| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424 | 
							- /* dlarrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dlarrf_(integer *n, doublereal *d__, doublereal *l, 
 
- 	doublereal *ld, integer *clstrt, integer *clend, doublereal *w, 
 
- 	doublereal *wgap, doublereal *werr, doublereal *spdiam, doublereal *
 
- 	clgapl, doublereal *clgapr, doublereal *pivmin, doublereal *sigma, 
 
- 	doublereal *dplus, doublereal *lplus, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal s, bestshift, smlgrowth, eps, tmp, max1, max2, rrr1, rrr2, 
 
- 	    znm2, growthbound, fail, fact, oldp;
 
-     integer indx;
 
-     doublereal prod;
 
-     integer ktry;
 
-     doublereal fail2, avgap, ldmax, rdmax;
 
-     integer shift;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical dorrr1;
 
-     extern doublereal dlamch_(char *);
 
-     doublereal ldelta;
 
-     logical nofail;
 
-     doublereal mingap, lsigma, rdelta;
 
-     extern logical disnan_(doublereal *);
 
-     logical forcer;
 
-     doublereal rsigma, clwdth;
 
-     logical sawnan1, sawnan2, tryrrr1;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /* * */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  Given the initial representation L D L^T and its cluster of close */
 
- /*  eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... */
 
- /*  W( CLEND ), DLARRF finds a new relatively robust representation */
 
- /*  L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the */
 
- /*  eigenvalues of L(+) D(+) L(+)^T is relatively isolated. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix (subblock, if the matrix splitted). */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The N diagonal elements of the diagonal matrix D. */
 
- /*  L       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (N-1) subdiagonal elements of the unit bidiagonal */
 
- /*          matrix L. */
 
- /*  LD      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (N-1) elements L(i)*D(i). */
 
- /*  CLSTRT  (input) INTEGER */
 
- /*          The index of the first eigenvalue in the cluster. */
 
- /*  CLEND   (input) INTEGER */
 
- /*          The index of the last eigenvalue in the cluster. */
 
- /*  W       (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
 
- /*          The eigenvalue APPROXIMATIONS of L D L^T in ascending order. */
 
- /*          W( CLSTRT ) through W( CLEND ) form the cluster of relatively */
 
- /*          close eigenalues. */
 
- /*  WGAP    (input/output) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
 
- /*          The separation from the right neighbor eigenvalue in W. */
 
- /*  WERR    (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
 
- /*          WERR contain the semiwidth of the uncertainty */
 
- /*          interval of the corresponding eigenvalue APPROXIMATION in W */
 
- /*  SPDIAM (input) estimate of the spectral diameter obtained from the */
 
- /*          Gerschgorin intervals */
 
- /*  CLGAPL, CLGAPR (input) absolute gap on each end of the cluster. */
 
- /*          Set by the calling routine to protect against shifts too close */
 
- /*          to eigenvalues outside the cluster. */
 
- /*  PIVMIN  (input) DOUBLE PRECISION */
 
- /*          The minimum pivot allowed in the Sturm sequence. */
 
- /*  SIGMA   (output) DOUBLE PRECISION */
 
- /*          The shift used to form L(+) D(+) L(+)^T. */
 
- /*  DPLUS   (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The N diagonal elements of the diagonal matrix D(+). */
 
- /*  LPLUS   (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The first (N-1) elements of LPLUS contain the subdiagonal */
 
- /*          elements of the unit bidiagonal matrix L(+). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*          Workspace. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Beresford Parlett, University of California, Berkeley, USA */
 
- /*     Jim Demmel, University of California, Berkeley, USA */
 
- /*     Inderjit Dhillon, University of Texas, Austin, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*     Christof Voemel, University of California, Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --lplus;
 
-     --dplus;
 
-     --werr;
 
-     --wgap;
 
-     --w;
 
-     --ld;
 
-     --l;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     fact = 2.;
 
-     eps = dlamch_("Precision");
 
