| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 | 
							- /* dggglm.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b32 = -1.;
 
- static doublereal c_b34 = 1.;
 
- /* Subroutine */ int dggglm_(integer *n, integer *m, integer *p, doublereal *
 
- 	a, integer *lda, doublereal *b, integer *ldb, doublereal *d__, 
 
- 	doublereal *x, doublereal *y, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer i__, nb, np, nb1, nb2, nb3, nb4, lopt;
 
-     extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), dggqrf_(
 
- 	    integer *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *, integer *), xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer lwkmin;
 
-     extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *), 
 
- 	    dormrq_(char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
-     extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGGLM solves a general Gauss-Markov linear model (GLM) problem: */
 
- /*          minimize || y ||_2   subject to   d = A*x + B*y */
 
- /*              x */
 
- /*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */
 
- /*  given N-vector. It is assumed that M <= N <= M+P, and */
 
- /*             rank(A) = M    and    rank( A B ) = N. */
 
- /*  Under these assumptions, the constrained equation is always */
 
- /*  consistent, and there is a unique solution x and a minimal 2-norm */
 
- /*  solution y, which is obtained using a generalized QR factorization */
 
- /*  of the matrices (A, B) given by */
 
- /*     A = Q*(R),   B = Q*T*Z. */
 
- /*           (0) */
 
- /*  In particular, if matrix B is square nonsingular, then the problem */
 
- /*  GLM is equivalent to the following weighted linear least squares */
 
- /*  problem */
 
- /*               minimize || inv(B)*(d-A*x) ||_2 */
 
- /*                   x */
 
- /*  where inv(B) denotes the inverse of B. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The number of rows of the matrices A and B.  N >= 0. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  0 <= M <= N. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of columns of the matrix B.  P >= N-M. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
 
- /*          On entry, the N-by-M matrix A. */
 
- /*          On exit, the upper triangular part of the array A contains */
 
- /*          the M-by-M upper triangular matrix R. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,P) */
 
- /*          On entry, the N-by-P matrix B. */
 
- /*          On exit, if N <= P, the upper triangle of the subarray */
 
- /*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
 
- /*          if N > P, the elements on and above the (N-P)th subdiagonal */
 
- /*          contain the N-by-P upper trapezoidal matrix T. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,N). */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, D is the left hand side of the GLM equation. */
 
- /*          On exit, D is destroyed. */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (M) */
 
- /*  Y       (output) DOUBLE PRECISION array, dimension (P) */
 
- /*          On exit, X and Y are the solutions of the GLM problem. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,N+M+P). */
 
- /*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, */
 
- /*          where NB is an upper bound for the optimal blocksizes for */
 
- /*          DGEQRF, SGERQF, DORMQR and SORMRQ. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1:  the upper triangular factor R associated with A in the */
 
- /*                generalized QR factorization of the pair (A, B) is */
 
- /*                singular, so that rank(A) < M; the least squares */
 
- /*                solution could not be computed. */
 
- /*          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal */
 
- /*                factor T associated with B in the generalized QR */
 
- /*                factorization of the pair (A, B) is singular, so that */
 
- /*                rank( A B ) < N; the least squares solution could not */
 
- /*                be computed. */
 
- /*  =================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --d__;
 
-     --x;
 
-     --y;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     np = min(*n,*p);
 
-     lquery = *lwork == -1;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*m < 0 || *m > *n) {
 
- 	*info = -2;
 
-     } else if (*p < 0 || *p < *n - *m) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
- /*     Calculate workspace */
 
-     if (*info == 0) {
 
- 	if (*n == 0) {
 
- 	    lwkmin = 1;
 
- 	    lwkopt = 1;
 
- 	} else {
 
- 	    nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1);
 
- 	    nb2 = ilaenv_(&c__1, "DGERQF", " ", n, m, &c_n1, &c_n1);
 
- 	    nb3 = ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1);
 
- 	    nb4 = ilaenv_(&c__1, "DORMRQ", " ", n, m, p, &c_n1);
 
- /* Computing MAX */
 
- 	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
 
- 	    nb = max(i__1,nb4);
 
- 	    lwkmin = *m + *n + *p;
 
- 	    lwkopt = *m + np + max(*n,*p) * nb;
 
- 	}
 
- 	work[1] = (doublereal) lwkopt;
 
- 	if (*lwork < lwkmin && ! lquery) {
 
- 	    *info = -12;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGGGLM", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Compute the GQR factorization of matrices A and B: */
 
- /*            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M */
 
- /*                   (  0  ) N-M             (  0    T22 ) N-M */
 
- /*                      M                     M+P-N  N-M */
 
- /*     where R11 and T22 are upper triangular, and Q and Z are */
 
- /*     orthogonal. */
 
-     i__1 = *lwork - *m - np;
 
-     dggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 
 
- 	    + 1], &work[*m + np + 1], &i__1, info);
 
-     lopt = (integer) work[*m + np + 1];
 
- /*     Update left-hand-side vector d = Q'*d = ( d1 ) M */
 
- /*                                             ( d2 ) N-M */
 
-     i__1 = max(1,*n);
 
-     i__2 = *lwork - *m - np;
 
-     dormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], &
 
- 	    d__[1], &i__1, &work[*m + np + 1], &i__2, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[*m + np + 1];
 
-     lopt = max(i__1,i__2);
 
- /*     Solve T22*y2 = d2 for y2 */
 
-     if (*n > *m) {
 
- 	i__1 = *n - *m;
 
- 	i__2 = *n - *m;
 
- 	dtrtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 
 
- 		+ (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, 
 
- 		info);
 
- 	if (*info > 0) {
 
- 	    *info = 1;
 
- 	    return 0;
 
- 	}
 
- 	i__1 = *n - *m;
 
- 	dcopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);
 
-     }
 
- /*     Set y1 = 0 */
 
-     i__1 = *m + *p - *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	y[i__] = 0.;
 
- /* L10: */
 
-     }
 
- /*     Update d1 = d1 - T12*y2 */
 
-     i__1 = *n - *m;
 
-     dgemv_("No transpose", m, &i__1, &c_b32, &b[(*m + *p - *n + 1) * b_dim1 + 
 
- 	    1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1);
 
- /*     Solve triangular system: R11*x = d1 */
 
-     if (*m > 0) {
 
- 	dtrtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], 
 
- 		lda, &d__[1], m, info);
 
- 	if (*info > 0) {
 
- 	    *info = 2;
 
- 	    return 0;
 
- 	}
 
- /*        Copy D to X */
 
- 	dcopy_(m, &d__[1], &c__1, &x[1], &c__1);
 
-     }
 
- /*     Backward transformation y = Z'*y */
 
- /* Computing MAX */
 
-     i__1 = 1, i__2 = *n - *p + 1;
 
-     i__3 = max(1,*p);
 
-     i__4 = *lwork - *m - np;
 
-     dormrq_("Left", "Transpose", p, &c__1, &np, &b[max(i__1, i__2)+ b_dim1], 
 
- 	    ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[*m + np + 1];
 
-     work[1] = (doublereal) (*m + np + max(i__1,i__2));
 
-     return 0;
 
- /*     End of DGGGLM */
 
- } /* dggglm_ */
 
 
  |