1 or 0 */
 
- 	parity = 1;
 
- /*        NCLUS is the number of clusters for the next level of the */
 
- /*        representation tree, we start with NCLUS = 1 for the root */
 
- 	nclus = 1;
 
- 	iwork[iindc1 + 1] = 1;
 
- 	iwork[iindc1 + 2] = im;
 
- /*        IDONE is the number of eigenvectors already computed in the current */
 
- /*        block */
 
- 	idone = 0;
 
- /*        loop while( IDONE.LT.IM ) */
 
- /*        generate the representation tree for the current block and */
 
- /*        compute the eigenvectors */
 
- L40:
 
- 	if (idone < im) {
 
- /*           This is a crude protection against infinitely deep trees */
 
- 	    if (ndepth > *m) {
 
- 		*info = -2;
 
- 		return 0;
 
- 	    }
 
- /*           breadth first processing of the current level of the representation */
 
- /*           tree: OLDNCL = number of clusters on current level */
 
- 	    oldncl = nclus;
 
- /*           reset NCLUS to count the number of child clusters */
 
- 	    nclus = 0;
 
- 	    parity = 1 - parity;
 
- 	    if (parity == 0) {
 
- 		oldcls = iindc1;
 
- 		newcls = iindc2;
 
- 	    } else {
 
- 		oldcls = iindc2;
 
- 		newcls = iindc1;
 
- 	    }
 
- /*           Process the clusters on the current level */
 
- 	    i__2 = oldncl;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		j = oldcls + (i__ << 1);
 
- /*              OLDFST, OLDLST = first, last index of current cluster. */
 
- /*                               cluster indices start with 1 and are relative */
 
- /*                               to WBEGIN when accessing W, WGAP, WERR, Z */
 
- 		oldfst = iwork[j - 1];
 
- 		oldlst = iwork[j];
 
- 		if (ndepth > 0) {
 
- /*                 Retrieve relatively robust representation (RRR) of cluster */
 
- /*                 that has been computed at the previous level */
 
- /*                 The RRR is stored in Z and overwritten once the eigenvectors */
 
- /*                 have been computed or when the cluster is refined */
 
- 		    if (*dol == 1 && *dou == *m) {
 
- /*                    Get representation from location of the leftmost evalue */
 
- /*                    of the cluster */
 
- 			j = wbegin + oldfst - 1;
 
- 		    } else {
 
- 			if (wbegin + oldfst - 1 < *dol) {
 
- /*                       Get representation from the left end of Z array */
 
- 			    j = *dol - 1;
 
- 			} else if (wbegin + oldfst - 1 > *dou) {
 
- /*                       Get representation from the right end of Z array */
 
- 			    j = *dou;
 
- 			} else {
 
- 			    j = wbegin + oldfst - 1;
 
- 			}
 
- 		    }
 
- 		    dcopy_(&in, &z__[ibegin + j * z_dim1], &c__1, &d__[ibegin]
 
- , &c__1);
 
- 		    i__3 = in - 1;
 
- 		    dcopy_(&i__3, &z__[ibegin + (j + 1) * z_dim1], &c__1, &l[
 
- 			    ibegin], &c__1);
 
- 		    sigma = z__[iend + (j + 1) * z_dim1];
 
- /*                 Set the corresponding entries in Z to zero */
 
- 		    dlaset_("Full", &in, &c__2, &c_b5, &c_b5, &z__[ibegin + j 
 
- 			    * z_dim1], ldz);
 
- 		}
 
- /*              Compute DL and DLL of current RRR */
 
- 		i__3 = iend - 1;
 
- 		for (j = ibegin; j <= i__3; ++j) {
 
- 		    tmp = d__[j] * l[j];
 
- 		    work[indld - 1 + j] = tmp;
 
- 		    work[indlld - 1 + j] = tmp * l[j];
 
- /* L50: */
 
- 		}
 
- 		if (ndepth > 0) {
 
- /*                 P and Q are index of the first and last eigenvalue to compute */
 
- /*                 within the current block */
 
- 		    p = indexw[wbegin - 1 + oldfst];
 
- 		    q = indexw[wbegin - 1 + oldlst];
 
- /*                 Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET */
 
- /*                 thru' Q-OFFSET elements of these arrays are to be used. */
 
- /*                  OFFSET = P-OLDFST */
 
- 		    offset = indexw[wbegin] - 1;
 
- /*                 perform limited bisection (if necessary) to get approximate */
 
