| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 | 
							- /* dlag2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlag2_(doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, doublereal *safmin, doublereal *scale1, doublereal *
 
- 	scale2, doublereal *wr1, doublereal *wr2, doublereal *wi)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset;
 
-     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     doublereal r__, c1, c2, c3, c4, c5, s1, s2, a11, a12, a21, a22, b11, b12, 
 
- 	    b22, pp, qq, ss, as11, as12, as22, sum, abi22, diff, bmin, wbig, 
 
- 	    wabs, wdet, binv11, binv22, discr, anorm, bnorm, bsize, shift, 
 
- 	    rtmin, rtmax, wsize, ascale, bscale, wscale, safmax, wsmall;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
 
- /*  problem  A - w B, with scaling as necessary to avoid over-/underflow. */
 
- /*  The scaling factor "s" results in a modified eigenvalue equation */
 
- /*      s A - w B */
 
- /*  where  s  is a non-negative scaling factor chosen so that  w,  w B, */
 
- /*  and  s A  do not overflow and, if possible, do not underflow, either. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA, 2) */
 
- /*          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm */
 
- /*          is less than 1/SAFMIN.  Entries less than */
 
- /*          sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= 2. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB, 2) */
 
- /*          On entry, the 2 x 2 upper triangular matrix B.  It is */
 
- /*          assumed that the one-norm of B is less than 1/SAFMIN.  The */
 
- /*          diagonals should be at least sqrt(SAFMIN) times the largest */
 
- /*          element of B (in absolute value); if a diagonal is smaller */
 
- /*          than that, then  +/- sqrt(SAFMIN) will be used instead of */
 
- /*          that diagonal. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= 2. */
 
- /*  SAFMIN  (input) DOUBLE PRECISION */
 
- /*          The smallest positive number s.t. 1/SAFMIN does not */
 
- /*          overflow.  (This should always be DLAMCH('S') -- it is an */
 
- /*          argument in order to avoid having to call DLAMCH frequently.) */
 
- /*  SCALE1  (output) DOUBLE PRECISION */
 
- /*          A scaling factor used to avoid over-/underflow in the */
 
- /*          eigenvalue equation which defines the first eigenvalue.  If */
 
- /*          the eigenvalues are complex, then the eigenvalues are */
 
- /*          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the */
 
- /*          exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
 
- /*          will always be positive.  If the eigenvalues are real, then */
 
- /*          the first (real) eigenvalue is  WR1 / SCALE1 , but this may */
 
- /*          overflow or underflow, and in fact, SCALE1 may be zero or */
 
- /*          less than the underflow threshhold if the exact eigenvalue */
 
- /*          is sufficiently large. */
 
- /*  SCALE2  (output) DOUBLE PRECISION */
 
- /*          A scaling factor used to avoid over-/underflow in the */
 
- /*          eigenvalue equation which defines the second eigenvalue.  If */
 
- /*          the eigenvalues are complex, then SCALE2=SCALE1.  If the */
 
- /*          eigenvalues are real, then the second (real) eigenvalue is */
 
- /*          WR2 / SCALE2 , but this may overflow or underflow, and in */
 
- /*          fact, SCALE2 may be zero or less than the underflow */
 
- /*          threshhold if the exact eigenvalue is sufficiently large. */
 
- /*  WR1     (output) DOUBLE PRECISION */
 
- /*          If the eigenvalue is real, then WR1 is SCALE1 times the */
 
- /*          eigenvalue closest to the (2,2) element of A B**(-1).  If the */
 
- /*          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
 
- /*          part of the eigenvalues. */
 
- /*  WR2     (output) DOUBLE PRECISION */
 
- /*          If the eigenvalue is real, then WR2 is SCALE2 times the */
 
- /*          other eigenvalue.  If the eigenvalue is complex, then */
 
- /*          WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
 
- /*  WI      (output) DOUBLE PRECISION */
 
- /*          If the eigenvalue is real, then WI is zero.  If the */
 
- /*          eigenvalue is complex, then WI is SCALE1 times the imaginary */
 
- /*          part of the eigenvalues.  WI will always be non-negative. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     rtmin = sqrt(*safmin);
 
-     rtmax = 1. / rtmin;
 
-     safmax = 1. / *safmin;
 
- /*     Scale A */
 
- /* Computing MAX */
 
-     d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
 
- 	    d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 = 
 
- 	    a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);
 
-     anorm = max(d__5,*safmin);
 
-     ascale = 1. / anorm;
 
