| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | 
							- /* dlaed3.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b22 = 1.;
 
- static doublereal c_b23 = 0.;
 
- /* Subroutine */ int dlaed3_(integer *k, integer *n, integer *n1, doublereal *
 
- 	d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda, 
 
- 	 doublereal *q2, integer *indx, integer *ctot, doublereal *w, 
 
- 	doublereal *s, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     integer i__, j, n2, n12, ii, n23, iq2;
 
-     doublereal temp;
 
-     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *),
 
- 	     dcopy_(integer *, doublereal *, integer *, doublereal *, integer 
 
- 	    *), dlaed4_(integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     extern doublereal dlamc3_(doublereal *, doublereal *);
 
-     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *), xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED3 finds the roots of the secular equation, as defined by the */
 
- /*  values in D, W, and RHO, between 1 and K.  It makes the */
 
- /*  appropriate calls to DLAED4 and then updates the eigenvectors by */
 
- /*  multiplying the matrix of eigenvectors of the pair of eigensystems */
 
- /*  being combined by the matrix of eigenvectors of the K-by-K system */
 
- /*  which is solved here. */
 
- /*  This code makes very mild assumptions about floating point */
 
- /*  arithmetic. It will work on machines with a guard digit in */
 
- /*  add/subtract, or on those binary machines without guard digits */
 
- /*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
 
- /*  It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  K       (input) INTEGER */
 
- /*          The number of terms in the rational function to be solved by */
 
- /*          DLAED4.  K >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of rows and columns in the Q matrix. */
 
- /*          N >= K (deflation may result in N>K). */
 
- /*  N1      (input) INTEGER */
 
- /*          The location of the last eigenvalue in the leading submatrix. */
 
- /*          min(1,N) <= N1 <= N/2. */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          D(I) contains the updated eigenvalues for */
 
- /*          1 <= I <= K. */
 
- /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          Initially the first K columns are used as workspace. */
 
- /*          On output the columns 1 to K contain */
 
- /*          the updated eigenvectors. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q.  LDQ >= max(1,N). */
 
- /*  RHO     (input) DOUBLE PRECISION */
 
- /*          The value of the parameter in the rank one update equation. */
 
- /*          RHO >= 0 required. */
 
- /*  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K) */
 
- /*          The first K elements of this array contain the old roots */
 
- /*          of the deflated updating problem.  These are the poles */
 
- /*          of the secular equation. May be changed on output by */
 
- /*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */
 
- /*          Cray-2, or Cray C-90, as described above. */
 
- /*  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N) */
 
- /*          The first K columns of this matrix contain the non-deflated */
 
- /*          eigenvectors for the split problem. */
 
- /*  INDX    (input) INTEGER array, dimension (N) */
 
- /*          The permutation used to arrange the columns of the deflated */
 
- /*          Q matrix into three groups (see DLAED2). */
 
- /*          The rows of the eigenvectors found by DLAED4 must be likewise */
 
- /*          permuted before the matrix multiply can take place. */
 
- /*  CTOT    (input) INTEGER array, dimension (4) */
 
- /*          A count of the total number of the various types of columns */
 
- /*          in Q, as described in INDX.  The fourth column type is any */
 
- /*          column which has been deflated. */
 
- /*  W       (input/output) DOUBLE PRECISION array, dimension (K) */
 
- /*          The first K elements of this array contain the components */
 
- /*          of the deflation-adjusted updating vector. Destroyed on */
 
- /*          output. */
 
- /*  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K */
 
- /*          Will contain the eigenvectors of the repaired matrix which */
 
- /*          will be multiplied by the previously accumulated eigenvectors */
 
- /*          to update the system. */
 
- /*  LDS     (input) INTEGER */
 
- /*          The leading dimension of S.  LDS >= max(1,K). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an eigenvalue did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  Modified by Francoise Tisseur, University of Tennessee. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --dlamda;
 
-     --q2;
 