- /*                 eigenvalues to the precision needed. */
 
- 		    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p, 
 
- 			     &q, rtol1, rtol2, &offset, &work[wbegin], &wgap[
 
- 			    wbegin], &werr[wbegin], &work[indwrk], &iwork[
 
- 			    iindwk], pivmin, &spdiam, &in, &iinfo);
 
- 		    if (iinfo != 0) {
 
- 			*info = -1;
 
- 			return 0;
 
- 		    }
 
- /*                 We also recompute the extremal gaps. W holds all eigenvalues */
 
- /*                 of the unshifted matrix and must be used for computation */
 
- /*                 of WGAP, the entries of WORK might stem from RRRs with */
 
- /*                 different shifts. The gaps from WBEGIN-1+OLDFST to */
 
- /*                 WBEGIN-1+OLDLST are correctly computed in DLARRB. */
 
- /*                 However, we only allow the gaps to become greater since */
 
- /*                 this is what should happen when we decrease WERR */
 
- 		    if (oldfst > 1) {
 
- /* Computing MAX */
 
- 			d__1 = wgap[wbegin + oldfst - 2], d__2 = w[wbegin + 
 
- 				oldfst - 1] - werr[wbegin + oldfst - 1] - w[
 
- 				wbegin + oldfst - 2] - werr[wbegin + oldfst - 
 
- 				2];
 
- 			wgap[wbegin + oldfst - 2] = max(d__1,d__2);
 
- 		    }
 
- 		    if (wbegin + oldlst - 1 < wend) {
 
- /* Computing MAX */
 
- 			d__1 = wgap[wbegin + oldlst - 1], d__2 = w[wbegin + 
 
- 				oldlst] - werr[wbegin + oldlst] - w[wbegin + 
 
- 				oldlst - 1] - werr[wbegin + oldlst - 1];
 
- 			wgap[wbegin + oldlst - 1] = max(d__1,d__2);
 
- 		    }
 
- /*                 Each time the eigenvalues in WORK get refined, we store */
 
- /*                 the newly found approximation with all shifts applied in W */
 
- 		    i__3 = oldlst;
 
- 		    for (j = oldfst; j <= i__3; ++j) {
 
- 			w[wbegin + j - 1] = work[wbegin + j - 1] + sigma;
 
- /* L53: */
 
- 		    }
 
- 		}
 
- /*              Process the current node. */
 
- 		newfst = oldfst;
 
- 		i__3 = oldlst;
 
- 		for (j = oldfst; j <= i__3; ++j) {
 
- 		    if (j == oldlst) {
 
- /*                    we are at the right end of the cluster, this is also the */
 
- /*                    boundary of the child cluster */
 
- 			newlst = j;
 
- 		    } else if (wgap[wbegin + j - 1] >= *minrgp * (d__1 = work[
 
- 			    wbegin + j - 1], abs(d__1))) {
 
- /*                    the right relative gap is big enough, the child cluster */
 
- /*                    (NEWFST,..,NEWLST) is well separated from the following */
 
- 			newlst = j;
 
- 		    } else {
 
- /*                    inside a child cluster, the relative gap is not */
 
- /*                    big enough. */
 
- 			goto L140;
 
- 		    }
 
- /*                 Compute size of child cluster found */
 
- 		    newsiz = newlst - newfst + 1;
 
- /*                 NEWFTT is the place in Z where the new RRR or the computed */
 
- /*                 eigenvector is to be stored */
 
- 		    if (*dol == 1 && *dou == *m) {
 
- /*                    Store representation at location of the leftmost evalue */
 
- /*                    of the cluster */
 
- 			newftt = wbegin + newfst - 1;
 
- 		    } else {
 
- 			if (wbegin + newfst - 1 < *dol) {
 
- /*                       Store representation at the left end of Z array */
 
- 			    newftt = *dol - 1;
 
- 			} else if (wbegin + newfst - 1 > *dou) {
 
- /*                       Store representation at the right end of Z array */
 
- 			    newftt = *dou;
 
- 			} else {
 
- 			    newftt = wbegin + newfst - 1;
 