-     a11 = ascale * a[a_dim1 + 1];
 
-     a21 = ascale * a[a_dim1 + 2];
 
-     a12 = ascale * a[(a_dim1 << 1) + 1];
 
-     a22 = ascale * a[(a_dim1 << 1) + 2];
 
- /*     Perturb B if necessary to insure non-singularity */
 
-     b11 = b[b_dim1 + 1];
 
-     b12 = b[(b_dim1 << 1) + 1];
 
-     b22 = b[(b_dim1 << 1) + 2];
 
- /* Computing MAX */
 
-     d__1 = abs(b11), d__2 = abs(b12), d__1 = max(d__1,d__2), d__2 = abs(b22), 
 
- 	    d__1 = max(d__1,d__2);
 
-     bmin = rtmin * max(d__1,rtmin);
 
-     if (abs(b11) < bmin) {
 
- 	b11 = d_sign(&bmin, &b11);
 
-     }
 
-     if (abs(b22) < bmin) {
 
- 	b22 = d_sign(&bmin, &b22);
 
-     }
 
- /*     Scale B */
 
- /* Computing MAX */
 
-     d__1 = abs(b11), d__2 = abs(b12) + abs(b22), d__1 = max(d__1,d__2);
 
-     bnorm = max(d__1,*safmin);
 
- /* Computing MAX */
 
-     d__1 = abs(b11), d__2 = abs(b22);
 
-     bsize = max(d__1,d__2);
 
-     bscale = 1. / bsize;
 
-     b11 *= bscale;
 
-     b12 *= bscale;
 
-     b22 *= bscale;
 
- /*     Compute larger eigenvalue by method described by C. van Loan */
 
- /*     ( AS is A shifted by -SHIFT*B ) */
 
-     binv11 = 1. / b11;
 
-     binv22 = 1. / b22;
 
-     s1 = a11 * binv11;
 
-     s2 = a22 * binv22;
 
-     if (abs(s1) <= abs(s2)) {
 
- 	as12 = a12 - s1 * b12;
 
- 	as22 = a22 - s1 * b22;
 
- 	ss = a21 * (binv11 * binv22);
 
- 	abi22 = as22 * binv22 - ss * b12;
 
- 	pp = abi22 * .5;
 
- 	shift = s1;
 
-     } else {
 
- 	as12 = a12 - s2 * b12;
 
- 	as11 = a11 - s2 * b11;
 
- 	ss = a21 * (binv11 * binv22);
 
- 	abi22 = -ss * b12;
 
- 	pp = (as11 * binv11 + abi22) * .5;
 
- 	shift = s2;
 
-     }
 
-     qq = ss * as12;
 
-     if ((d__1 = pp * rtmin, abs(d__1)) >= 1.) {
 
- /* Computing 2nd power */
 
- 	d__1 = rtmin * pp;
 
- 	discr = d__1 * d__1 + qq * *safmin;
 
- 	r__ = sqrt((abs(discr))) * rtmax;
 
-     } else {
 
- /* Computing 2nd power */
 
- 	d__1 = pp;
 
- 	if (d__1 * d__1 + abs(qq) <= *safmin) {
 
- /* Computing 2nd power */
 
- 	    d__1 = rtmax * pp;
 
- 	    discr = d__1 * d__1 + qq * safmax;
 
- 	    r__ = sqrt((abs(discr))) * rtmin;
 
- 	} else {
 
- /* Computing 2nd power */
 
- 	    d__1 = pp;
 
- 	    discr = d__1 * d__1 + qq;
 
- 	    r__ = sqrt((abs(discr)));
 
- 	}
 
-     }
 
- /*     Note: the test of R in the following IF is to cover the case when */
 
- /*           DISCR is small and negative and is flushed to zero during */
 
- /*           the calculation of R.  On machines which have a consistent */
 
- /*           flush-to-zero threshhold and handle numbers above that */
 
- /*           threshhold correctly, it would not be necessary. */
 
-     if (discr >= 0. || r__ == 0.) {
 
- 	sum = pp + d_sign(&r__, &pp);
 
- 	diff = pp - d_sign(&r__, &pp);
 
- 	wbig = shift + sum;
 
- /*        Compute smaller eigenvalue */
 
- 	wsmall = shift + diff;
 
- /* Computing MAX */
 
- 	d__1 = abs(wsmall);
 
- 	if (abs(wbig) * .5 > max(d__1,*safmin)) {
 
- 	    wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
 
- 	    wsmall = wdet / wbig;
 
