| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | 
							- /* dlagts.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlagts_(integer *job, integer *n, doublereal *a, 
 
- 	doublereal *b, doublereal *c__, doublereal *d__, integer *in, 
 
- 	doublereal *y, doublereal *tol, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2, d__3, d__4, d__5;
 
-     /* Builtin functions */
 
-     double d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     integer k;
 
-     doublereal ak, eps, temp, pert, absak, sfmin;
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal bignum;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAGTS may be used to solve one of the systems of equations */
 
- /*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y, */
 
- /*  where T is an n by n tridiagonal matrix, for x, following the */
 
- /*  factorization of (T - lambda*I) as */
 
- /*     (T - lambda*I) = P*L*U , */
 
- /*  by routine DLAGTF. The choice of equation to be solved is */
 
- /*  controlled by the argument JOB, and in each case there is an option */
 
- /*  to perturb zero or very small diagonal elements of U, this option */
 
- /*  being intended for use in applications such as inverse iteration. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) INTEGER */
 
- /*          Specifies the job to be performed by DLAGTS as follows: */
 
- /*          =  1: The equations  (T - lambda*I)x = y  are to be solved, */
 
- /*                but diagonal elements of U are not to be perturbed. */
 
- /*          = -1: The equations  (T - lambda*I)x = y  are to be solved */
 
- /*                and, if overflow would otherwise occur, the diagonal */
 
- /*                elements of U are to be perturbed. See argument TOL */
 
- /*                below. */
 
- /*          =  2: The equations  (T - lambda*I)'x = y  are to be solved, */
 
- /*                but diagonal elements of U are not to be perturbed. */
 
- /*          = -2: The equations  (T - lambda*I)'x = y  are to be solved */
 
- /*                and, if overflow would otherwise occur, the diagonal */
 
- /*                elements of U are to be perturbed. See argument TOL */
 
- /*                below. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix T. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, A must contain the diagonal elements of U as */
 
- /*          returned from DLAGTF. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, B must contain the first super-diagonal elements of */
 
- /*          U as returned from DLAGTF. */
 
- /*  C       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, C must contain the sub-diagonal elements of L as */
 
- /*          returned from DLAGTF. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N-2) */
 
- /*          On entry, D must contain the second super-diagonal elements */
 
- /*          of U as returned from DLAGTF. */
 
- /*  IN      (input) INTEGER array, dimension (N) */
 
- /*          On entry, IN must contain details of the matrix P as returned */
 
- /*          from DLAGTF. */
 
- /*  Y       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the right hand side vector y. */
 
- /*          On exit, Y is overwritten by the solution vector x. */
 
- /*  TOL     (input/output) DOUBLE PRECISION */
 
- /*          On entry, with  JOB .lt. 0, TOL should be the minimum */
 
- /*          perturbation to be made to very small diagonal elements of U. */
 
- /*          TOL should normally be chosen as about eps*norm(U), where eps */
 
- /*          is the relative machine precision, but if TOL is supplied as */
 
- /*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ). */
 
- /*          If  JOB .gt. 0  then TOL is not referenced. */
 
- /*          On exit, TOL is changed as described above, only if TOL is */
 
- /*          non-positive on entry. Otherwise TOL is unchanged. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0   : successful exit */
 
- /*          .lt. 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          .gt. 0: overflow would occur when computing the INFO(th) */
 
- /*                  element of the solution vector x. This can only occur */
 
- /*                  when JOB is supplied as positive and either means */
 
- /*                  that a diagonal element of U is very small, or that */
 
- /*                  the elements of the right-hand side vector y are very */
 
- /*                  large. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --y;
 
-     --in;
 
-     --d__;
 
-     --c__;
 
-     --b;
 
-     --a;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (abs(*job) > 2 || *job == 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLAGTS", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     eps = dlamch_("Epsilon");
 
-     sfmin = dlamch_("Safe minimum");
 
-     bignum = 1. / sfmin;
 
-     if (*job < 0) {
 
- 	if (*tol <= 0.) {
 
- 	    *tol = abs(a[1]);
 
- 	    if (*n > 1) {
 
- /* Computing MAX */
 
- 		d__1 = *tol, d__2 = abs(a[2]), d__1 = max(d__1,d__2), d__2 = 
 
- 			abs(b[1]);
 
- 		*tol = max(d__1,d__2);
 
- 	    }
 
- 	    i__1 = *n;
 
- 	    for (k = 3; k <= i__1; ++k) {
 
- /* Computing MAX */
 
- 		d__4 = *tol, d__5 = (d__1 = a[k], abs(d__1)), d__4 = max(d__4,
 
- 			d__5), d__5 = (d__2 = b[k - 1], abs(d__2)), d__4 = 
 
- 			max(d__4,d__5), d__5 = (d__3 = d__[k - 2], abs(d__3));
 
- 		*tol = max(d__4,d__5);
 
- /* L10: */
 
- 	    }
 
- 	    *tol *= eps;
 
- 	    if (*tol == 0.) {
 
- 		*tol = eps;
 
- 	    }
 
- 	}
 
-     }
 
-     if (abs(*job) == 1) {
 
- 	i__1 = *n;
 