-     shift = 0;
 
-     forcer = FALSE_;
 
- /*     Note that we cannot guarantee that for any of the shifts tried, */
 
- /*     the factorization has a small or even moderate element growth. */
 
- /*     There could be Ritz values at both ends of the cluster and despite */
 
- /*     backing off, there are examples where all factorizations tried */
 
- /*     (in IEEE mode, allowing zero pivots & infinities) have INFINITE */
 
- /*     element growth. */
 
- /*     For this reason, we should use PIVMIN in this subroutine so that at */
 
- /*     least the L D L^T factorization exists. It can be checked afterwards */
 
- /*     whether the element growth caused bad residuals/orthogonality. */
 
- /*     Decide whether the code should accept the best among all */
 
- /*     representations despite large element growth or signal INFO=1 */
 
-     nofail = TRUE_;
 
- /*     Compute the average gap length of the cluster */
 
-     clwdth = (d__1 = w[*clend] - w[*clstrt], abs(d__1)) + werr[*clend] + werr[
 
- 	    *clstrt];
 
-     avgap = clwdth / (doublereal) (*clend - *clstrt);
 
-     mingap = min(*clgapl,*clgapr);
 
- /*     Initial values for shifts to both ends of cluster */
 
- /* Computing MIN */
 
-     d__1 = w[*clstrt], d__2 = w[*clend];
 
-     lsigma = min(d__1,d__2) - werr[*clstrt];
 
- /* Computing MAX */
 
-     d__1 = w[*clstrt], d__2 = w[*clend];
 
-     rsigma = max(d__1,d__2) + werr[*clend];
 
- /*     Use a small fudge to make sure that we really shift to the outside */
 
-     lsigma -= abs(lsigma) * 4. * eps;
 
-     rsigma += abs(rsigma) * 4. * eps;
 
- /*     Compute upper bounds for how much to back off the initial shifts */
 
-     ldmax = mingap * .25 + *pivmin * 2.;
 
-     rdmax = mingap * .25 + *pivmin * 2.;
 
- /* Computing MAX */
 
-     d__1 = avgap, d__2 = wgap[*clstrt];
 
-     ldelta = max(d__1,d__2) / fact;
 
- /* Computing MAX */
 
-     d__1 = avgap, d__2 = wgap[*clend - 1];
 
-     rdelta = max(d__1,d__2) / fact;
 
- /*     Initialize the record of the best representation found */
 
-     s = dlamch_("S");
 
-     smlgrowth = 1. / s;
 
-     fail = (doublereal) (*n - 1) * mingap / (*spdiam * eps);
 
-     fail2 = (doublereal) (*n - 1) * mingap / (*spdiam * sqrt(eps));
 
-     bestshift = lsigma;
 
- /*     while (KTRY <= KTRYMAX) */
 
-     ktry = 0;
 
-     growthbound = *spdiam * 8.;
 
- L5:
 
-     sawnan1 = FALSE_;
 
-     sawnan2 = FALSE_;
 
- /*     Ensure that we do not back off too much of the initial shifts */
 
-     ldelta = min(ldmax,ldelta);
 
-     rdelta = min(rdmax,rdelta);
 
- /*     Compute the element growth when shifting to both ends of the cluster */
 
- /*     accept the shift if there is no element growth at one of the two ends */
 
- /*     Left end */
 
-     s = -lsigma;
 
-     dplus[1] = d__[1] + s;
 
-     if (abs(dplus[1]) < *pivmin) {
 
- 	dplus[1] = -(*pivmin);
 
- /*        Need to set SAWNAN1 because refined RRR test should not be used */
 
- /*        in this case */
 
- 	sawnan1 = TRUE_;
 
-     }
 
-     max1 = abs(dplus[1]);
 
-     i__1 = *n - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	lplus[i__] = ld[i__] / dplus[i__];
 
- 	s = s * lplus[i__] * l[i__] - lsigma;
 
- 	dplus[i__ + 1] = d__[i__ + 1] + s;
 