- 	}
 
- /*        Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
 
- /*        for WR1. */
 
- 	if (pp > abi22) {
 
- 	    *wr1 = min(wbig,wsmall);
 
- 	    *wr2 = max(wbig,wsmall);
 
- 	} else {
 
- 	    *wr1 = max(wbig,wsmall);
 
- 	    *wr2 = min(wbig,wsmall);
 
- 	}
 
- 	*wi = 0.;
 
-     } else {
 
- /*        Complex eigenvalues */
 
- 	*wr1 = shift + pp;
 
- 	*wr2 = *wr1;
 
- 	*wi = r__;
 
-     }
 
- /*     Further scaling to avoid underflow and overflow in computing */
 
- /*     SCALE1 and overflow in computing w*B. */
 
- /*     This scale factor (WSCALE) is bounded from above using C1 and C2, */
 
- /*     and from below using C3 and C4. */
 
- /*        C1 implements the condition  s A  must never overflow. */
 
- /*        C2 implements the condition  w B  must never overflow. */
 
- /*        C3, with C2, */
 
- /*           implement the condition that s A - w B must never overflow. */
 
- /*        C4 implements the condition  s    should not underflow. */
 
- /*        C5 implements the condition  max(s,|w|) should be at least 2. */
 
-     c1 = bsize * (*safmin * max(1.,ascale));
 
-     c2 = *safmin * max(1.,bnorm);
 
-     c3 = bsize * *safmin;
 
-     if (ascale <= 1. && bsize <= 1.) {
 
- /* Computing MIN */
 
- 	d__1 = 1., d__2 = ascale / *safmin * bsize;
 
- 	c4 = min(d__1,d__2);
 
-     } else {
 
- 	c4 = 1.;
 
-     }
 
-     if (ascale <= 1. || bsize <= 1.) {
 
- /* Computing MIN */
 
- 	d__1 = 1., d__2 = ascale * bsize;
 
- 	c5 = min(d__1,d__2);
 
-     } else {
 
- 	c5 = 1.;
 
-     }
 
- /*     Scale first eigenvalue */
 
-     wabs = abs(*wr1) + abs(*wi);
 
- /* Computing MAX */
 
- /* Computing MIN */
 
-     d__3 = c4, d__4 = max(wabs,c5) * .5;
 
-     d__1 = max(*safmin,c1), d__2 = (wabs * c2 + c3) * 1.0000100000000001, 
 
- 	    d__1 = max(d__1,d__2), d__2 = min(d__3,d__4);
 
-     wsize = max(d__1,d__2);
 
-     if (wsize != 1.) {
 
- 	wscale = 1. / wsize;
 
- 	if (wsize > 1.) {
 
- 	    *scale1 = max(ascale,bsize) * wscale * min(ascale,bsize);
 
- 	} else {
 
- 	    *scale1 = min(ascale,bsize) * wscale * max(ascale,bsize);
 
- 	}
 
- 	*wr1 *= wscale;
 
- 	if (*wi != 0.) {
 
- 	    *wi *= wscale;
 
- 	    *wr2 = *wr1;
 
- 	    *scale2 = *scale1;
 
- 	}
 
-     } else {
 
- 	*scale1 = ascale * bsize;
 
- 	*scale2 = *scale1;
 
-     }
 
- /*     Scale second eigenvalue (if real) */
 
-     if (*wi == 0.) {
 
- /* Computing MAX */
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 	d__5 = abs(*wr2);
 
- 	d__3 = c4, d__4 = max(d__5,c5) * .5;
 
- 	d__1 = max(*safmin,c1), d__2 = (abs(*wr2) * c2 + c3) * 
 
- 		1.0000100000000001, d__1 = max(d__1,d__2), d__2 = min(d__3,
 
- 		d__4);
 
- 	wsize = max(d__1,d__2);
 
- 	if (wsize != 1.) {
 
- 	    wscale = 1. / wsize;
 
- 	    if (wsize > 1.) {
 
- 		*scale2 = max(ascale,bsize) * wscale * min(ascale,bsize);
 
- 	    } else {
 
- 		*scale2 = min(ascale,bsize) * wscale * max(ascale,bsize);
 
- 	    }
 
- 	    *wr2 *= wscale;
 
- 	} else {
 
- 	    *scale2 = ascale * bsize;
 
- 	}
 
-     }
 
- /*     End of DLAG2 */
 
-     return 0;
 
- } /* dlag2_ */
 
 
  |