- 	for (k = 2; k <= i__1; ++k) {
 
- 	    if (in[k - 1] == 0) {
 
- 		y[k] -= c__[k - 1] * y[k - 1];
 
- 	    } else {
 
- 		temp = y[k - 1];
 
- 		y[k - 1] = y[k];
 
- 		y[k] = temp - c__[k - 1] * y[k];
 
- 	    }
 
- /* L20: */
 
- 	}
 
- 	if (*job == 1) {
 
- 	    for (k = *n; k >= 1; --k) {
 
- 		if (k <= *n - 2) {
 
- 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
 
- 		} else if (k == *n - 1) {
 
- 		    temp = y[k] - b[k] * y[k + 1];
 
- 		} else {
 
- 		    temp = y[k];
 
- 		}
 
- 		ak = a[k];
 
- 		absak = abs(ak);
 
- 		if (absak < 1.) {
 
- 		    if (absak < sfmin) {
 
- 			if (absak == 0. || abs(temp) * sfmin > absak) {
 
- 			    *info = k;
 
- 			    return 0;
 
- 			} else {
 
- 			    temp *= bignum;
 
- 			    ak *= bignum;
 
- 			}
 
- 		    } else if (abs(temp) > absak * bignum) {
 
- 			*info = k;
 
- 			return 0;
 
- 		    }
 
- 		}
 
- 		y[k] = temp / ak;
 
- /* L30: */
 
- 	    }
 
- 	} else {
 
- 	    for (k = *n; k >= 1; --k) {
 
- 		if (k <= *n - 2) {
 
- 		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
 
- 		} else if (k == *n - 1) {
 
- 		    temp = y[k] - b[k] * y[k + 1];
 
- 		} else {
 
- 		    temp = y[k];
 
- 		}
 
- 		ak = a[k];
 
- 		pert = d_sign(tol, &ak);
 
- L40:
 
- 		absak = abs(ak);
 
- 		if (absak < 1.) {
 
- 		    if (absak < sfmin) {
 
- 			if (absak == 0. || abs(temp) * sfmin > absak) {
 
- 			    ak += pert;
 
- 			    pert *= 2;
 
- 			    goto L40;
 
- 			} else {
 
- 			    temp *= bignum;
 
- 			    ak *= bignum;
 
- 			}
 
- 		    } else if (abs(temp) > absak * bignum) {
 
- 			ak += pert;
 
- 			pert *= 2;
 
- 			goto L40;
 
- 		    }
 
- 		}
 
- 		y[k] = temp / ak;
 
- /* L50: */
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        Come to here if  JOB = 2 or -2 */
 
- 	if (*job == 2) {
 
- 	    i__1 = *n;
 
- 	    for (k = 1; k <= i__1; ++k) {
 
- 		if (k >= 3) {
 
- 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
 
- 		} else if (k == 2) {
 
- 		    temp = y[k] - b[k - 1] * y[k - 1];
 
- 		} else {
 
- 		    temp = y[k];
 
- 		}
 
- 		ak = a[k];
 
- 		absak = abs(ak);
 
- 		if (absak < 1.) {
 
- 		    if (absak < sfmin) {
 
- 			if (absak == 0. || abs(temp) * sfmin > absak) {
 
- 			    *info = k;
 
- 			    return 0;
 
- 			} else {
 
- 			    temp *= bignum;
 
- 			    ak *= bignum;
 
- 			}
 
- 		    } else if (abs(temp) > absak * bignum) {
 
- 			*info = k;
 
- 			return 0;
 
- 		    }
 
- 		}
 
- 		y[k] = temp / ak;
 
- /* L60: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (k = 1; k <= i__1; ++k) {
 
- 		if (k >= 3) {
 
- 		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
 
- 		} else if (k == 2) {
 
- 		    temp = y[k] - b[k - 1] * y[k - 1];
 
- 		} else {
 
- 		    temp = y[k];
 
- 		}
 
- 		ak = a[k];
 
- 		pert = d_sign(tol, &ak);
 
- L70:
 
- 		absak = abs(ak);
 
- 		if (absak < 1.) {
 
- 		    if (absak < sfmin) {
 
- 			if (absak == 0. || abs(temp) * sfmin > absak) {
 
- 			    ak += pert;
 
- 			    pert *= 2;
 
- 			    goto L70;
 
- 			} else {
 
- 			    temp *= bignum;
 
- 			    ak *= bignum;
 
- 			}
 
- 		    } else if (abs(temp) > absak * bignum) {
 
- 			ak += pert;
 
- 			pert *= 2;
 
- 			goto L70;
 
- 		    }
 
- 		}
 
- 		y[k] = temp / ak;
 
- /* L80: */
 
- 	    }
 
- 	}
 
- 	for (k = *n; k >= 2; --k) {
 
- 	    if (in[k - 1] == 0) {
 
- 		y[k - 1] -= c__[k - 1] * y[k];
 
- 	    } else {
 
- 		temp = y[k - 1];
 
- 		y[k - 1] = y[k];
 
- 		y[k] = temp - c__[k - 1] * y[k];
 
- 	    }
 
- /* L90: */
 
- 	}
 
-     }
 
- /*     End of DLAGTS */
 
-     return 0;
 
- } /* dlagts_ */
 
 
  |