- 	if ((d__1 = dplus[i__ + 1], abs(d__1)) < *pivmin) {
 
- 	    dplus[i__ + 1] = -(*pivmin);
 
- /*           Need to set SAWNAN1 because refined RRR test should not be used */
 
- /*           in this case */
 
- 	    sawnan1 = TRUE_;
 
- 	}
 
- /* Computing MAX */
 
- 	d__2 = max1, d__3 = (d__1 = dplus[i__ + 1], abs(d__1));
 
- 	max1 = max(d__2,d__3);
 
- /* L6: */
 
-     }
 
-     sawnan1 = sawnan1 || disnan_(&max1);
 
-     if (forcer || max1 <= growthbound && ! sawnan1) {
 
- 	*sigma = lsigma;
 
- 	shift = 1;
 
- 	goto L100;
 
-     }
 
- /*     Right end */
 
-     s = -rsigma;
 
-     work[1] = d__[1] + s;
 
-     if (abs(work[1]) < *pivmin) {
 
- 	work[1] = -(*pivmin);
 
- /*        Need to set SAWNAN2 because refined RRR test should not be used */
 
- /*        in this case */
 
- 	sawnan2 = TRUE_;
 
-     }
 
-     max2 = abs(work[1]);
 
-     i__1 = *n - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	work[*n + i__] = ld[i__] / work[i__];
 
- 	s = s * work[*n + i__] * l[i__] - rsigma;
 
- 	work[i__ + 1] = d__[i__ + 1] + s;
 
- 	if ((d__1 = work[i__ + 1], abs(d__1)) < *pivmin) {
 
- 	    work[i__ + 1] = -(*pivmin);
 
- /*           Need to set SAWNAN2 because refined RRR test should not be used */
 
- /*           in this case */
 
- 	    sawnan2 = TRUE_;
 
- 	}
 
- /* Computing MAX */
 
- 	d__2 = max2, d__3 = (d__1 = work[i__ + 1], abs(d__1));
 
- 	max2 = max(d__2,d__3);
 
- /* L7: */
 
-     }
 
-     sawnan2 = sawnan2 || disnan_(&max2);
 
-     if (forcer || max2 <= growthbound && ! sawnan2) {
 
- 	*sigma = rsigma;
 
- 	shift = 2;
 
- 	goto L100;
 
-     }
 
- /*     If we are at this point, both shifts led to too much element growth */
 
- /*     Record the better of the two shifts (provided it didn't lead to NaN) */
 
-     if (sawnan1 && sawnan2) {
 
- /*        both MAX1 and MAX2 are NaN */
 
- 	goto L50;
 
-     } else {
 
- 	if (! sawnan1) {
 
- 	    indx = 1;
 
- 	    if (max1 <= smlgrowth) {
 
- 		smlgrowth = max1;
 
- 		bestshift = lsigma;
 
- 	    }
 
- 	}
 
- 	if (! sawnan2) {
 
- 	    if (sawnan1 || max2 <= max1) {
 
- 		indx = 2;
 
- 	    }
 
- 	    if (max2 <= smlgrowth) {
 
- 		smlgrowth = max2;
 
- 		bestshift = rsigma;
 
- 	    }
 
- 	}
 
-     }
 
- /*     If we are here, both the left and the right shift led to */
 
- /*     element growth. If the element growth is moderate, then */
 
- /*     we may still accept the representation, if it passes a */
 
- /*     refined test for RRR. This test supposes that no NaN occurred. */
 
- /*     Moreover, we use the refined RRR test only for isolated clusters. */
 
-     if (clwdth < mingap / 128. && min(max1,max2) < fail2 && ! sawnan1 && ! 
 