- 			}
 
- 		    }
 
- 		    if (newsiz > 1) {
 
- /*                    Current child is not a singleton but a cluster. */
 
- /*                    Compute and store new representation of child. */
 
- /*                    Compute left and right cluster gap. */
 
- /*                    LGAP and RGAP are not computed from WORK because */
 
- /*                    the eigenvalue approximations may stem from RRRs */
 
- /*                    different shifts. However, W hold all eigenvalues */
 
- /*                    of the unshifted matrix. Still, the entries in WGAP */
 
- /*                    have to be computed from WORK since the entries */
 
- /*                    in W might be of the same order so that gaps are not */
 
- /*                    exhibited correctly for very close eigenvalues. */
 
- 			if (newfst == 1) {
 
- /* Computing MAX */
 
- 			    d__1 = 0., d__2 = w[wbegin] - werr[wbegin] - *vl;
 
- 			    lgap = max(d__1,d__2);
 
- 			} else {
 
- 			    lgap = wgap[wbegin + newfst - 2];
 
- 			}
 
- 			rgap = wgap[wbegin + newlst - 1];
 
- /*                    Compute left- and rightmost eigenvalue of child */
 
- /*                    to high precision in order to shift as close */
 
- /*                    as possible and obtain as large relative gaps */
 
- /*                    as possible */
 
- 			for (k = 1; k <= 2; ++k) {
 
- 			    if (k == 1) {
 
- 				p = indexw[wbegin - 1 + newfst];
 
- 			    } else {
 
- 				p = indexw[wbegin - 1 + newlst];
 
- 			    }
 
- 			    offset = indexw[wbegin] - 1;
 
- 			    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
 
- 				    - 1], &p, &p, &rqtol, &rqtol, &offset, &
 
- 				    work[wbegin], &wgap[wbegin], &werr[wbegin]
 
- , &work[indwrk], &iwork[iindwk], pivmin, &
 
- 				    spdiam, &in, &iinfo);
 
- /* L55: */
 
- 			}
 
- 			if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1 
 
- 				> *dou) {
 
- /*                       if the cluster contains no desired eigenvalues */
 
- /*                       skip the computation of that branch of the rep. tree */
 
- /*                       We could skip before the refinement of the extremal */
 
- /*                       eigenvalues of the child, but then the representation */
 
- /*                       tree could be different from the one when nothing is */
 
- /*                       skipped. For this reason we skip at this place. */
 
- 			    idone = idone + newlst - newfst + 1;
 
- 			    goto L139;
 
- 			}
 
- /*                    Compute RRR of child cluster. */
 
- /*                    Note that the new RRR is stored in Z */
 
- /*                    DLARRF needs LWORK = 2*N */
 
- 			dlarrf_(&in, &d__[ibegin], &l[ibegin], &work[indld + 
 
- 				ibegin - 1], &newfst, &newlst, &work[wbegin], 
 
- 				&wgap[wbegin], &werr[wbegin], &spdiam, &lgap, 
 
- 				&rgap, pivmin, &tau, &z__[ibegin + newftt * 
 
- 				z_dim1], &z__[ibegin + (newftt + 1) * z_dim1], 
 
- 				 &work[indwrk], &iinfo);
 
- 			if (iinfo == 0) {
 
- /*                       a new RRR for the cluster was found by DLARRF */
 
- /*                       update shift and store it */
 
- 			    ssigma = sigma + tau;
 
- 			    z__[iend + (newftt + 1) * z_dim1] = ssigma;
 
- /*                       WORK() are the midpoints and WERR() the semi-width */
 
- /*                       Note that the entries in W are unchanged. */
 
- 			    i__4 = newlst;
 
- 			    for (k = newfst; k <= i__4; ++k) {
 
- 				fudge = eps * 3. * (d__1 = work[wbegin + k - 
 
- 					1], abs(d__1));
 
- 				work[wbegin + k - 1] -= tau;
 
- 				fudge += eps * 4. * (d__1 = work[wbegin + k - 
 
- 					1], abs(d__1));
 
- /*                          Fudge errors */
 
- 				werr[wbegin + k - 1] += fudge;
 
- /*                          Gaps are not fudged. Provided that WERR is small */
 
- /*                          when eigenvalues are close, a zero gap indicates */
 
- /*                          that a new representation is needed for resolving */
 
- /*                          the cluster. A fudge could lead to a wrong decision */
 
- /*                          of judging eigenvalues 'separated' which in */
 
- /*                          reality are not. This could have a negative impact */
 
- /*                          on the orthogonality of the computed eigenvectors. */
 
- /* L116: */
 
- 			    }
 
- 			    ++nclus;
 
- 			    k = newcls + (nclus << 1);
 
- 			    iwork[k - 1] = newfst;
 
- 			    iwork[k] = newlst;
 