-     --indx;
 
-     --ctot;
 
-     --w;
 
-     --s;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*k < 0) {
 
- 	*info = -1;
 
-     } else if (*n < *k) {
 
- 	*info = -2;
 
-     } else if (*ldq < max(1,*n)) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLAED3", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*k == 0) {
 
- 	return 0;
 
-     }
 
- /*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
 
- /*     be computed with high relative accuracy (barring over/underflow). */
 
- /*     This is a problem on machines without a guard digit in */
 
- /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
 
- /*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
 
- /*     which on any of these machines zeros out the bottommost */
 
- /*     bit of DLAMDA(I) if it is 1; this makes the subsequent */
 
- /*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
 
- /*     occurs. On binary machines with a guard digit (almost all */
 
- /*     machines) it does not change DLAMDA(I) at all. On hexadecimal */
 
- /*     and decimal machines with a guard digit, it slightly */
 
- /*     changes the bottommost bits of DLAMDA(I). It does not account */
 
- /*     for hexadecimal or decimal machines without guard digits */
 
- /*     (we know of none). We use a subroutine call to compute */
 
- /*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
 
- /*     this code. */
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
 
- /* L10: */
 
-     }
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 
 
- 		info);
 
- /*        If the zero finder fails, the computation is terminated. */
 
- 	if (*info != 0) {
 
- 	    goto L120;
 
- 	}
 
- /* L20: */
 
-     }
 
-     if (*k == 1) {
 
- 	goto L110;
 
-     }
 
-     if (*k == 2) {
 
- 	i__1 = *k;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    w[1] = q[j * q_dim1 + 1];
 
- 	    w[2] = q[j * q_dim1 + 2];
 
- 	    ii = indx[1];
 
- 	    q[j * q_dim1 + 1] = w[ii];
 
- 	    ii = indx[2];
 
- 	    q[j * q_dim1 + 2] = w[ii];
 
- /* L30: */
 
- 	}
 
- 	goto L110;
 
-     }
 
- /*     Compute updated W. */
 
-     dcopy_(k, &w[1], &c__1, &s[1], &c__1);
 
- /*     Initialize W(I) = Q(I,I) */
 
-     i__1 = *ldq + 1;
 
-     dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = j - 1;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 
- /* L40: */
 
- 	}
 
- 	i__2 = *k;
 
- 	for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 
- /* L50: */
 
- 	}
 
- /* L60: */
 
-     }
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	d__1 = sqrt(-w[i__]);
 
- 	w[i__] = d_sign(&d__1, &s[i__]);
 
- /* L70: */
 
-     }
 
- /*     Compute eigenvectors of the modified rank-1 modification. */
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = *k;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    s[i__] = w[i__] / q[i__ + j * q_dim1];
 
- /* L80: */
 
- 	}
 
- 	temp = dnrm2_(k, &s[1], &c__1);
 
- 	i__2 = *k;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    ii = indx[i__];
 
- 	    q[i__ + j * q_dim1] = s[ii] / temp;
 
- /* L90: */
 
- 	}
 
- /* L100: */
 
-     }
 
- /*     Compute the updated eigenvectors. */
 
- L110:
 
-     n2 = *n - *n1;
 
-     n12 = ctot[1] + ctot[2];
 
-     n23 = ctot[2] + ctot[3];
 
-     dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);
 
-     iq2 = *n1 * n12 + 1;
 
-     if (n23 != 0) {
 
- 	dgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, &
 
- 		c_b23, &q[*n1 + 1 + q_dim1], ldq);
 
-     } else {
 
- 	dlaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq);
 
-     }
 
-     dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);
 
-     if (n12 != 0) {
 
- 	dgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, 
 
- 		 &q[q_offset], ldq);
 
-     } else {
 
- 	dlaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq);
 
-     }
 
- L120:
 
-     return 0;
 
- /*     End of DLAED3 */
 
- } /* dlaed3_ */
 
 
  |