- 	    sawnan2) {
 
- 	dorrr1 = TRUE_;
 
-     } else {
 
- 	dorrr1 = FALSE_;
 
-     }
 
-     tryrrr1 = TRUE_;
 
-     if (tryrrr1 && dorrr1) {
 
- 	if (indx == 1) {
 
- 	    tmp = (d__1 = dplus[*n], abs(d__1));
 
- 	    znm2 = 1.;
 
- 	    prod = 1.;
 
- 	    oldp = 1.;
 
- 	    for (i__ = *n - 1; i__ >= 1; --i__) {
 
- 		if (prod <= eps) {
 
- 		    prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] *
 
- 			     work[*n + i__]) * oldp;
 
- 		} else {
 
- 		    prod *= (d__1 = work[*n + i__], abs(d__1));
 
- 		}
 
- 		oldp = prod;
 
- /* Computing 2nd power */
 
- 		d__1 = prod;
 
- 		znm2 += d__1 * d__1;
 
- /* Computing MAX */
 
- 		d__2 = tmp, d__3 = (d__1 = dplus[i__] * prod, abs(d__1));
 
- 		tmp = max(d__2,d__3);
 
- /* L15: */
 
- 	    }
 
- 	    rrr1 = tmp / (*spdiam * sqrt(znm2));
 
- 	    if (rrr1 <= 8.) {
 
- 		*sigma = lsigma;
 
- 		shift = 1;
 
- 		goto L100;
 
- 	    }
 
- 	} else if (indx == 2) {
 
- 	    tmp = (d__1 = work[*n], abs(d__1));
 
- 	    znm2 = 1.;
 
- 	    prod = 1.;
 
- 	    oldp = 1.;
 
- 	    for (i__ = *n - 1; i__ >= 1; --i__) {
 
- 		if (prod <= eps) {
 
- 		    prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] * 
 
- 			    lplus[i__]) * oldp;
 
- 		} else {
 
- 		    prod *= (d__1 = lplus[i__], abs(d__1));
 
- 		}
 
- 		oldp = prod;
 
- /* Computing 2nd power */
 
- 		d__1 = prod;
 
- 		znm2 += d__1 * d__1;
 
- /* Computing MAX */
 
- 		d__2 = tmp, d__3 = (d__1 = work[i__] * prod, abs(d__1));
 
- 		tmp = max(d__2,d__3);
 
- /* L16: */
 
- 	    }
 
- 	    rrr2 = tmp / (*spdiam * sqrt(znm2));
 
- 	    if (rrr2 <= 8.) {
 
- 		*sigma = rsigma;
 
- 		shift = 2;
 
- 		goto L100;
 
- 	    }
 
- 	}
 
-     }
 
- L50:
 
-     if (ktry < 1) {
 
- /*        If we are here, both shifts failed also the RRR test. */
 
- /*        Back off to the outside */
 
- /* Computing MAX */
 
- 	d__1 = lsigma - ldelta, d__2 = lsigma - ldmax;
 
- 	lsigma = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	d__1 = rsigma + rdelta, d__2 = rsigma + rdmax;
 
- 	rsigma = min(d__1,d__2);
 
- 	ldelta *= 2.;
 
- 	rdelta *= 2.;
 
- 	++ktry;
 
- 	goto L5;
 
-     } else {
 
- /*        None of the representations investigated satisfied our */
 
- /*        criteria. Take the best one we found. */
 
- 	if (smlgrowth < fail || nofail) {
 
- 	    lsigma = bestshift;
 
- 	    rsigma = bestshift;
 
- 	    forcer = TRUE_;
 
- 	    goto L5;
 
- 	} else {
 
- 	    *info = 1;
 
- 	    return 0;
 
- 	}
 
-     }
 
- L100:
 
-     if (shift == 1) {
 
-     } else if (shift == 2) {
 
- /*        store new L and D back into DPLUS, LPLUS */
 
- 	dcopy_(n, &work[1], &c__1, &dplus[1], &c__1);
 
- 	i__1 = *n - 1;
 
- 	dcopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1);
 
-     }
 
-     return 0;
 
- /*     End of DLARRF */
 
- } /* dlarrf_ */
 
 
  |