- 			} else {
 
- 			    *info = -2;
 
- 			    return 0;
 
- 			}
 
- 		    } else {
 
- /*                    Compute eigenvector of singleton */
 
- 			iter = 0;
 
- 			tol = log((doublereal) in) * 4. * eps;
 
- 			k = newfst;
 
- 			windex = wbegin + k - 1;
 
- /* Computing MAX */
 
- 			i__4 = windex - 1;
 
- 			windmn = max(i__4,1);
 
- /* Computing MIN */
 
- 			i__4 = windex + 1;
 
- 			windpl = min(i__4,*m);
 
- 			lambda = work[windex];
 
- 			++done;
 
- /*                    Check if eigenvector computation is to be skipped */
 
- 			if (windex < *dol || windex > *dou) {
 
- 			    eskip = TRUE_;
 
- 			    goto L125;
 
- 			} else {
 
- 			    eskip = FALSE_;
 
- 			}
 
- 			left = work[windex] - werr[windex];
 
- 			right = work[windex] + werr[windex];
 
- 			indeig = indexw[windex];
 
- /*                    Note that since we compute the eigenpairs for a child, */
 
- /*                    all eigenvalue approximations are w.r.t the same shift. */
 
- /*                    In this case, the entries in WORK should be used for */
 
- /*                    computing the gaps since they exhibit even very small */
 
- /*                    differences in the eigenvalues, as opposed to the */
 
- /*                    entries in W which might "look" the same. */
 
- 			if (k == 1) {
 
- /*                       In the case RANGE='I' and with not much initial */
 
- /*                       accuracy in LAMBDA and VL, the formula */
 
- /*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */
 
- /*                       can lead to an overestimation of the left gap and */
 
- /*                       thus to inadequately early RQI 'convergence'. */
 
- /*                       Prevent this by forcing a small left gap. */
 
- /* Computing MAX */
 
- 			    d__1 = abs(left), d__2 = abs(right);
 
- 			    lgap = eps * max(d__1,d__2);
 
- 			} else {
 
- 			    lgap = wgap[windmn];
 
- 			}
 
- 			if (k == im) {
 
- /*                       In the case RANGE='I' and with not much initial */
 
- /*                       accuracy in LAMBDA and VU, the formula */
 
- /*                       can lead to an overestimation of the right gap and */
 
- /*                       thus to inadequately early RQI 'convergence'. */
 
- /*                       Prevent this by forcing a small right gap. */
 
- /* Computing MAX */
 
- 			    d__1 = abs(left), d__2 = abs(right);
 
- 			    rgap = eps * max(d__1,d__2);
 
- 			} else {
 
- 			    rgap = wgap[windex];
 
- 			}
 
- 			gap = min(lgap,rgap);
 
- 			if (k == 1 || k == im) {
 
- /*                       The eigenvector support can become wrong */
 
- /*                       because significant entries could be cut off due to a */
 
- /*                       large GAPTOL parameter in LAR1V. Prevent this. */
 
- 			    gaptol = 0.;
 
- 			} else {
 
- 			    gaptol = gap * eps;
 
- 			}
 
- 			isupmn = in;
 
- 			isupmx = 1;
 
- /*                    Update WGAP so that it holds the minimum gap */
 
- /*                    to the left or the right. This is crucial in the */
 
- /*                    case where bisection is used to ensure that the */
 
- /*                    eigenvalue is refined up to the required precision. */
 
- /*                    The correct value is restored afterwards. */
 
- 			savgap = wgap[windex];
 
- 			wgap[windex] = gap;
 
- /*                    We want to use the Rayleigh Quotient Correction */
 
- /*                    as often as possible since it converges quadratically */
 
- /*                    when we are close enough to the desired eigenvalue. */
 
- /*                    However, the Rayleigh Quotient can have the wrong sign */
 
- /*                    and lead us away from the desired eigenvalue. In this */
 
- /*                    case, the best we can do is to use bisection. */
 
- 			usedbs = FALSE_;
 
- 			usedrq = FALSE_;
 
- /*                    Bisection is initially turned off unless it is forced */
 
- 			needbs = ! tryrqc;
 
- L120:
 
- /*                    Check if bisection should be used to refine eigenvalue */
 
- 			if (needbs) {
 
- /*                       Take the bisection as new iterate */
 
- 			    usedbs = TRUE_;
 
- 			    itmp1 = iwork[iindr + windex];
 
- 			    offset = indexw[wbegin] - 1;
 
- 			    d__1 = eps * 2.;
 
- 			    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
 
- 				    - 1], &indeig, &indeig, &c_b5, &d__1, &
 
- 				    offset, &work[wbegin], &wgap[wbegin], &
 
- 				    werr[wbegin], &work[indwrk], &iwork[
 
- 				    iindwk], pivmin, &spdiam, &itmp1, &iinfo);
 
- 			    if (iinfo != 0) {
 
- 				*info = -3;
 
- 				return 0;
 
- 			    }
 
- 			    lambda = work[windex];
 
- /*                       Reset twist index from inaccurate LAMBDA to */
 
- /*                       force computation of true MINGMA */
 
- 			    iwork[iindr + windex] = 0;
 
- 			}
 
- /*                    Given LAMBDA, compute the eigenvector. */
 
- 			L__1 = ! usedbs;
 
- 			dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &l[
 
- 				ibegin], &work[indld + ibegin - 1], &work[
 
- 				indlld + ibegin - 1], pivmin, &gaptol, &z__[
 
- 				ibegin + windex * z_dim1], &L__1, &negcnt, &
 
- 				ztz, &mingma, &iwork[iindr + windex], &isuppz[
 
- 				(windex << 1) - 1], &nrminv, &resid, &rqcorr, 
 
- 				&work[indwrk]);
 
- 			if (iter == 0) {
 
- 			    bstres = resid;
 
- 			    bstw = lambda;
 
- 			} else if (resid < bstres) {
 
- 			    bstres = resid;
 
- 			    bstw = lambda;
 
- 			}
 
- /* Computing MIN */
 
- 			i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1];
 
- 			isupmn = min(i__4,i__5);
 
- /* Computing MAX */
 
- 			i__4 = isupmx, i__5 = isuppz[windex * 2];
 
- 			isupmx = max(i__4,i__5);
 
- 			++iter;
 
- /*                    sin alpha <= |resid|/gap */
 
- /*                    Note that both the residual and the gap are */
 
- /*                    proportional to the matrix, so ||T|| doesn't play */
 
- /*                    a role in the quotient */
 
- /*                    Convergence test for Rayleigh-Quotient iteration */
 
- /*                    (omitted when Bisection has been used) */
 
- 			if (resid > tol * gap && abs(rqcorr) > rqtol * abs(
 
- 				lambda) && ! usedbs) {
 
- /*                       We need to check that the RQCORR update doesn't */
 
- /*                       move the eigenvalue away from the desired one and */
 
- /*                       towards a neighbor. -> protection with bisection */
 
- 			    if (indeig <= negcnt) {
 
- /*                          The wanted eigenvalue lies to the left */
 
- 				sgndef = -1.;
 
- 			    } else {
 
- /*                          The wanted eigenvalue lies to the right */
 
- 				sgndef = 1.;
 
- 			    }
 
- /*                       We only use the RQCORR if it improves the */
 
- /*                       the iterate reasonably. */
 
- 			    if (rqcorr * sgndef >= 0. && lambda + rqcorr <= 
 
- 				    right && lambda + rqcorr >= left) {
 
- 				usedrq = TRUE_;
 
- /*                          Store new midpoint of bisection interval in WORK */
 
- 				if (sgndef == 1.) {
 
- /*                             The current LAMBDA is on the left of the true */
 
- /*                             eigenvalue */
 
- 				    left = lambda;
 
- /*                             We prefer to assume that the error estimate */
 
- /*                             is correct. We could make the interval not */
 
- /*                             as a bracket but to be modified if the RQCORR */
 
- /*                             chooses to. In this case, the RIGHT side should */
 
- /*                             be modified as follows: */
 
- /*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */
 
- 				} else {
 
- /*                             The current LAMBDA is on the right of the true */
 
- /*                             eigenvalue */
 
- 				    right = lambda;
 
- /*                             See comment about assuming the error estimate is */
 
- /*                             correct above. */
 
- /*                              LEFT = MIN(LEFT, LAMBDA + RQCORR) */
 
- 				}
 
- 				work[windex] = (right + left) * .5;
 
- /*                          Take RQCORR since it has the correct sign and */
 
- /*                          improves the iterate reasonably */
 
- 				lambda += rqcorr;
 
- /*                          Update width of error interval */
 
- 				werr[windex] = (right - left) * .5;
 
- 			    } else {
 
- 				needbs = TRUE_;
 
- 			    }
 
- 			    if (right - left < rqtol * abs(lambda)) {
 
- /*                             The eigenvalue is computed to bisection accuracy */
 
- /*                             compute eigenvector and stop */
 
- 				usedbs = TRUE_;
 
- 				goto L120;
 
- 			    } else if (iter < 10) {
 
- 				goto L120;
 
- 			    } else if (iter == 10) {
 
- 				needbs = TRUE_;
 
- 				goto L120;
 
- 			    } else {
 
- 				*info = 5;
 
- 				return 0;
 
- 			    }
 
- 			} else {
 
- 			    stp2ii = FALSE_;
 
- 			    if (usedrq && usedbs && bstres <= resid) {
 
- 				lambda = bstw;
 
- 				stp2ii = TRUE_;
 
- 			    }
 
- 			    if (stp2ii) {
 
- /*                          improve error angle by second step */
 
- 				L__1 = ! usedbs;
 
- 				dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin]
 
- , &l[ibegin], &work[indld + ibegin - 
 
- 					1], &work[indlld + ibegin - 1], 
 
- 					pivmin, &gaptol, &z__[ibegin + windex 
 
- 					* z_dim1], &L__1, &negcnt, &ztz, &
 
- 					mingma, &iwork[iindr + windex], &
 
- 					isuppz[(windex << 1) - 1], &nrminv, &
 
- 					resid, &rqcorr, &work[indwrk]);
 
- 			    }
 
- 			    work[windex] = lambda;
 
- 			}
 
- /*                    Compute FP-vector support w.r.t. whole matrix */
 
- 			isuppz[(windex << 1) - 1] += oldien;
 
- 			isuppz[windex * 2] += oldien;
 
- 			zfrom = isuppz[(windex << 1) - 1];
 
- 			zto = isuppz[windex * 2];
 
- 			isupmn += oldien;
 
- 			isupmx += oldien;
 
- /*                    Ensure vector is ok if support in the RQI has changed */
 
- 			if (isupmn < zfrom) {
 
- 			    i__4 = zfrom - 1;
 
- 			    for (ii = isupmn; ii <= i__4; ++ii) {
 
- 				z__[ii + windex * z_dim1] = 0.;
 
- /* L122: */
 
- 			    }
 
- 			}
 
- 			if (isupmx > zto) {
 
- 			    i__4 = isupmx;
 
- 			    for (ii = zto + 1; ii <= i__4; ++ii) {
 
- 				z__[ii + windex * z_dim1] = 0.;
 
- /* L123: */
 
- 			    }
 
- 			}
 
- 			i__4 = zto - zfrom + 1;
 
- 			dscal_(&i__4, &nrminv, &z__[zfrom + windex * z_dim1], 
 
- 				&c__1);
 
- L125:
 
- /*                    Update W */
 
- 			w[windex] = lambda + sigma;
 
- /*                    Recompute the gaps on the left and right */
 
- /*                    But only allow them to become larger and not */
 
- /*                    smaller (which can only happen through "bad" */
 
- /*                    cancellation and doesn't reflect the theory */
 
- /*                    where the initial gaps are underestimated due */
 
- /*                    to WERR being too crude.) */
 
- 			if (! eskip) {
 
- 			    if (k > 1) {
 
- /* Computing MAX */
 
- 				d__1 = wgap[windmn], d__2 = w[windex] - werr[
 
- 					windex] - w[windmn] - werr[windmn];
 
- 				wgap[windmn] = max(d__1,d__2);
 
- 			    }
 
- 			    if (windex < wend) {
 
- /* Computing MAX */
 
- 				d__1 = savgap, d__2 = w[windpl] - werr[windpl]
 
- 					 - w[windex] - werr[windex];
 
- 				wgap[windex] = max(d__1,d__2);
 
- 			    }
 
- 			}
 
- 			++idone;
 
- 		    }
 
- /*                 here ends the code for the current child */
 
- L139:
 
- /*                 Proceed to any remaining child nodes */
 
- 		    newfst = j + 1;
 
- L140:
 
- 		    ;
 
- 		}
 
- /* L150: */
 
- 	    }
 
- 	    ++ndepth;
 
- 	    goto L40;
 
- 	}
 
- 	ibegin = iend + 1;
 
- 	wbegin = wend + 1;
 
- L170:
 
- 	;
 
-     }
 
-     return 0;
 
- /*     End of DLARRV */
 
- } /* dlarrv_ */
 
 
  |